

Report No: CCISE200900402

FCC REPORT (Bluetooth)

Applicant:	Shenzhen Peicheng Technology Co., Ltd			
Address of Applicant:	5th Floor, B Building, Baotian Industrial Zone, Qianjin 2nd roa Xixiang, Bao'an District, Shenzhen, Guangdong, China 51810			
Equipment Under Test (B	EUT)			
Product Name:	Tablet pc			
Model No.:	K75, K76, K77, K78, K79, K80			
Trade mark:	SMART TEK			
FCC ID:	2AV6Y-K75			
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247			
Date of sample receipt:	02 Sep., 2020			
Date of Test:	02 Sep., to 20 Oct., 2020			
Date of report issued:	20 Oct., 2020			
Test Result:	PASS *			

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	20 Oct., 2020	Original

Tested by:

Mike.OU Test Engineer Winner Mang

Date: 20 Oct., 2020

Date: 20 Oct., 2020

Reviewed by:

Project Engineer

CCIS

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	
5 GENERAL INFORMATION	
5.1 CLIENT INFORMATION	
5.2 GENERAL DESCRIPTION OF E.U.T	-
5.4 DESCRIPTION OF SUPPORT UNITS	
5.5 MEASUREMENT UNCERTAINTY	
5.6 ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
5.7 LABORATORY FACILITY	
5.8 LABORATORY LOCATION	
5.9 TEST INSTRUMENTS LIST	
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 ANTENNA REQUIREMENT	8
6.2 CONDUCTED EMISSIONS	-
6.3 CONDUCTED OUTPUT POWER	
6.4 20DB OCCUPY BANDWIDTH	
6.5 CARRIER FREQUENCIES SEPARATION	
6.7 DWELL TIME	
6.8 PSEUDORANDOM FREQUENCY HOPPING SEQUENCE.	
6.9 Band Edge	
6.9.1 Conducted Emission Method	
6.9.2 Radiated Emission Method	
6.10 SPURIOUS EMISSION 6.10.1 Conducted Emission Method	-
6.10.2 Radiated Emission Method	
7 TEST SETUP PHOTO	
8 EUT CONSTRUCTIONAL DETAILS	
APPENDIX A - BT	

4 Test Summary

Test Items	Section in CFR 47	Result			
Antenna Requirement	15.203 & 15.247 (b)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(1)	Pass			
20dB Occupied Bandwidth	15.247 (a)(1)	Pass			
Carrier Frequencies Separation	15.247 (a)(1)	Pass			
Hopping Channel Number	15.247 (a)(1)	Pass			
Dwell Time	15.247 (a)(1)	Pass			
Spurious Emission	15.205 & 15.209	Pass			
Band Edge	15.247(d)	Pass			
<i>Remark:</i> 1. Pass: The EUT complies with the essential requirements in the standard.					

2. N/A: Not Applicable.

3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:	ANSI C63.10-2013
root mounour	KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Shenzhen Peicheng Technology Co., Ltd				
Address:	5th Floor, B Building, Baotian Industrial Zone, Qianjin 2nd road, Xixiang, Bao'an District, Shenzhen, Guangdong, China 518102				
Manufacturer/Factory:	Shenzhen Peicheng Technology Co., Ltd				
Address:	5th Floor, B Building, Baotian Industrial Zone, Qianjin 2nd road, Xixiang, Bao'an District, Shenzhen, Guangdong, China 518102				

5.2 General Description of E.U.T.

Product Name:	Tablet pc
Model No.:	K75, K76, K77, K78, K79, K80
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	0.8 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 3000mAh
AC adapter:	Model: FX2U-0501150U
	Input: AC100-220V, 50/60Hz, 0.4A
	Output: DC 5.0V, 1.5A
Remark:	Model No.: K75, K76, K77, K78, K79, K80 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Channel	peration Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK hannel Frequency Channel Frequency Channel Frequency Channel Frequency							
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19 2421MHz 39 2441MHz 59 2461MHz								
Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.								

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test Modes:				
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.			
Hopping mode: Keep the EUT in hopping mode.				
Remark	All modulation and DH1,3,5 all have been tested ,GFSK (1 Mbps) DH1 is the worst case mode.			
Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane				
of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each				

emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

5.9 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021		
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020		
EMI Test Software	AUDIX	E3	Version: 6.110919b				
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021		
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A		
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0				

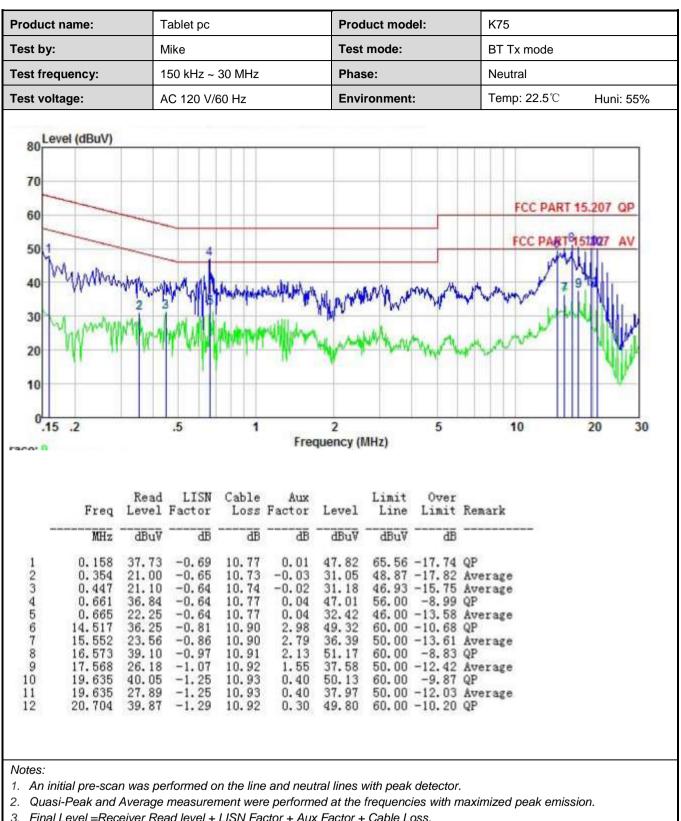
Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:	FCC Part 15 C Section 15.203 & 247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohit 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit n be replaced by the user, but the use of a standard antenna jack or bited. wer limit specified in paragraph (b) of this section is based on the use of ins that do not exceed 6 dBi. Except as shown in paragraph (c) of this nas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), ion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The Bluetooth antenna is an the antenna is 0.8 dBi.	Internal antenna which permanently attached, and the best case gain of

6.2 Conducted Emissions


Test Requirement:	FCC Part 15 C Section 15.2	207			
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
Limit:	Frequency range (MHz)	Limit (d	dBuV)		
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test setup:	* Decreases with the logarit				
Testasseduse	Remark E U T Equipment Under Test U T Equipment Under Test USN Line Impedience Stabilization Networ Test table height=0 8m				
Test procedure:	 50ohm/50uH coupling in The peripheral devices a LISN that provides a 500 termination. (Please reference) Both sides of A.C. line interference. In order to positions of equipment 	tion network (L.I.S.N.). Th npedance for the measuri	is provides a ng equipment. main power through a lance with 50ohm the test setup and n conducted sion, the relative ables must be changed		
Toot Inotrumento	Defende cestion 50 fee det	aile			
Test Instruments:	Refer to section 5.9 for deta	1115			
Test mode:	Hopping mode				

Measurement Data:

roduct name:	Ta	Tablet pc Mike 150 kHz ~ 30 MHz AC 120 V/60 Hz		Product model:			K75			
est by:	М			Test n	node:		BT Tx mode			
est frequency:	15			Phase):		Line	Line		
est voltage:	A			Enviro	onment:		Temp: 22.5℃	Huni: 55%		
80 20 10 20 Level (dBuV) 20 10 20 10 0 20 10 0	mul		hyrryr aftir Ywryr antif	urgennenden en filmen			my May	FCC PAR		
.15 .2		.5	1 Cable	Freq	2 uency (M	Hz) Limit	5 Over	10 Remark	20 30	
Freq	Read Level	LISN Factor		Factor	Level	Line	Limit			
Freq MHz		LISN Factor dB		Factor dB	Level dBuV	Line dBuV	Limit dB			

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=2MHz, VBW=6MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass

6.3 Conducted Output Power

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	DH1: RBW=15 kHz, VBW=47 kHz, detector=Peak 2DH1&3DH: RBW=20 kHz, VBW=62 kHz, detector=Peak
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)				
Receiver setup:	RBW=300 kHz, VBW=1 MHz, detector=Peak				
Limit:	a) 0.025MHz or the 20dB bandwidth (whichever is greater)b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Hopping mode				
Test results:	Pass				

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Center Frequency=2441MHz, Span= 100MHz, Detector=Peak
Limit:	15 channels
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak
Limit:	0.4 Second
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Hopping mode
Test results:	Pass

6.8 Pseudorandom Frequency Hopping Sequence

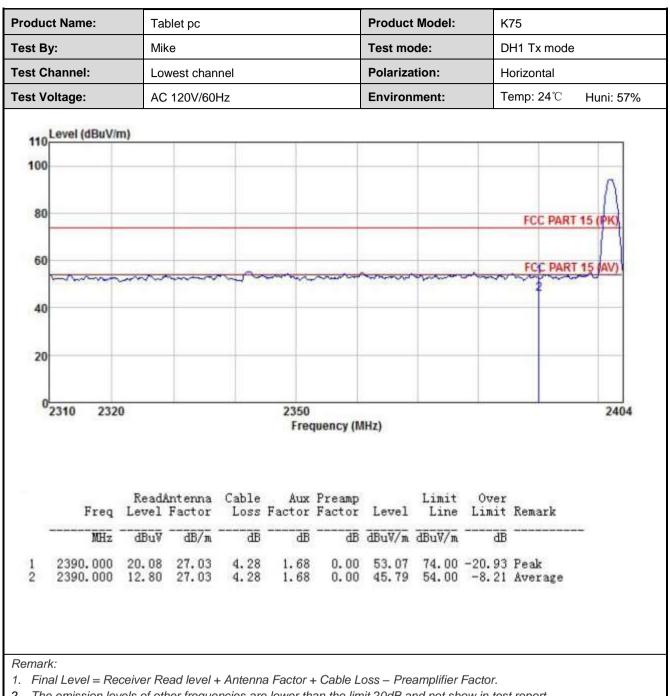
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1) requirement:
	shall have hopping channel carrier frequencies separated by a minimum of the hopping channel, whichever is greater.
channel carrier frequencies t hopping channel, whichever than 125 mW. The system sl rate from a Pseudorandom c on the average by each trans	pping systems operating in the 2400-2483.5 MHz band may have hopping that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the is greater, provided the systems operate with an output power no greater hall hop to channel frequencies that are selected at the system hopping ordered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the of their corresponding transmitters and shall shift frequencies in smitted signals.
EUT Pseudorandom Frequ	ency Hopping Sequence
outputs are added in a modu	sequence: 2 ⁹ -1 = 511 bits
Linear Feedback Sł	nift Register for Generation of the PRBS sequence
	m Frequency Hopping Sequence as follow:
0 2 4 6	62 64 78 1 73 75 77
The system receivers have in	y on the average by each transmitter. nput bandwidths that match the hopping channel bandwidths of their and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

