

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200900405

FCC REPORT

Applicant: Shenzhen Peicheng Technology Co., Ltd

Address of Applicant: 5th Floor, B Building, Baotian Industrial Zone, Qianjin 2nd road,

Xixiang, Bao'an District, Shenzhen, Guangdong, China 518102

Equipment Under Test (EUT)

Product Name: Tablet pc

Model No.: K75, K76, K77, K78, K79, K80

Trade mark: SMART TEK

FCC ID: 2AV6Y-K75

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 02 Sep., 2020

Date of Test: 02 Sep., to 20 Oct., 2020

Date of report issued: 20 Oct., 2020

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	20 Oct., 2020	Original

Tested by: 20 Oct., 2020 Date:

Winner Thang

Project Engineer

Reviewed by: Date: 20 Oct., 2020

3 Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4	Ti	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE AND TEST SAMPLES PLANS	5
	5.4	MEASUREMENT UNCERTAINTY	5
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.9	LABORATORY FACILITY	
	5.10		
	5.11	TEST INSTRUMENTS LIST	7
6	TE	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TE	EST SETUP PHOTO	17
R	FI	LIT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass
Domoule		

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	Shenzhen Peicheng Technology Co., Ltd
Address:	5th Floor, B Building, Baotian Industrial Zone, Qianjin 2nd road, Xixiang, Bao'an District, Shenzhen, Guangdong, China 518102
Manufacturer/Factory:	Shenzhen Peicheng Technology Co., Ltd
Address:	5th Floor, B Building, Baotian Industrial Zone, Qianjin 2nd road, Xixiang, Bao'an District, Shenzhen, Guangdong, China 518102

5.2 General Description of E.U.T.

Product Name:	Tablet pc
Model No.:	K75, K76, K77, K78, K79, K80
Power supply:	Rechargeable Li-ion Battery DC3.7V, 3000mAh
AC adapter:	Model: FX2U-0501150U
	Input: AC100-220V, 50/60Hz, 0.4A
	Output: DC 5.0V, 1.5A
Remark:	Model No.: K75, K76, K77, K78, K79, K80 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode and test samples plans

Operating mode Detail description	
PC mode	Keep the EUT in Downloading mode(Worst case)
Charging+Recording mode	Keep the EUT in Charging+Recording mode
Charging+Playing mode	Keep the EUT in Charging+Playing mode
FM mode	Keep the EUT in FM receiver mode
GPS mode	Keep the EUT in GPS receiver mode

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

Report No: CCISE200900405

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter

5.8 Additions to, deviations, or exclusions from the method

Nο

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

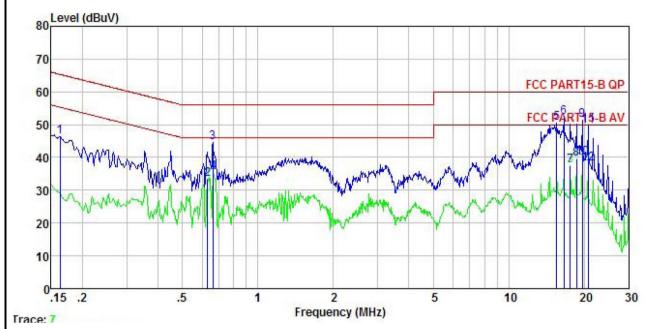
Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2020	07-21-2021
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b		b	

6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)			
	Quasi-peak Average			
	0.15-0.5 66 to 56* 56 to 46*			
	0.5-5	56	46	
	0.5-30	60	50	
	* Decreases with the logarithm	of the frequency.		
Test procedure	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 			
Test Instruments:	Refer to section 5.11 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Pass			

Measurement data:

Product name:	Tablet pc	Product model:	K75
Test by:	Mike	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
<u></u>	MHz	dBu∜	<u>ab</u>	<u>ab</u>	<u>dB</u>	—dBu∀	dBu∜	<u>ab</u>	
1	0.162	36.22	-0.58	10.77	-0.08	46.33	65.34	-19.01	QP
2	0.630	23.47	-0.50	10.77	-0.38	33.36	46.00	-12.64	Average
3	0.661	34.74	-0.51	10.77	-0.39	44.61	56.00	-11.39	QP
4	0.665	25.53	-0.51	10.77	-0.39	35.40	46.00	-10.60	Average
5	15.552	36.85	-0.71	10.90	3.30	50.34	60.00	-9.66	QP
6	16.573	39.46	-0.75	10.91	2.68	52.30	60.00	-7.70	QP
7	17.568	25.14	-0.79	10.92	2.13	37.40	50.00	-12.60	Average
2 3 4 5 6 7 8 9	18.622	27.77	-0.82	10.92	1.59	39.46	50.00	-10.54	Average
9	19.635	40.26	-0.86	10.93	1.05	51.38	60.00	-8.62	QP
10	19.635	28.70	-0.86	10.93	1.05	39.82	50.00	-10.18	Average
11	20.704	38.71	-0.90	10.92	0.90	49.63	60.00	-10.37	QP
12	20.704	27.16	-0.90	10.92	0.90	38.08	50.00	-11.92	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Tablet po	:			Pro	oduct mo	del:	K75			
Test by:	Mike				Tes	st mode:		PC mode			
Test frequency:	150 kHz	~ 30 MHz			Ph	ase:		Neutral			
Test voltage:	AC 120 V	//60 Hz			En	vironme	nt:	Temp: 22.5°0	C Huni: 55%		
80 Level (dBu 70 60 50 40 30 20		2	Marin Control of the	Mythyrtody p	W4/4/4/4	Variation III	Mundy	7	RT15-B QP		
0.15 .2		.5	1	2 Frequen	cy (MHz)	5		10	20 30		
Fı	Read eq Level			Aux Factor	Level	Limit Line	Over Limit	Remark			
<u>_</u>	Hz dBuV	<u>ab</u>		<u>dB</u>	dBu₹	dBu₹	<u>d</u> B		<u> </u>		
1 0.1	66 37.52	-0.68	10.77	0.01			-17.54	0.0220			