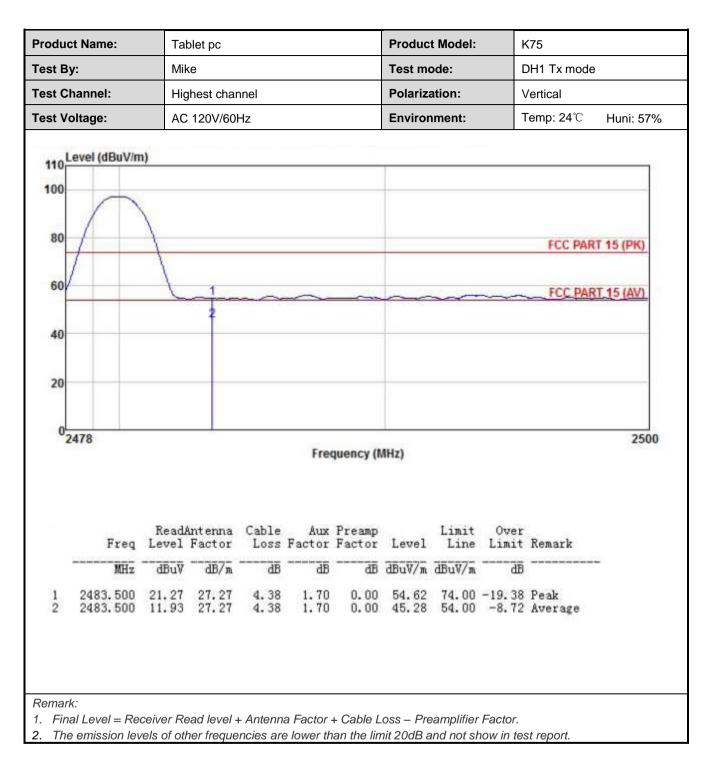
6.9.1 Conducted Emission Method

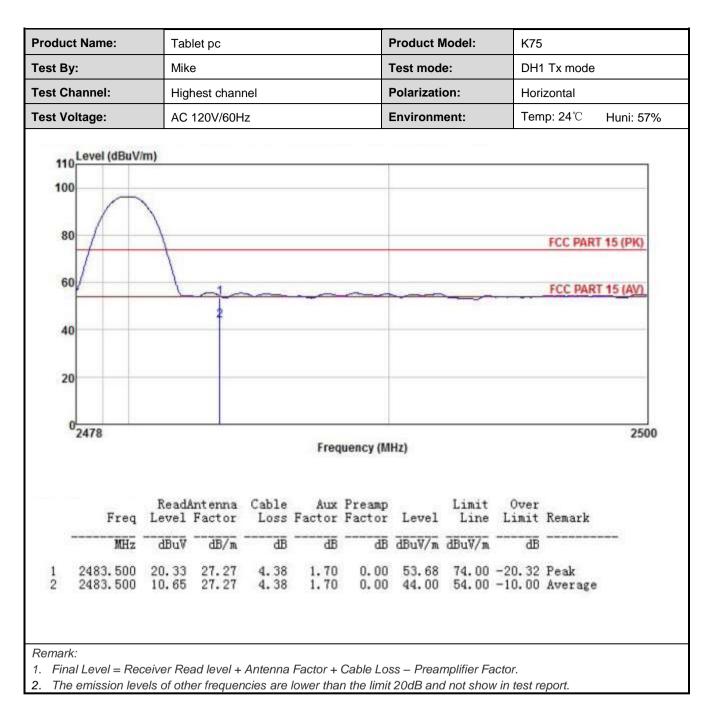
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

6.9.2 Radiated Emission Method

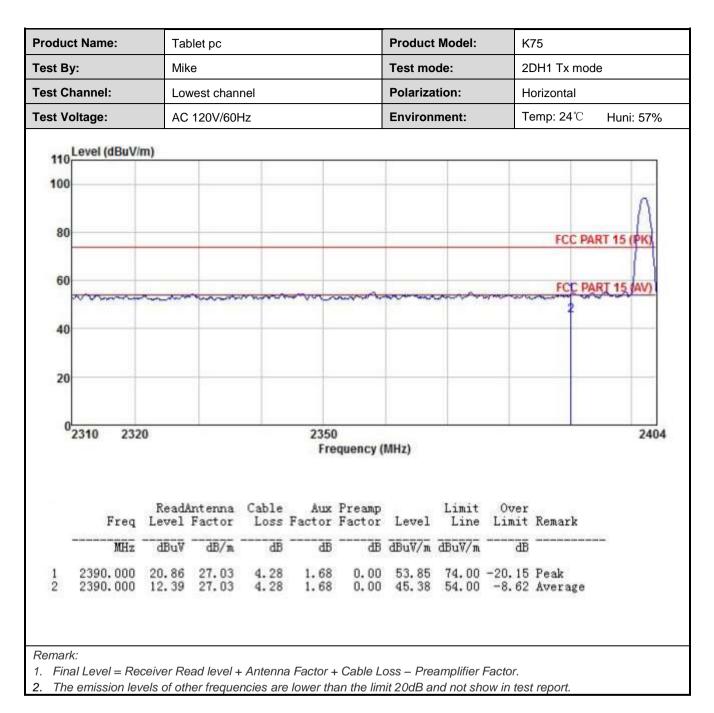

Test Requirement:	FCC Part 15 C	Section 15.20)9 a	nd 15.205			
Test Frequency Range:	2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz						
Test Distance:	3m						
Receiver setup:	Frequency	Detector	RBW		VBW		Remark
	Above 1GHz	Peak	k 1MHz		3MHz		Peak Value
	Above 1GHz	RMS		1MHz	3MHz		Average Value
Limit:	Frequence	cy L	Limit (dBuV/m @3m)			Remark	
	Above 1G	H7	54.00		Average Value		
	7,5676 10	112	74.00			Peak Value	
Test setup:	Horn Antenna Tower Horn Antenna Tower Ground Reference Plane Test Receiver						
Test Procedure:	 determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measurement 4. For each sus and then the the rota table maximum reations 5. The test-rece Bandwidth with the emission limit specified EUT would b margin would 	A meter camb e position of t s set 3 meters ch was mount height is vari termine the m d vertical pola t. spected emiss antenna was a was turned t ading. eiver system v ith Maximum on level of the d, then testing re reported. C d be re-tested	er. 1 the h s aw nted ied f naxir ariza sion, s tun from was EU g co ther t one	The table was highest radiative vay from the in on the top of from one meter mum value of ations of the a , the EUT was not to heights not degrees to set to Peak E d Mode. IT in peak mould be stoppe	rotation. Interfe a vari er to fo the fi antenr s arran from 0 360 o Detect de wa d and ssions g peal	ed 360 rence-re able-he our met eld stre ha are s nged to 1 meter degrees Functions 10dB the pea s that dia k, quasi	degrees to eceiving ight antenna ers above the ngth. Both et to make the its worst case to 4 meters and to find the on and Specified lower than the ak values of the d not have 10dB -peak or
Test Instruments:	Refer to section	5.9 for detail	ls				
Test mode:	Non-hopping m	ode					
Test results:	Passed						

GFSK Mode:


	Tablet pc	Tablet pc		Product Model:			K75		
est By:	Mike			Test n	node:		DH1 Tx mode		
Fest Channel:	Lowest cha	nnel		Polari	zation:		Vertical		
Fest Voltage:	AC 120V/60)Hz		Enviro	onment:		Temp: 24 ℃	Huni: 57%	
Lough (dBu)//m									
110 Level (dBuV/m									
100						-		Δ	
100									
80							FCC PAR	(T 15 (PK)	
60									
man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mon	and	www		v	FCC PAR	RT 15 (AV)	
40							f		
20									
02310 2320		235	0					2404	
			equency (MHz)					
			The state of the state		The second second	0.0400000000			
Freq	ReadAntenna Level Factor	Cable Aux Loss Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark		
Freq	ReadAntenna Level Factor dBuV dB/m	Cable Aux Loss Factor dB dB	Factor		Limit Line dBuV/m		Remark		
MHz -	Level Factor <u>dBuV</u> <u>dB/m</u> 20.78 27.03	Loss Factor <u>dB</u> <u>dB</u> 4.28 1.68	Factor dB 0.00	dBuV/m 53.77	Line dBuV/m 74.00	Limit dB -20.23			
MHz -	Level Factor dBuV dB/m	Loss Factor dB dB	Factor dB 0.00	dBuV/m	Line dBuV/m 74.00	Limit dB -20.23			
MHz -	Level Factor <u>dBuV</u> <u>dB/m</u> 20.78 27.03	Loss Factor <u>dB</u> <u>dB</u> 4.28 1.68	Factor dB 0.00	dBuV/m 53.77	Line dBuV/m 74.00	Limit dB -20.23			



2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



$\pi/4$ -DQPSK mode

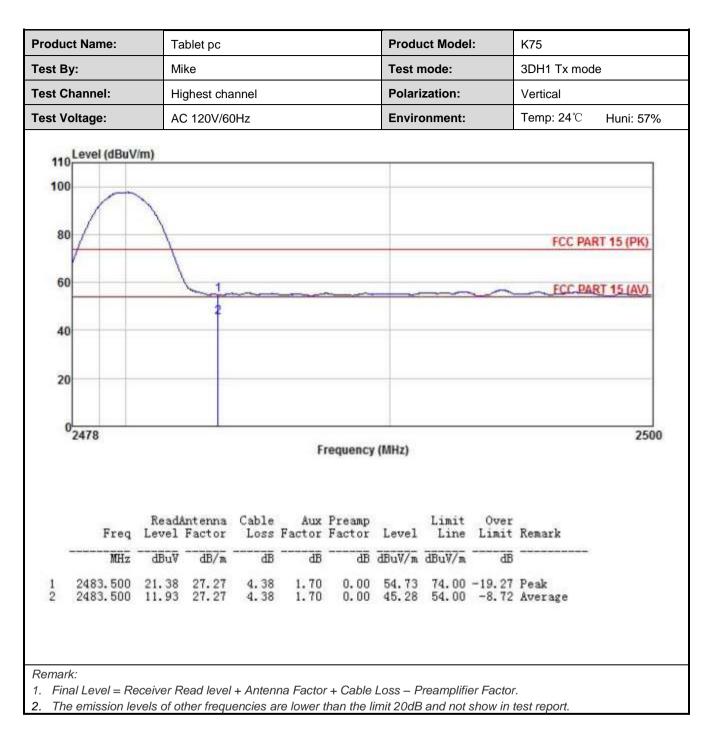
roduct Name: est By:		Tat	olet pc				Product Model:			K75		
		Mik	Mike				Test mode:			2DH1 Tx mode		
st Ch	nannel:	Lov	west chan	nel			Polarization: Vertical			Vertical		
st Vo	a Voltage: AC 120V/60Hz					Environment:			Гетр: 24 ℃	Huni: 57%		
110	Level (dBuV/	m)										
100												
											Λ	
80					_	1		-		FCC PAR	T 15 (PK)	
											1	
60	mund	Auto Canada	man	narra	min	Anna Marca			-	FCC PAR	T 15 (AV)	
				and a second second				and a start of the	100.0000000	2		
40												
20			_	_				_				
0	2310 232	0		-	2350	0		-	-		2404	
		120				equency (MHz)				1.000	
	Freq	Read& Level	Intenna Factor		Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	MHz	dBu∛	 dB/m	dB	dB	dB	dBuV/m	dBuV/m	B		2	
1	2390,000	20.26	27.03	4.28	1.68	0.00	53.25	74.00	-20.75	Peak		
2	2390.000	12.30	27.03	4.28	1.68	0.00	45.29	54.00	-8.71	Average		

roduct Name:	Tab	let pc				Product	Model:	K7	5		
est By:	Mik	е				Test mod	de:	2D	H1 Tx mode	Э	
est Channel:	Higl	hest chan	nel			Polarization: Vertical					
est Voltage:	AC	120V/60H	łz			Environn	nent:	Ter	mp: 24 ℃	Huni: 57%	
110 100 80 60 40 20	n)	1								<u>T 15 (PK)</u> <u>T 15 (AV)</u>	
02478				Freq	uency (M	Hz)				2500	
Freq	ReadA Level	intenna Factor	Cable Loss	Aux Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark		
MHz	dBuV	dB/m	āā	dB	dB	dBuV/m	dBuV/m	āĒ			
1 2483.500 2 2483.500	23.02 13.19	27.27 27.27	4.38 4.38	1.70 1.70	0.00 0.00	56.37 46.54		-17.63 -7.46	Peak Average		


oduct Name:	Tablet pc		F	roduct M	lodel:	K75		
est By:	Mike		т	est mode	e:	2DH	1 Tx mode	•
est Channel:	Highest chan	nel	F	Polarization: Horizontal				
est Voltage:	AC 120V/60H	Iz	E	Invironm	ent:	Tem	p: 24 ℃	Huni: 57%
110 100 80 60 40 20	2						FCC PART	
02478		Frequ	Jency (MH	z)				2500
Freq L	ReadAntenna evel Factor	Cable Aux Loss Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark	
MHz	dBuV dB/m	dB dB	dB	dBuV/m	dBuV/m	dB		
	1.98 27.27 1.39 27.27	4.38 1.70 4.38 1.70	0.00	55.33 44.74	74.00 54.00	-18.67 -9.26	Peak Average	,

8DPSK mode

oduct Name:	Tablet pc			Produc	ct Model:	1	K75			
est By:	Mike			Test m	Test mode: 3DH			de		
est Channel:	Lowest channel Polarization:		Polarization:			Vertical			: Vertical	
est Voltage:	AC 120V/60)Hz		Enviro	nment:	-	Temp: 24℃ Hu			
Level (dBuV/n	n)									
110										
100	-							Δ		
80						_	FCC PAR	Т 15 (РК)		
60										
	m	· ·····				a mar	FCC PAR	T 15 (AV)		
40					-	_				
20				-	-		_			
02310 2320	0	2350	0					2404		
		Fre	equency (I	MHz)						
	5 14 4	C 11			• • • • •					
Freq	ReadAntenna Level Factor	Cable Aux Loss Factor	Preamp Factor	Level	Limit Line	Over Limit	Remark			
Freq MHz	ReadAntenna Level Factor dBuV dB/m	Cable Aux Loss Factor dB dB	Factor							
MHz 1 2390.000	Level Factor <u>dBuV</u> <u>dB/m</u> 20.22 27.03	Loss Factor 	Factor dB 0.00	dBuV/m 53.21	Line dBuV/m 74.00	Limit dB -20.79	Remark Peak	-		
MHz 1 2390.000	Level Factor	Loss Factor 	Factor dB 0.00	dBuV/m 53.21	Line dBuV/m 74.00	Limit dB -20.79	Remark	-		
MHz 1 2390.000	Level Factor <u>dBuV</u> <u>dB/m</u> 20.22 27.03	Loss Factor 	Factor dB 0.00	dBuV/m 53.21	Line dBuV/m 74.00	Limit dB -20.79	Remark Peak	-		



The emission levels of other frequencies are lower than the limit 20dB and not show in test report. 2.

roduct Name:	Tablet pc			Prod	uct Mod	el:	K75			
est By:	t By: Mike					Test mode:		3DH1 Tx mode		
est Channel:	est Channel: Highest ch		Innel				Horizontal			
est Voltage:	AC 120V/6	OHz		Envi	ronment	:	Temp: 24 ℃	Huni: 57%		
110 Level (dBuV 100 80 60 40 20	/m)						FCC PAR	<u>T 15 (PK)</u> <u>T 15 (AV)</u>		
02478		F	requency	r (MHz)				2500		
Freq	ReadAntenna Level Factor	Loss Factor					Remark			
Freq MHz	ReadAntenna Level Factor dBuV dB/m	Cable Aux Loss Factor dB dB 4.38 1.70	Factor dB		Line dBuV/m					

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass

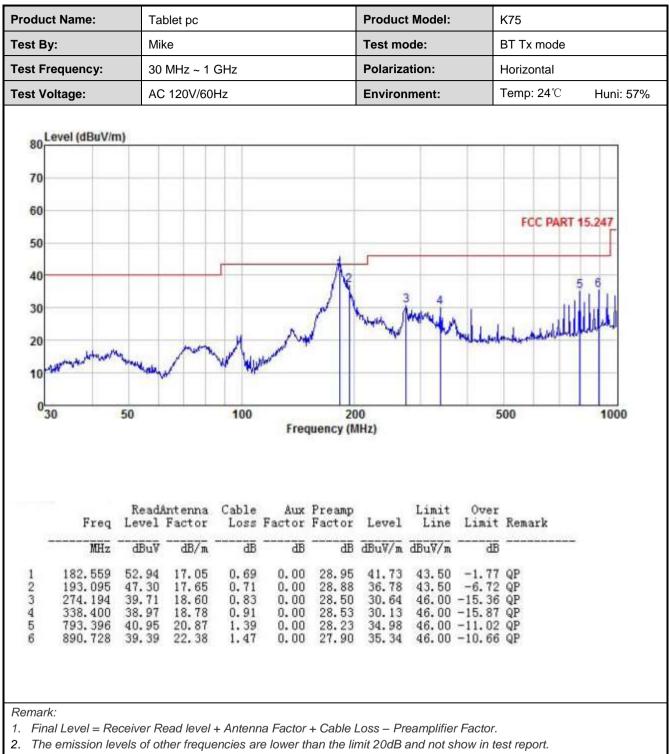
6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C S	Section 15.	209					
Test Frequency Range:	9 kHz to 25 GHz	2						
Test Distance:	3m							
Receiver setup:	Frequency	Detecto	or	RBW	VBW	/	Remark	
	30MHz-1GHz Quasi-p		eak	120kHz	300kH	lz	Quasi-peak Value	
		Peak		1MHz	3MH:	z	Peak Value	
	Above 1GHz	RMS		1MHz	3MH:	z	Average Value	
Limit:	Frequenc	Remark						
	30MHz-88N	ЛНz		40.0		Quasi-peak Value		
	88MHz-216	MHz		43.5		C	Quasi-peak Value	
	216MHz-960	MHz		46.0		Ç	Quasi-peak Value	
	960MHz-10	GHz		54.0		C	Quasi-peak Value	
				54.0		Average Value		
	Above 1G	74.0			Peak Value			
Test setup:	Ta	Jurn 0.8m A ad Plane	4m	·/////////////////////////////////////		_		
Test Procedure:	1. The EUT was /1.5m(above was rotated 3 radiation. 2. The EUT was	1GHz) abo 60 degrees	the ve th s to c	top of a rota ne ground at determine th	a 3 meto e positio	e 0.8 er ch n of t	amber. The table the highest	

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Project No.: CCISE2009004

CCIS

	 tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.9 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30 MHz is noise floor and lower than the limit 20dB, so only shows the data of above 30MHz in this report.



Measurement Data (worst case):

Below 1GHz:

	roduct Name: Tablet pc est By: Mike			Product Model:				ĸ	K75		
est By:				Test mod			de:	B	BT Tx mode		
est Frequency:	30	30 MHz ~ 1 GHz				Polarization:			Vertical		
est Voltage: AC 120V/60H		Hz			Environ	ment:	Т	emp: 24℃	Huni: 57%		
80 Level (dBuV/n 70 60 50 40 30 1 2 3 30 1 2 3 10		the second we		Mariandaria	4	July	Jun	humbel	FCC F	PART 15.247	
030	50		100		equency	200 (MHz)			500	1000	
Pager		Antenna Factor	Cable Loss		Preamp Factor	Level	Limit Line	Over Limit	Remark		
Freq			dB	dB	dB	30.07	dBuV/m	dB			
Freq MHz	dBu⊽	dB/m	ш		ω	dbuv/m	m to n to n	110000			

3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

			Te		el: Lowest c					
	1			Detecto	or: Peak Val	Je			ſ	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	48.97	30.78	6.80	2.44	41.81	47.18	74.00	-26.82	Vertical	
4804.00	49.49	30.78	6.80	2.44	41.81	47.70	74.00	-26.30	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	40.22	30.78	6.80	2.44	41.81	38.43	54.00	-15.57	Vertical	
4804.00	41.71	30.78	6.80	2.44	41.81	39.92	54.00	-14.08	Horizontal	
					el: Middle ch					
			<u> </u>	1	or: Peak Val	Je			[
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	48.12	30.96	6.86	2.47	41.84	46.57	74.00	-27.43	Vertical	
4882.00	48.64	30.96	6.86	2.47	41.84	47.09	74.00	-26.91	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	40.03	30.96	6.86	2.47	41.84	38.48	54.00	-15.52	Vertical	
4882.00	40.71	30.96	6.86	2.47	41.84	39.16	54.00	-14.84	Horizontal	
			Te		el: Highest c pr: Peak Val					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	48.91	31.11	6.91	2.49	41.87	47.55	74.00	-26.45	Vertical	
4960.00	48.99	31.11	6.91	2.49	41.87	47.63	74.00	-26.37	Horizontal	
				Detector:	Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	40.84	31.11	6.91	2.49	41.87	39.48	54.00	-14.52	Vertical	
4960.00	40.75	31.11	6.91	2.49	41.87	39.39	54.00	-14.61	Horizontal	
						+ Aux Factor				