Notes:

34567

89

10

11

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

2.79

2.13

2.13

0.97

0.97

0.30

0.30

36.26

52.67

38.90

50.51

38.67

50.07

38.79

50.00 -13.74 Average

50.00 -11.10 Average

-9.49 QP

50.00 -11.33 Average

50.00 -11.21 Average

60.00 -7.33 QP

60.00 -9.93 QP

60.00

Final Level = Receiver Read level + LISN Factor + Cable Loss.

23.43

40.60

26.83

39.78

27.94

40.14

28.86

-0.86

-0.97

-0.97

-1.16 -1.16

-1.29

-1.29

10.90

10.91

10.91

10.92

10.92

10.92

10.92

15.552

16.573

16.573

18.622

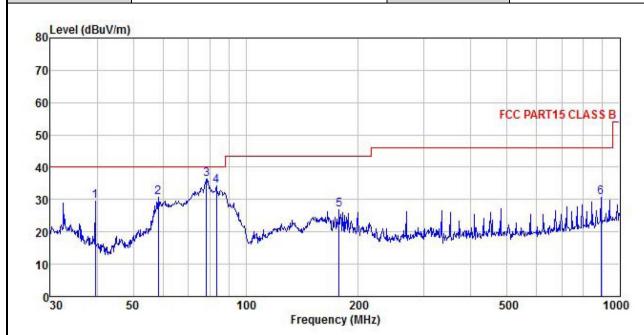
18.622

20.704

20.704

6.2 Radiated Emission

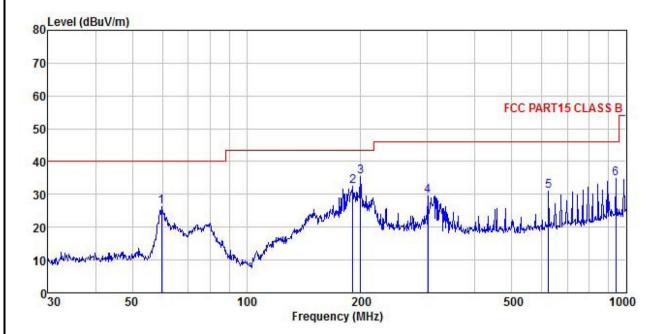
Test Requirement:	FCC Part 15 B Se	ection 15.10)9						
Test Frequency Range:	30MHz to 25GHz								
Test site:	Measurement Dis	tance: 3m (Sem	i-Anechoic (Chamber)				
Receiver setup:	Frequency	Detecto	or	RBW	VBW	Remark			
, 1000, 101 001ap	30MHz-1GHz	Quasi-pe	ak	120kHz	300kHz	Z Quasi-peak Value			
	Above 1GHz	Peak		1MHz	3MHz	Peak Value			
	Above IGHZ	Average Value							
Limit:	Frequenc		Lim	it (dBuV/m	@3m)	Remark			
	30MHz-88MHz 40.0 Quasi-peak Value								
	88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value								
				46.0		Quasi-peak Value			
	960MHz-1G	ÞΗΖ		54.0 54.0		Quasi-peak Value			
	Above 1GI	Hz		74.0		Average Value Peak Value			
Test setup:	Below 1GHz> 3m	*			Antenna Tower Search Antenna				
	Above 1GHz								
	AE EUT Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver Controller								
Test Procedure:	ground at a 3 ndegrees to detect 2. The EUT was swhich was mounted 3. The antenna hours ground to detect to detect the street and the street the street the street and the street the stree	neter semi- ermine the p set 3 meters unted on the eight is vari rmine the m	aneclositi s awa top ed from	hoic camber on of the hig by from the in of a variable om one mete um value of	The tab ghest radi nterference e-height a er to four the field	ce-receiving antenna, intenna tower. meters above the			


	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz are the noise floor , which were not recorded , only report worse case from 30MHz to 6GHz.