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Appendix A - BT

Maximum Conducted Output Power

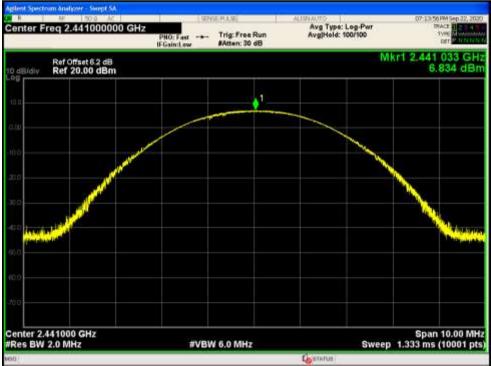
	en a a cita a				1		1	
Condition	Mode	Frequency	Anten	Conducted	Duty	Total	Limit	Verdict
		(MHz)	na	Power	Factor	Power	(dBm)	
				(dBm)	(dB)	(dBm)		
NVNT	1-DH1	2402	Ant1	6.213	0	6.213	21	Pass
NVNT	1-DH1	2441	Ant1	6.195	0	6.195	21	Pass
NVNT	1-DH1	2480	Ant1	6.193	0	6.193	21	Pass
NVNT	2-DH1	2402	Ant1	6.994	0	6.994	21	Pass
NVNT	2-DH1	2441	Ant1	6.834	0	6.834	21	Pass
NVNT	2-DH1	2480	Ant1	6.97	0	6.97	21	Pass
NVNT	3-DH1	2402	Ant1	6.941	0	6.941	21	Pass
NVNT	3-DH1	2441	Ant1	6.887	0	6.887	21	Pass
NVNT	3-DH1	2480	Ant1	6.876	0	6.876	21	Pass

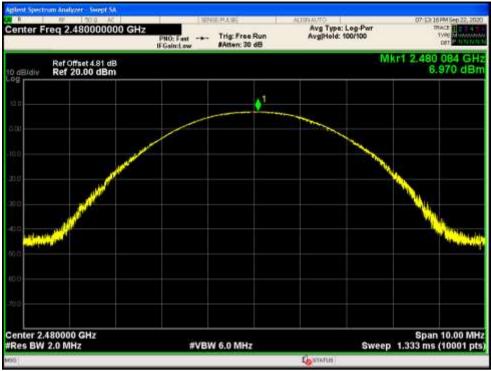
Power NVNT 1-DH1 2402MHz Ant1



Power NVNT 1-DH1 2441MHz Ant1

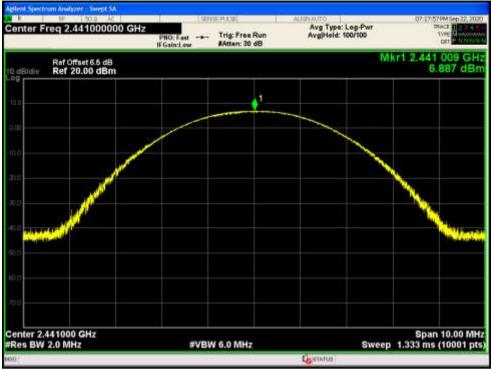
Power NVNT 1-DH1 2480MHz Ant1





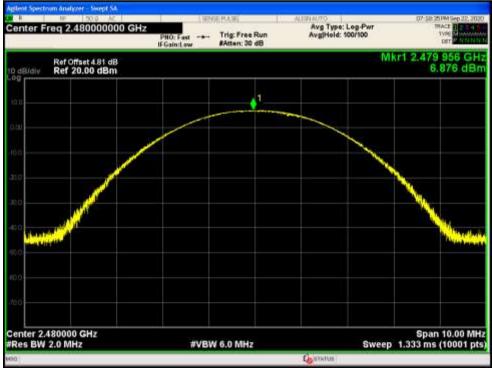
Power NVNT 2-DH1 2402MHz Ant1

Power NVNT 2-DH1 2441MHz Ant1



Power NVNT 2-DH1 2480MHz Ant1

Power NVNT 3-DH1 2402MHz Ant1



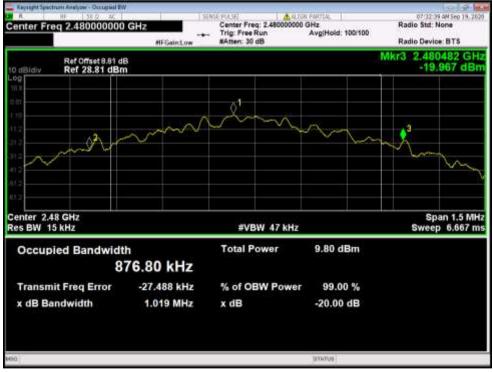
Power NVNT 3-DH1 2441MHz Ant1

Power NVNT 3-DH1 2480MHz Ant1

-20dB Bandwidth

Condition	Mode	Frequency	Antenna	-20 dB	Limit -20 dB	Verdict
		(MHz)		Bandwidth	Bandwidth (MHz)	
				(MHz)		
NVNT	1-DH1	2402	Ant1	1.019	0	Pass
NVNT	1-DH1	2441	Ant1	1.019	0	Pass
NVNT	1-DH1	2480	Ant1	1.019	0	Pass
NVNT	2-DH1	2402	Ant1	1.317	0	Pass
NVNT	2-DH1	2441	Ant1	1.311	0	Pass
NVNT	2-DH1	2480	Ant1	1.312	0	Pass
NVNT	3-DH1	2402	Ant1	1.274	0	Pass
NVNT	3-DH1	2441	Ant1	1.274	0	Pass
NVNT	3-DH1	2480	Ant1	1.275	0	Pass

-20dB Bandwidth NVNT 1-DH1 2402MHz Ant1



-20dB Bandwidth NVNT 1-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 1-DH1 2480MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2402MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2480MHz Ant1

-20dB Bandwidth NVNT 3-DH1 2402MHz Ant1

-20dB Bandwidth NVNT 3-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 3-DH1 2480MHz Ant1

Carrier Frequencies Separation

Condition	Mode	Antenna	Hopping	Hopping	HFS	Limit	Verdict
			Freq1 (MHz)	Freq2 (MHz)	(MHz)	(MHz)	
NVNT	1-DH1	Ant1	2401.826	2403.16	1.334	1.019	Pass
NVNT	1-DH1	Ant1	2440.82	2441.988	1.168	1.019	Pass
NVNT	1-DH1	Ant1	2478.812	2479.836	1.024	1.019	Pass
NVNT	2-DH1	Ant1	2402.15	2403.172	1.022	0.878	Pass
NVNT	2-DH1	Ant1	2440.832	2441.81	0.978	0.874	Pass
NVNT	2-DH1	Ant1	2478.812	2479.794	0.982	0.875	Pass
NVNT	3-DH1	Ant1	2401.816	2402.83	1.014	0.849	Pass
NVNT	3-DH1	Ant1	2440.812	2441.824	1.012	0.849	Pass
NVNT	3-DH1	Ant1	2478.8	2479.794	0.994	0.850	Pass

CFS NVNT 1-DH1 2402MHz Ant1

R. HF 560 M	SINGLAN	SE .	ALIGN FARTLAL	08:50 28 AM Sep 1	100
enter Freq 2.402500000 GHz	PNO: Wide 😱 Trig IFGain:Low NAt	s: Free Run ten: 30 dB	Avg Type: Log-Pw Avg[Hold:>100/100	THACE 12 THE HOW DET THE	
Ref Offset 8.77 dB dBidly Ref 20.00 dBm				Mkr1 2.401 826 0 5.837 d	GH IB
a 111 ▲1		i i			
		\checkmark			/
0					
0					
0					
0					
enter 2.402500 GHz	#VBW 1.0	MHz		Span 2.000 weep 1.000 ms (1001	M
enter 2.402500 GHz etes BW 300 kHz R NOSE TRC WL X N 1 5 2.401 825 G	Y	MHZ	FUNCTION MOTH	Span 2.000 weep 1.000 ms (1001 FUNCTION VALUE	MI pt
Inter 2.402500 GHz es BW 300 kHz N 1 f 2.401 826 G N 1 f 2.401 826 G N 1 f 2.401 806 G	v Hz 5.837 dBm		a new low has to be a set of the	weep 1.000 ms (1001	pt
enter 2.402500 GHz tes BW 300 kHz N 1 f 2.401 826 G N 1 f 2.403 160 G	v Hz 5.837 dBm		a new low has to be a set of the	weep 1.000 ms (1001	pt
nter 2.402500 GHz es BW 300 kHz N 1 f 2.401 826 G N 1 f 2.403 160 G	v Hz 5.837 dBm		a new low has to be a set of the	weep 1.000 ms (1001	MI pt
enter 2.402500 GHz tes BW 300 kHz R NOSE TRC IZU X N 1 1 2.401 825 G	v Hz 5.837 dBm		a new low has to be a set of the	weep 1.000 ms (1001	M) pt

enter Freq 2.44			E Free Run en: 30 dB	Aug Type: Avg Type: Avg(Hold:>	Log-Pwr 100/100	08:42:43 AM Sep 19, 203 TRACE 0 30:4 Three 0 40:4 Det 0 50:50
Ref Offs dBidiv Ref 20.	et 8.8 dB 00 dBm				Mkr	1 2.440 820 GH 6.166 dBr
					2^2	
enter 2.441500 C Res BW 300 kHz R MODE FRC IICL	8	#VBW 1.0	MHz	FUNCTION WEDTH		Span 2.000 MH 1.000 ms (1001 pt Trowwwe
N 1 1 N 1 7 A 5 5 5 7 7 8 8 9	2.440 820 GHz 2.441 988 GHz	6.166 dBm 6.191 dBm	R.			

CFS NVNT 1-DH1 2441MHz Ant1

CFS NVNT 1-DH1 2480MHz Ant1

Keysight Spectrum Analyzer - Soop R. HF 55 Q		T SENSE PLUS	el	ALLIGN FARTLAL		07:44 24 44 Sep 19, 20
enter Freq 2.479500	PNO:	Wide C Trig	Free Run en: 30 dB	Avg Type: L Avg[Hold:>1	og-Pwr 00/100	TRACE D 3 3 4 TYPE D 3 3 4 DET P N N N
Ref Offset 8.81 dBidiv Ref 20.00 d					Mkr	1 2.478 812 GH 6.184 dBr
			Ĭ	\Diamond^2		
			/			
0						
0						
0						
10						
enter 2.479500 GHz Res BW 300 kHz		#VBW 1.0	MHz		Sweep	Span 2.000 Mi 1.000 ms (1001 pt
R MODE TRC INC.	X 2.478 812 GHz	۷ 6.184 dBm	PUNCTION	FUNCTION WOTH	Fül	CTION VIENE
N A F	2.479 836 GHz	6.122 dBm				
			PT.			

August Sector Angles - Seet 14 A B Soc Ac Ac Soc Ac Soc Ac Soc Ac Soc Ac Soc A	PNO: Wide C Tris IF Gain: Low AA	s: Free Run ten: 30 dB	August Faitha Avg Type Avg Hold	: Log-Pwr >100/100	07:59:57 AH Sep 19, 20 TRACE 0 50 4 TVPE 0 DET
Ref Offset 8.77 dB dBidiv Ref 20.00 dBm				Mk	r1 2.402 150 GH 5.750 dBr
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	~	*****			
enter 2.402500 GHz Res BW 300 kHz R MODE TRC IEL X	#VB₩ 1.0	MHz	FUNCTION WEDTH		Span 2.000 MH 1.000 ms (1001 pt crowwe
N 1 1 2402160 C 2 N 1 7 2403172 C 4 5 5 6 7 8 8 9 9 9	Hz 5.750 dBm Hz 6.776 dBm	10			

CFS NVNT 2-DH1 2402MHz Ant1

CFS NVNT 2-DH1 2441MHz Ant1

	69 AC	第四年代人	¥	ALIGN FARTLA	1000	08:01:21 4M Sep 19, 20
nter Freq 2.441	PNK	0:Wider 😱 Trig ain:Low AAt	s: Free Run ten: 30 dB	Avg Type: L AvgiHold:>1	50-Pwr 50/100	THACE 1 2 3 4 THE MONITOR
Ref Offset dBidiv Ref 20.0					Mk	1 2.440 832 GH 6.211 dBr
0	↓ ¹		Ť.	0 ²		
0						
0 0						
0						
o						
0						
0						
enter 2.441500 Gi tes BW 300 kHz	łz	#VBW 1.0	MHz		Sweep	Span 2.000 Mi 1.000 ms (1001 pt
LIN DAY BOOK P	×	Ŷ	PUNCTION	FUNCTION WIDTH	FUI	CTION VILUE
N 1 1	2.440 832 GHz 2.441 810 GHz	6.211 dBm 6.269 dBm				

		T SENSE PLA	x : Free Run	Aug Type: Avg Hold:>	Log-Pwr	08:03:02 44 Sep 19, 200 194405 110 144
	PNO IFGa	tWider ⊂ Trig In:Low #At	ten: 30 dB	Avginoid.>	100100	DET
Ref Offset Ref 20.0					Mk	1 2.478 812 GH 6.303 dBr
00	↓ ¹		Ť.	2^2		
tu			(
0						
0						
0 6						
0						
0						
enter 2.479500 GH tes BW 300 kHz	łz	#VBW 1.0	MHz		Sweep	Span 2.000 Mi 1.000 ms (1001 pl
R MODE THE WEL	×	Ŷ	PUNCTION	FUNCTION WOTH		CTION VALUE
N 1 7	2.478 812 GHz 2.479 794 GHz	6.303 dBm 6.283 dBm				
deer alle der later	64 M		H.			100

CFS NVNT 2-DH1 2480MHz Ant1

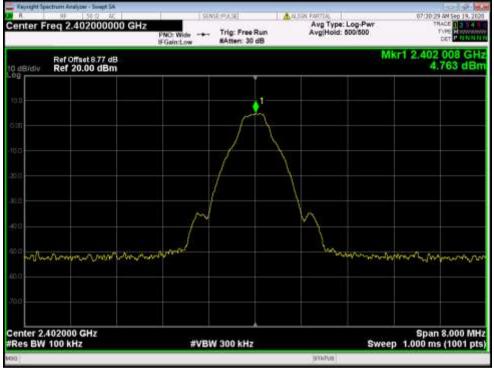
CFS NVNT 3-DH1 2402MHz Ant1

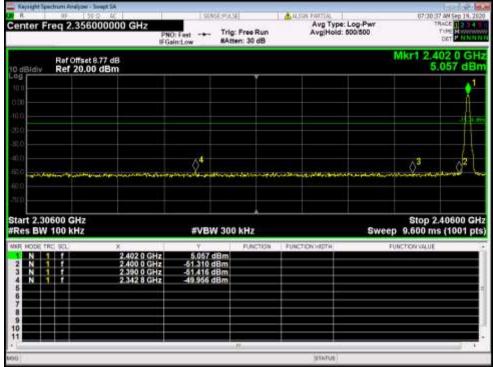
	-H.	SENSE PLAT	el.	ALLIGN FARTLAL		08:16:32 AM Sep 19, 200 TRACE DEDICE
enter Freq 2.402500	JUUU GHZ PNO: IFGair		: Free Run en: 30 dB	Avg Type: L Avg[Hold:>1	00/100	TYPE MONTH
Ref Offset 8.77 dBidly Ref 20.00 d					Mkr	1 2.401 816 GH 5.815 dBr
				²		
0.0000000000000000000000000000000000000			ni og niginiser			
10						
0						
0						
0						
10						
enter 2.402500 GHz Res BW 300 kHz		#VBW 1.0	MHz		Sweep	Span 2.000 Mi 1.000 ms (1001 pt
R MODE THE REL	× 2.401 816 GHz	7 5.815 dBm	PUNCTION	FUNCTION WOTH	FÜN	CTION VALUE
N 1 I	2.402 830 GHz	5.743 dBm				
			PT-			

All actions and a second action of the second actio	, Serand Spathan Analysis - Senit SA A. BF (35 S) 40 enter Freq 2.441500000 GHz	Figure Add	se g: Free Run ten: 30 dB	Avg Type: Lo Avg[Hold:>10	g-Pwr 0100	08:15:22 AM Sep 19, 202 TRACE 1 2124 Type DBT 2 214
Image: Constraint of the second sec					Mk	1 2.440 812 GH 6.103 dBn
Res BW 300 kHz #VBW 1.0 MHz Sweep 1.000 ms (1001 pt R MODE TAC IPOL X Y FLINCTION INDITH FUNCTION VALUE N 1 f 2.440 B12 GHz 6.103 dBm FUNCTION VALUE N 1 f 2.441 B24 GHz 6.173 dBm FUNCTION VALUE 5 6 1 1 1 1 1 9 0 1 1 1 1 1				<u></u>		
N 1 1 2.440 812 GHz 6.103 dBm 2 N 1 7 2.441 824 GHz 6.173 dBm 3 5 6 7 7 8 8 9 9 0	enter 2.441500 GHz Res BW 300 kHz	#VBW 1.0	MHz		Sweep	Span 2.000 MH 1.000 ms (1001 pt
	1 N 1 1 2.440 812 G	Hz 6.103 dBm Hz 6.173 dBm		FUNCTION WIDTH	ĘijΝ	KTION VALUE

CFS NVNT 3-DH1 2441MHz Ant1

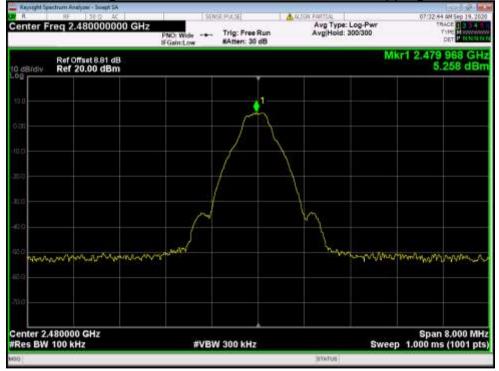
CFS NVNT 3-DH1 2480MHz Ant1


	69 K	SENSE PLC	*	ALDER FARTLAL		08:17:47 AH Sep 19, 20
enter Freq 2.479	PNO	Wide 😱 Trig	: Free Run ten: 30 dB	Avg Type: L Avg[Hold:>1		TRACE 1 2 3 4 Type Monorood DET P N N N
Ref Offse Ref 20.0					Mkr	1 2.478 800 GH 6.231 dB
	≬ ¹		Ĭ	\diamond^2	_	
0		100 March 1	Web-			
0						
0						
o 						
0						
enter 2.479500 G	Hz					Span 2.000 M
tes BW 300 kHz		#VBW 1.0	and the second se			1.000 ms (1001 p
R NOSE TRC INC.	2 478 800 GHz 2 479 794 GHz	6.231 dBm 6.275 dBm	PUNCTION	FUNCTION MOTH	FUN	CTONVAUE
			T			124
				BYATUS		

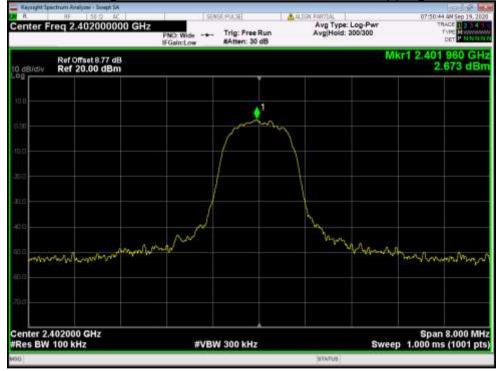


Band Edge

		1		1	1	r.	
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH1	2402	Ant1	No-Hopping	-54.71	-20	Pass
NVNT	1-DH1	2480	Ant1	No-Hopping	-54.42	-20	Pass
NVNT	2-DH1	2402	Ant1	No-Hopping	-52.82	-20	Pass
NVNT	2-DH1	2480	Ant1	No-Hopping	-52.55	-20	Pass
NVNT	3-DH1	2402	Ant1	No-Hopping	-52.4	-20	Pass
NVNT	3-DH1	2480	Ant1	No-Hopping	-51.72	-20	Pass


Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Ref

Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Emission


Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Ref

ñ.	HF.	1562 46	and the second sec	1	INSEPTIE		ALLEN PA			97	32 51 44 Sep 19,7
nter Fr	req 2	2.5260000	1	PNO: Fast -+ Gain:Low		ree Run : 30 dB	Â	vg Type: vg[Hold:	Log-Pwr 300/300		THACE IN THE MEMORY DET IN N
1Bidiv		Offset 8.81 di 20.00 dBn								Mkr13	2.480 0 GI 5.588 dE
	1										
° H											-14.74
4	Q2	Q ⁴	A3			and an obs	anti-test make			and the state	Anaphana
0											
rt 2.47					3W 300 k						p 2.57600 G ms (1001 p
rt 2.47 es BW	100		×	#VE Y			FUNCTION		Swe		p 2.57600 G ms (1001 p
nt 2.47 es BW N 1 N 1	100) RC (RL		2,480 0 GHz 2,483 5 GHz 2,663 5 GHz	#VE 5.58 -60.66	3 dBm 2 dBm	(Hz			Swe	ep 9.600	p 2.57600 G ms (1001 p
	100) AC 921			#VE 7 5.58	8 dBm 2 dBm) dBm	(Hz			Swe	ep 9.600	p 2.57600 G ms (1001 p
N 1 N 1 N 1	100) AC 92. 7		2.483 5 GHz 2.500 0 GHz	#VE 5.58 -50.66 -52.70	8 dBm 2 dBm) dBm	(Hz			Swe	ep 9.600	p 2.57600 G ms (1001 p
N 1 N 1 N 1	100) AC 92. 7		2.483 5 GHz 2.500 0 GHz	#VE 5.58 -50.66 -52.70	8 dBm 2 dBm) dBm	(Hz			Swe	ep 9.600	p 2.57600 G ms (1001 p
N 1 N 1 N 1	100) AC 92. 7		2.483 5 GHz 2.500 0 GHz	#VE 5.58 -50.66 -52.70	8 dBm 2 dBm) dBm	(Hz			Swe	ep 9.600	p 2.57600 G ms (1001 p

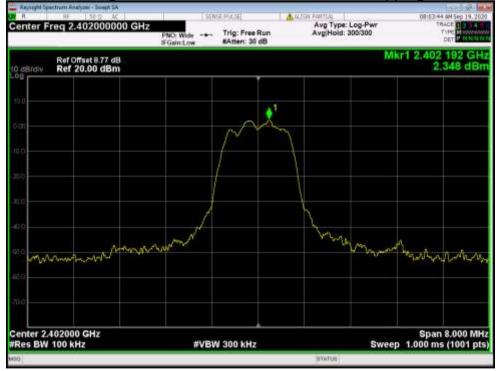
Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Emission