Measurement Data:

Below 1GHz:

Product Name:	Tablet pc	Product Model:	K75
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

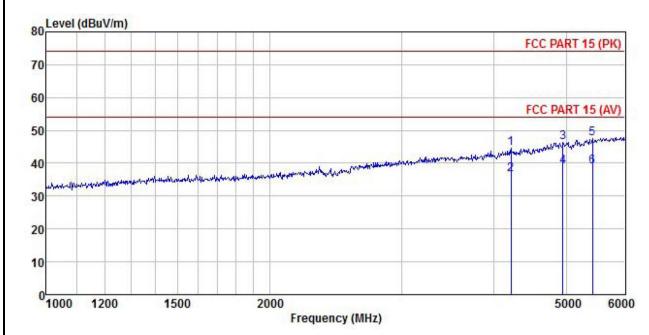

	Freq		Intenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/m	₫B	₫B	−−−−dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2 3 4 5 6	78.413 83.522 177.509	46.25 49.21 53.13 51.29 38.20 34.65		0.35 0.42 0.47 0.48 0.67	0.00 0.00 0.00	29.78 29.65 29.61 28.99	30.81 36.34 34.11	40.00 40.00 40.00 43.50	-10.52 -9.19 -3.66 -5.89 -16.77 -15.40	QP QP QP QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Tablet pc	Product Model:	K75
Test By:	Mike	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor					Limit Line		Remark
~	MHz	dBu∜	<u>dB</u> /π		<u>ab</u>	<u>ab</u>	$\overline{\mathtt{dBuV/m}}$	dBu√/m	<u>ab</u>	
1	59.649	44.93	10.84	0.42	0.00	29.77	26.42	40.00	-13.58	QP
2	190.405	43.24	17.45	0.70	0.00	28.90	32.49	43.50	-11.01	QP
2	199.986	45.31	18.30	0.72	0.00	28.83	35.50	43.50	-8.00	QP
	300.367	38.53	18.70	0.86	0.00	28.45	29.64	46.00	-16.36	QP
5	625.078	38.61	20.00	1.24	0.00	28.86	30.99	46.00	-15.01	QP
4 5 6	938.833	38.23	22.76	1.54	0.00	27.76	34.77	46.00	-11.23	QP


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	Tablet pc	Product Model:	K75
Test By:	Mike	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor			Preamp Factor		Limit Line	Over Limit	Remark
	MHz	dBu∜	— <u>d</u> B/π		<u>ab</u>	<u>ab</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>ab</u>	
1	4212.379	48.49	29.66	5.93	2.27	41.82	44.53	74.00	-29.47	Peak
2	4212.379	40.70	29.66	5.93	2.27	41.82	36.74	54.00	-17.26	Average
3	4950.745	48.07	31.08	6.51	2.49	41.86	46.29		-27.71	
4	4950.745	40.68	31.08	6.51	2.49	41.86	38.90	54.00	-15.10	Average
5	5424.881	47.71	32.13	6.93	2.64	41.86	47.55	74.00	-26.45	Peak
6	5424.881	39.07	32.13	6.93	2.64	41.86	38.91	54.00	-15.09	Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

odu	ct Na	me:	Table	et pc				Pro	oduct Mo	del:	K75			
st B	By:		Mike					Te	st mode:		PC mode			
st F	reque	ency:	1 GH	z ~ 6 GHz				Ро	larization	ո։	Horizonta	al		
st V	oltag	e:	AC 12	20V/60Hz				En	vironme	nt:	Temp: 24	1 ℃	Huni: 57	
80	Level	(dBuV/r	n)								rect	PART 15	(DIZ)	
70											FLLF	7KI 13	(PK)	
60													Total	
50												PART 15	5	
1000								17 (200)	Later make Japan	Junguary James		Mary Mary	augustus 6	
40 30	المستعلق المستم	-www.pedfluph	, Marie Marie Marie	happed and the state of the sta	(and the second	وبالمهموال مسهولا والمهر	have from Ward	NAME OF THE PARTY			2			
20														
10														
0	1000	1200	ly H.	1500		2000 Fre	quency (MHz)				5000	6000	
							quonoj (,						
		Freq		Antenna Factor		Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark			
		MHz	dBu∇	<u>dB</u> /m		<u>qp</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>				
1 2 3 4 5 6	456 484 484 566	2. 223 2. 223 5. 901 5. 901 2. 163 2. 163	48.85 40.62 48.88 40.15 47.80 39.84	30.87 30.87	6. 19 6. 19 6. 43 6. 43 7. 08 7. 08	2.38 2.46 2.46 2.70	42.11 41.83 41.83 41.87	38.08	54.00 74.00 54.00 74.00	-27.19 -15.92 -25.92	Average Peak Average			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.