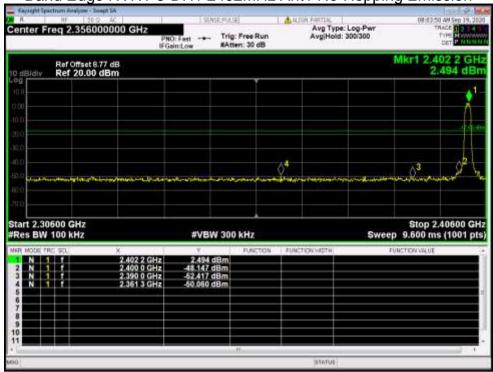
Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Ref

R IF 150 K	SINEPLO	되	Avg Type:	I on Par		44 Sep 19, 21
nter Freq 2.356000000 GHz		: Free Run ten: 30 dB	Avg[Hold;	100/100	1	HE HEAVE
Ref Offset 8.77 dB dBidiv Ref 20.00 dBm				1	Akr1 2.40 2.6	2 0 GH
	_ السلار					A1
0						Å
0						-17,324
0						
0			.4		1.00.2	2
Barred Loron Alexandra Barring Strategies	ودادا ومعال منصوا وسيجر والما	-		Annana	All all and all all all all all all all all all al	and I
art 2.30600 GHz es BW 100 kHz	#VBW 300	0 kHz		Sweep	Stop 2.4 9.600 ms	0600 GI (1001 p
NODE THE IFEL X	Ý	PUNCTION	FUNCTION WOTH	‡8]	ICTION VALUE	
N 1 f 2,402 0 GH N 1 f 2,400 0 GH	z -48.918 dBm					
N 1 f 2.390 0 GH N 1 f 2.368 0 GH						

Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Emission

Band Edge NVNT 2-DH1 2480MHz Ant1 No-Hopping Ref




	R 46	STATE PL	£	ALDEN PARTIAL	No. and a state of the	07:53:54 44 Sep 19, 20
nter Freq 2.5260	PN	0:Fast Trig sin:Low #Att	: Free Run en: 30 dB	Avg Type Avg[Hold	: Log-Pwr 300/300	THACE 1 2 3 4
Ref Offset 8					1	Akr1 2.479 7 GH 2.675 dB
			T_			
0						-17.41
of harmon	A	way maker and		والاستين والمعالية	an the second second	****
0						
es BW 100 kHz		#VBW 300) kHz		Sweep	Stop 2.57600 G 9.600 ms (1001 p
NOSE TRC. (KD.)	× 2.479 7.GHz	۲ 2.675 dBm	PUNCTION	FUNCTION WOTH	Fül	ICTION VILUE
	2 483 5 GHz 2.500 0 GHz	-49.966 dBm -62.100 dBm				
N 1 1	2.483 5 GHz	-49.966 dBm				
			Π.			

Band Edge NVNT 2-DH1 2480MHz Ant1 No-Hopping Emission

Band Edge NVNT 3-DH1 2402MHz Ant1 No-Hopping Ref

Band Edge NVNT 3-DH1 2402MHz Ant1 No-Hopping Emission

Band Edge NVNT 3-DH1 2480MHz Ant1 No-Hopping Ref

	SENSES	-	ALIGN FARTLAL		08-16-49 AH Sep 19, 20
nter Freq 2.526000000 GHz	PNO: Fast	frig: Free Run Atten: 30 dB	Avg Type Avg[Hold	: Log-Pwr 300/300	THACE T 2 1 4 THE N NUMBER DET P N N N
Ref Offset 8.81 dB Bidiv Ref 20.00 dBm				I	Akr1 2.480 2 GH 2.902 dBr
<u></u> 1					
					-11-22,0
rt W2 Stand	ويعج والحريبة والمرار والم	بيا فريس المان	alan ang salari katari sa sa	والمعالية والمستعد المراجع المستع	
rt 2.47600 GHz s BW 100 kHz	#VBW :	300 kHz		Sweep	Stop 2.57600 G
NODE TRC IFC. X	¥.	PUNCTION	FUNCTION WIDTH		NCTION VALUE
N 1 1 2.4835 N 1 1 2.5000	GHz -60.426 dBi GHz -61.306 dBi	m m			
N 1 1 2.487.6					
N 1 7 2.487.6					
N 1 7 2.437 6					

Band Edge NVNT 3-DH1 2480MHz Ant1 No-Hopping Emission

Band Edge(Hopping)

Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH1	2402	Ant1	Hopping	-54.38	-20	Pass
NVNT	1-DH1	2480	Ant1	Hopping	-54.04	-20	Pass
NVNT	2-DH1	2402	Ant1	Hopping	-54.56	-20	Pass
NVNT	2-DH1	2480	Ant1	Hopping	-53.62	-20	Pass
NVNT	3-DH1	2402	Ant1	Hopping	-54.53	-20	Pass
NVNT	3-DH1	2480	Ant1	Hopping	-54.16	-20	Pass

Band Edge(Hopping) NVNT 1-DH1 2402MHz Ant1 Hopping Ref

enter Freq 2.356000000 0	DNO: East - Tr	ig: Free Run Atten: 30 dB	Avg Type: Lo Avg Hold: 20	og-Pwr	135-43 AM Sep 19, 70 TRACE 15, 74 TYPE 14 DET 17 INIT
Ref Offset 8.77 dB dBidiv Ref 20.00 dBm				Mkr1	2.403 1 GH 5.114 dB
10 00 00 00					
00 10 10 10	4Auril 1994, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 20		an a	¢ ⁴ o ³	- 0 ²
art 2.30600 GHz Res BW 100 kHz	#VBW 30	00 kHz		Sto Sweep 9.600	p 2.40600 G) ms (1001 p
X LOW DAY BOOM P	03 1 GHz 5.114 dBm 00 0 GHz -61.628 dBm		FUNCTION MOTH	FUNCTION VA	4.UE
N 1 7 2.40 N 1 7 2.35	90 0 GHz -61.315 dBm 85 8 GHz -48.995 dBm				

Band Edge(Hopping) NVNT 1-DH1 2402MHz Ant1 Hopping Emission

Band Edge(Hopping) NVNT 1-DH1 2480MHz Ant1 Hopping Ref

Renard Section Analyses 3 R. R. 130 enter Freq 2.5260	R K 00000 GHz PN	SENSE PUL	s: Free Run ten: 30 dB	Aug Type Avg Type Avg Hold:	: Log-Pwr 2000/2000	67/38-21 44 5ep 19, 20 TRACE 0 2 24 TYPE 0 DET
Ref Offset 8 dBidiv Ref 20.00	81 dB	and an a				Mkr1 2.478 0 GH 5.648 dB
						-34_27(
	∭ ³	and an advantage of the		iontenainantenaina		د میلوند و میروند و میروند و
tart 2.47600 GHz Res BW 100 kHz		#VBW 30	0 kHz		Sweep	Stop 2.57600 G
RT MODE TRC WL	2.478 0 GHz 2.483 5 GHz 2.500 0 GHz 2.498 5 GHz	9 5.648 dBm -60.635 dBm -61.312 dBm -48.311 dBm	PUNCTION	FUNCTION MOTH		ICTION VIEUE
3		1	<u>n</u> ,	BIATUS		1.1

Band Edge(Hopping) NVNT 1-DH1 2480MHz Ant1 Hopping Emission

Band Edge(Hopping) NVNT 2-DH1 2402MHz Ant1 Hopping Ref

nter Freq 2.35600	PN		Free Run	Aug Type: Avg Type: AvgHold: 3	Log-Pwr 1000/2000	10	AM Sep 19, 20
Ref Offset 8. dB/div Ref 20.00	IFGr 77 dB	in:Low #An	en: 30 dB		I	Akr1 2.4	
				**************************************	الدينية والاردان المالي	\ ³	
art 2.30600 GHz Res BW 100 kHz		#VBW 300	kHz		Sweep	Stop 2. 9.600 ms	40600 GI (1001 pi
N 1 F N 1 F N 1 F N 1 F	× 2.403 2 GHz 2.400 0 GHz 2.390 0 GHz 2.313 3 GHz	¥ 5.130 dBm 50.882 dBm -61.783 dBm -49.548 dBm	PUNCTION	FUNCTION WIDTH	₽ŭ	ICTION VALUE	

Band Edge(Hopping) NVNT 2-DH1 2402MHz Ant1 Hopping Emission

Band Edge(Hopping) NVNT 2-DH1 2480MHz Ant1 Hopping Ref

enter Freq 2.526000	0000 GHz	TSINSE PUL	s: Free Run ten: 30 dB	Aug Type Avg Hold:	Log-Pwr 2000/2000	07:58-28 44 Sep 19, 20 TRACE 19
Ref Offset 8.81 dBidly Ref 20.00 dl					N	1kr1 2.478 1 GH 5.761 dBr
10						
	4					
	•3	مىيىلۇرىھامىلىرىر رەسەر	98.91-120 - 1-1-9 <u>1-0</u> 740-1	hanga kana kana kang kana kata	*****	a prime and a second
tart 2.47600 GHz						Stop 2.57600 G
Res BW 100 kHz		#VBW 30	0 kHz		Sweep	9.600 ms (1001 p
R MODE TRE GEL N 1 1 2 N 1 1 3 N 1 1 4 N 1 1 5	8 2.478 1 GHz 2.483 5 GHz 2.500 0 GHz 2.492 7 GHz	5.761 dBm -60.943 dBm -61.159 dBm -48.768 dBm	PUNCTION	FUNCTION WOTH	FÜI	CTON VALUE
the site the life			10			109

Band Edge(Hopping) NVNT 2-DH1 2480MHz Ant1 Hopping Emission

Band Edge(Hopping) NVNT 3-DH1 2402MHz Ant1 Hopping Ref

Reysight Spectrum Analyzer - R. HF 51	Sound SA	SINGPL	4	ALLOW FARTLA		08-19-35	44 Sep 19,70
enter Freq 2.356	000000 GHz	Trig	Free Run en: 30 dB	Avg Type Avg[Hold:	Log-Pwr 2000/2000	10	ACE 12 14 NE NO
Ref Offset dBidiv Ref 20.0					1	Akr1 2.4	04 2 GH 934 dB
9							
U							PH
0							-14 020
0				54		A ³	1/2
- panoralescarentes	والمستعلم ومعادرة المعجدة	cause and a second second second	2000 C. 2000 C	ex-and acremolecype	and the second		anoth
8							
rt 2.30600 GHz						Stop 2	10600 G
es BW 100 kHz		#VBW 300) kHz		Sweep	9.600 ms	
MODE TRC IEL	× 2.404 2 GHz	۲ 4.934 dBm	PUNCTION	FUNCTION WOTH	‡91	CTION VALUE	
N 1 T	2.400 0 GHz 2.390 0 GHz	-62.097 dBm -51.010 dBm					
N 1 f	2.360 6 GHz	49.355 dBm					
			T.	STATUS			- 10

Band Edge(Hopping) NVNT 3-DH1 2402MHz Ant1 Hopping Emission

Band Edge(Hopping) NVNT 3-DH1 2480MHz Ant1 Hopping Ref

Reysegid Spectrum Analyzes + So R. HF 55.5	- 46	SENSE PUL	×.	ALDEN PARTIAL	hanges		4 Sep 19, 70
nter Freq 2.5260	PNC		: Free Run ten: 30 dB	Avg Typ Avg[Hold	e: Log-Pwr I: 2000/2000	TRAC TH DI	- However
Ref Offset 8. dBidiv Ref 20.00					N	Akr1 2.479 5.9	8 GH
			Ĭ				
u adda							
0							
$\langle \rangle$	3			ويعتدين ويتعادره			
es BW 100 kHz		#VBW 300) kHz		Sweep	Stop 2.57 9.600 ms (
MODE THE WEL	8	Ϋ	PUNCTION	FUNCTION WOTH	FÜI	CTION VALUE	
N 1 7 N 1 7 N 1 7 N 1 7	2.479 8 GHz 2.483 5 GHz 2.500 0 GHz 2.487 3 GHz	5.942 dBm -60.233 dBm -60.966 dBm -48.468 dBm					
			п.				
				BIDATUS			

Band Edge(Hopping) NVNT 3-DH1 2480MHz Ant1 Hopping Emission

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Ant1	-51.34	-20	Pass
NVNT	1-DH1	2441	Ant1	-51.63	-20	Pass
NVNT	1-DH1	2480	Ant1	-51.00	-20	Pass
NVNT	2-DH1	2402	Ant1	-49.10	-20	Pass
NVNT	2-DH1	2441	Ant1	-49.40	-20	Pass
NVNT	2-DH1	2480	Ant1	-49.33	-20	Pass
NVNT	3-DH1	2402	Ant1	-49.51	-20	Pass
NVNT	3-DH1	2441	Ant1	-49.02	-20	Pass
NVNT	3-DH1	2480	Ant1	-49.05	-20	Pass

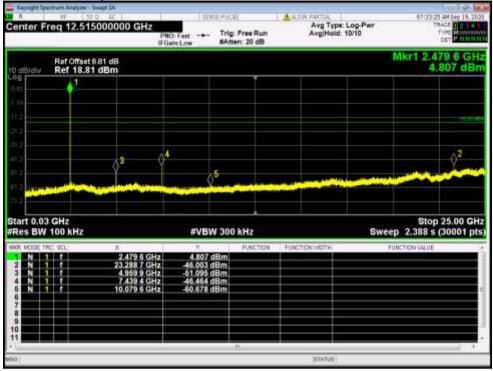
Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Ref



	HF	1 56 Q				T SENSE #	a set	_	4.4.10	PARTIAL	Newson		87:34	11 44 Sep 19, 20
nter F	req 1	2.51500	0000 GH	PI	NO: Fast Sain:Low	- T	rig: Free Atten: 20	Run dB	and the second		e: Log-Pwr d: 10/10			
dBidiv		Offset 8.77 18.77 dB										M	kr1 2.4	402 2 GH
17	-	1												
														-15.50-3
7														
2			0 ³	04		×5							-	2
		Section	of the statement	the second		V.	-	a beating the	1.1.1		and the second se	A	ALC: NO.	A DECEMBER
					#	VBW 3	00 kHz				Sv	veep		
tes BW	100 k		×		-	Ŷ	FL9V	CTION	FUNCTI	ON WEDTH	Sv			s (30001 pt
tes BW	100 1		2.402 2 24.002 9	GHz	4.	7 204 dBr 348 dBr	F.SV	CTION	FUNCTI	ON WOTH	Sv		2.388 \$	s (30001 pt
Res BW	100 H		2.402 2 24.002 9	GHz	4. -46. -62.	204 dBn 348 dBn 914 dBn	FLSV	CTION	FUNCTI	ON MEDTH	Sv		2.388 \$	s (30001 pt
N T			2.402.2	GHZ GHZ GHZ	4. 46. -62. -62.	7 204 dBr 348 dBr	F.N	CTION	FUNCTI	нтрыис	Sv		2.388 \$	s (30001 pt
art 0.03 Res BW			2 402 2 24 002 9 4 804 3 7 205 5	GHZ GHZ GHZ	4. 46. -62. -62.	204 dBn 348 dBn 914 dBn 586 dBn	F.N	CTION	FUNCTO	ONWOTH	S		2.388 \$	p 25.00 GH s (30001 pt
R HOSE 70			2 402 2 24 002 9 4 804 3 7 205 5	GHZ GHZ GHZ	4. 46. -62. -62.	204 dBn 348 dBn 914 dBn 586 dBn	F.N	TION.	FUNCTO	OK MICH	Sv		2.388 \$	s (30001 pt

Tx. Spurious NVNT 1-DH1 2402MHz Ant1 Emission

Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Ref

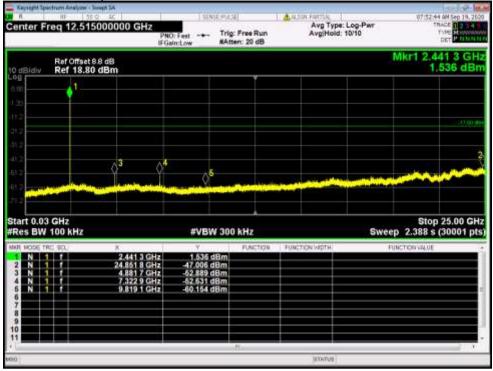

R. HF 56	Seemant SA	SENSE PLAT		AUGH FARTIA		07/32/18/44/Sep 19, 20
enter Freq 12.515	5000000 GHz	O: Fast Trig	Free Run en: 20 dB		: Log-Pwr 10/10	TRACE 1 2 3 4 TYPE FORMULA DET PINNI
Ref Offset 8					N	Akr1 2.441 3 GH 4.758 dBr
10			Ĭ			
3						-16.07 at
2	$\langle \rangle^3 = \langle \rangle^4$.5				
2 - Carlos and the second		0	and the second		and the second	South States of the local division in the lo
		#VBW 300) kHz		Sweep	Stop 25.00 GH
Res BW 100 kHz	×	Ψ	kHz PUNCTION	FUNCTION WEDTH		Stop 25.00 GH 2.388 s (30001 pt crowww.e
Res BW 100 kHz R MODE TRC (KL N 1 f N 1 f	× 2.441 3 GHz 24.793 6 GHz 4.982 5 GHz	4.758 dBm -46.705 dBm		FUNCTION MOTH		2.388 s (30001 pt
2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f		ې 4.758 dBm		FUNCTION MIDTH		Stop 25.00 GH 2.388 s (30001 pt croww20E
Res BW 100 kHz R MODE TRC PCL N 1 f N 1 f N 1 f N 1 f N 1 f N 1 f	24.793 6 GHz 4.882 5 GHz 7.323 7 GHz	4,758 dBm 46,705 dBm -51,072 dBm -49,750 dBm		FUNCTION MIDTH		2.388 s (30001 pt
Res BW 100 kHz R MODE TRC (RL) N 1 f N 1 f N 1 f N 1 f N 1 f N 1 f N 1 f N 1 f N 1 f N 1 f	24.793 6 GHz 4.882 5 GHz 7.323 7 GHz	4,758 dBm 46,705 dBm -51,072 dBm -49,750 dBm		FUNCTION VEITH		2.388 s (30001 pt
Res BW 100 kHz R MOSE TRC IPC. N 1 f N 1 f N 1 f N 1 f N 1 f	24.793 6 GHz 4.882 5 GHz 7.323 7 GHz	4,758 dBm 46,705 dBm -51,072 dBm -49,750 dBm		FUNCTION WIDTH		2.388 s (30001 pt

Tx. Spurious NVNT 1-DH1 2441MHz Ant1 Emission

Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Ref

Tx. Spurious NVNT 1-DH1 2480MHz Ant1 Emission

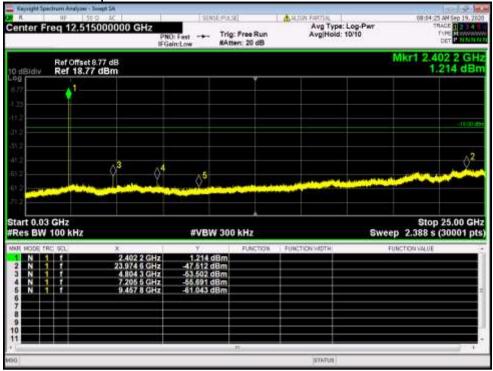
Tx. Spurious NVNT 2-DH1 2402MHz Ant1 Ref


	HF	1 56 Q 1		11	SENSE	14.1.11	1	ALIGN FARTIAL	No. and the second second	07:51:4	1 44 Sep 19, 21
nter F		2.515000		PNO: Fa	si	Trig: Free F #Atten: 20	Run	Avg Type Avg[Hold	:: Log-Pwr : 10/10		THE NUMBER
dBidiv	Ref	Offset 8.77 d 18.77 dB	JB M						N	kr1 2.4 2.	02 2 GH 016 dB
17		1									
											-17.95
14											
2			3	¢٩	05				-		
										Stop	25.00 G
					#VBW	300 kHz			Sweep	2.388 s	(30001 p
es BW	100		×		Ψ.	FUNC	TION	FUNCTION WOTH		2.388 s	(30001 p
es BW	100		2.402 2 G	Hz	y 2.016 dB 47.038 dB	P.SKC Sm	TIÇİN	FUNCTION WOTH		2.388 s	(30001 p
art 0.03 tes BW N 1 N 1 N 1 N 1 N 1	100 RC 90.		2.402.2 G	Hz Hz Hz		F.S.C Im Im Im Im	101	FUNCTION WIDTH		2.388 s	(30001 p
R MODE T	100 RC 90.		2.402 2 G 24.885 1 G 4.803 4 G 7.206 4 G	Hz Hz Hz	Y 2.016 dE 47.038 dE 64.494 dE 64.627 dE	F.S.C Im Im Im Im	TION	FUNCTION MOTH		2.388 s	(30001 p
N T	100 RC 90.		2.402 2 G 24.885 1 G 4.803 4 G 7.206 4 G	Hz Hz Hz	Y 2.016 dE 47.038 dE 64.494 dE 64.627 dE	F.S.C Im Im Im Im	TION	FUNCTION MOTH		2.388 s	(30001 p

Tx. Spurious NVNT 2-DH1 2402MHz Ant1 Emission

Tx. Spurious NVNT 2-DH1 2441MHz Ant1 Ref

Tx. Spurious NVNT 2-DH1 2441MHz Ant1 Emission

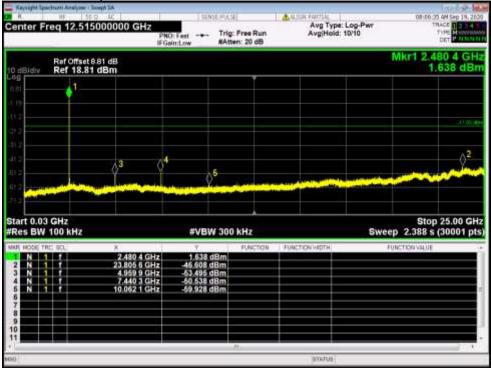

R.	apactrum's	Analyzer + Swept S 56 Q J		1 1 1 1	ENSE PERSE	1	A4.05	N FARTIAL		07:54	28 AM Sep 19, 20
enter	Freq	12.515000		PNO: Fast -+		free Run 1: 20 dB		Avg Type: Avg[Hold; 1			THACE DO 14
dBidiv		Offset 8.81 of 18.81 dB								Mkr1 2.4	480 4 GH
10		•1									
2											-17.5%.0
14 N 0			∆ ³	∆ 4	e						02
2	-				¢ ⁵						
	03 GH2 W 100			#VI	3W 300 I	kHz			Swe	Sto ep 2.388 s	p 25.00 GH (30001 pt
R MODE			X 2.480 4 GH 24.164 3 GH 4.969 9 GH	1.44 -46.88 -63.01	4 dBm 7 dBm	FUNCTION	FUNCT	ONWOTH		FUNCTION VALUE	
			4 969 9 GH 7 439 4 GH 10 003 9 GH	z -61.04	6 dBm						
7 B B B B B B B B B B B B B B B B B B B											
							_				
i 1		11-				-					

Tx. Spurious NVNT 2-DH1 2480MHz Ant1 Emission

Tx. Spurious NVNT 3-DH1 2402MHz Ant1 Ref

Tx. Spurious NVNT 3-DH1 2402MHz Ant1 Emission

Tx. Spurious NVNT 3-DH1 2441MHz Ant1 Ref



п.	1		1.56-2			1		SENSE #	a sel		A.11.11	IN PARTS	I.S.				08-85-30	AH Sep 19,7
enter	Free	q 12.	51500	0000		PNO: IFGain	Fast -	• T	rig: Fre Atten: 2			Avp		Log-Pwi 10/10	0		TR	INCE IN THE INC.
dBidi			set 8.8 d 8.80 dE													Mkr1	2.4	41 3 GI 541 dB
0		•1								Ť								
30																		.17.84
2. 2																		
2				03		04												
2		-	-	-	-	Ĩ,	Lines	2	-	-		-	-	فستنحب				
art 0	03.0				~	Ĭ		2									Stop	25.00 C
			2			Ĭ	#V	BW 3	00 kH	z					Swee			25.00 G (30001 p
tes B	W 10	io kH	z	*	and a		Ŷ		FU	z	FUNCT	now wept	1				88 S (
les B	W 10	10 kH	z	24.66	1 3 GH 2 1 GH 1 7 GH	z z	v 2.6 -46.6 -62.0	41 dBr 69 dBr 40 dBr		Contractory of the local division of the loc	FUNCT	nowwer	ji ji		_	p 2.3	88 S (
tes B		10 kH हो। f	2	24.66 4.88 7.32	21 GH	z z z	¥ 2.5 -46.6 -62.0 -63.1	41 dBn 69 dBn	FU 1	Contractory of the local division of the loc	FUNCT	now wapt			_	p 2.3	88 S (
	W 10	10 kH FL f	z	24.66 4.88 7.32	21 GH 17 GH 37 GH	z z z	¥ 2.5 -46.6 -62.0 -63.1	41 dBn 69 dBn 40 dBn 88 dBn	FU 1	Contractory of the local division of the loc	FUNC			5	_	p 2.3	88 S (
RES B	W 10	10 kH FL f	z	24.66 4.88 7.32	21 GH 17 GH 37 GH	z z z	¥ 2.5 -46.6 -62.0 -63.1	41 dBn 69 dBn 40 dBn 88 dBn	FU 1	Contractory of the local division of the loc	FUNCT	TION HER		5	_	p 2.3	88 S (

Tx. Spurious NVNT 3-DH1 2441MHz Ant1 Emission

Tx. Spurious NVNT 3-DH1 2480MHz Ant1 Ref

Tx. Spurious NVNT 3-DH1 2480MHz Ant1 Emission

Number of Hopping Channel

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH1	Ant1	79	15	Pass
NVNT	2-DH1	Ant1	79	15	Pass
NVNT	3-DH1	Ant1	79	15	Pass

Hopping No. NVNT 1-DH1 2441MHz Ant1

Center Freq 2.	1969 AC 1969 AC 441750000 GHz	PNO: Fast -	Trig: Free F MAtten: 30	Run	Avg Type: I Avg Type: I Avg[Hold: 5	Log-Pwr 000/5000	07:36:47 AM Sep 19.7 TRACE 1 2 TR Trife Providence DET Providence
	offset 8.8 dB 20.00 dBm					Mkr1	2.402 004 0 G 5.439 dB
1011	NNNNNNNNN	WWWW		WWW		WWWW	MMMMMM M
Start 2.40000 G #Res BW 100 k		Ŷ		710N FUNCT	оммртн		Stop 2.48350 G 8.000 ms (1001 p Incrowww.ue
2 N 1 1 3 4 5 6 7 7 8 9 9 10	2,479 993 0 G	Hz 5.494					
96			1		B VATUS		

Kaysight Spectrum Analyzer - Surget SA	T SENSE PL	2011	A MUGH FARTIAL		07:56:45 44 Sep 19, 20
enter Freq 2.441750000 GHz	PNO: East Trig	: Free Run ten: 30 dB	Avg Type: Avg[Hold:		THACE 12 14 THACE 12 14 THE COMMENT
Ref Offset 8.8 dB dBldiv Ref 20.00 dBm				Mkr1	2.401 670 0 GH 1.515 dBr
	NAVARANANANAN N	547500000	ANTON OF THE OTHER O	kursakana Kursakana	
art 2.40000 GHz Res BW 100 kHz R NODE TRE SEL X N 1 2.401 570 0 GH	#VBW 30	PLANCTION	FUNCTION WOTH		Stop 2.48350 GH 8.000 ms (1001 pt ICTOWVAUE
N 1 7 2.480 160 0 GH	z 5.537 dBm	n.			
		Π.	STATUS		

Hopping No. NVNT 2-DH1 2441MHz Ant1

Hopping No. NVNT 3-DH1 2441MHz Ant1

enter Freq 2.44	1750000 GHz	PNO: Fast -	Trig: Free MAtten: 30	Run	Avg Type: Log- Avg Hold: 5000r	Pwr 5000	01:08:3	AM Sep 19, 200 ACE 12, 24 TYPE MODEL DET 12, 14
0 dBidiv Ref 20	et 8.8 dB .00 dBm					Mkr1		37 0 GH 641 dBr
	MAYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	NAAAAAAAAA	ARAAN (1)	www.	umananan	wave	WARAAA	1444A
								ļ
art 2.40000 GH Res BW 100 kHz		#VI	BW 300 kHz			Sweep	Stop 2. 8.000 ms	48350 GH (1001 pt
R NODE TRC (2).	2,401 837 0 C 2,480 160 0 C	Hz 5.64 Hz 3.51	F.# 4 dBm 4 dBm	ICTION FUNK	намирти	FUN	CTOWNAUE	
								_

Dwell Time								
Condition	Mode	Frequency	Antenna	Pulse	Total Dwell	Period	Limit	Verdict
		(MHz)		Time	Time (ms)	Time	(ms)	
				(ms)		(ms)		
NVNT	1-DH1	2441	Ant1	0.378	120.96	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.633	261.28	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.882	307.413	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.385	123.2	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.637	261.92	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.885	307.733	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.386	123.52	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.636	261.76	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.887	307.947	31600	400	Pass

Dwell NVNT 1-DH1 2441MHz Ant1

nter Freq 2.44100	P	WO East Trig	g Delay-1.000 r g: Video ten: 30 dB	ns Avg Type	: Log-Pwr		TYPE DIT
Ref Offset 6.6 dBidiy Ref 20.00 d						ΔMkr1	378.0 µ -2.08 d
X2 14	2						1964
0							
nter 2.441000000 G	alitating of the second			de dile para di e Ver di di serie le	in provide a state		Span 0 l
nter 2.441000000 G s BW 1.0 MHz		#vBw 1.0		Hadina di an	Sweep	10.00 ms	Span 0 (10001 p

Dwell NVNT 1-DH3 2441MHz Ant1

enter Freq 2.441000		Fast Trig:	Delay-1.000 m Video m: 30 dB	ALIBIAUTS Avg Type	: Log-Pwr		19RM Sep 22, 200 TWACE TO BE SOUTH
Ref Offset 4.8 dBidly Ref 20.00 d						AMkr1	1.633 m -0.48 d
X2	162						
at <u>A2</u>							1901
10							
10							
	he man he	A dealer and the second state in	AL BARRANTER	had a state of the	the second sheets and the second seco		and the second second second
A BYA ALWEL			and Solar		in a big and the second	and the de	a la porte
enter 2.441000000 GI	Hz	#VBW 1.0				10.00 ms	
anter 2.441000000 Gl s BW 1.0 MHz R M20E 18C SQ.	X 1.633 ms (Δ)	#VBW 1.0 Y -0.46 dB			Sweep	10.00 ms	
enter 2.441000000 G es BW 1.0 MHz R HODE TRC SO. A2 1 t (A) F 1 t	×	#VBW 1.0	MHz	an a	Sweep	The second second second	
nter 2.441000000 G BS BW 1.0 MHz R MOE TRC 50. A2 1 t MA) F 1 t MA)	X 1.633 ms (Δ)	#VBW 1.0 Y -0.46 dB	MHz	an a	Sweep	The second second second	
nter 2.441000000 Gl s BW 1.0 MHz R MORE TRC SO. Δ2 1 t (Δ) F 1 t	X 1.633 ms (Δ)	#VBW 1.0 Y -0.46 dB	MHz	an a	Sweep	The second second second	
nter 2.441000000 G s BW 1.0 MHz 8 MODE TRC SOL 62 1 t 1(0) F 1 t	X 1.633 ms (Δ)	#VBW 1.0 Y -0.46 dB	MHz	an a	Sweep	The second second second	Span 0 F

Dwell NVNT 1-DH5 2441MHz Ant1

enter Freq 2.441000000 GHz	PNO: East Trig	Delay-1.000 m : Video en: 30 dB	ATTENANTS RS Avg Type	: Log-Pwr		The Data Sector
Ref Offset 4.8 dB dBidiv Ref 20.00 dBm		00			AMkr1	2.882 mi -4.33 dB
20 X2	102					
0						
0						
	- Internet	and the second		ang ng ang ang ang ang ang ang ang ang a		e application
nter 2.441000000 GHz	#VBW 1.0				10.00 ms	Span 0 H (10001 pt
	γ 2 ms (Δ) 4.33 dB		FUNCTION WIDTH	Sweep	10.00 ms	Span 0 H (10001 pt
Φ 1 Inter 2.44 1000000 GHz S BW 1.0 MHz HODE TRC SC. K Δ2 t (Δ) 2.8% F t 398	Y II	MHz		Sweep		Span 0 H (10001 pt
a Mote 180 50. X	γ 2 ms (Δ) 4.33 dB	MHz		Sweep		Span 0 H (10001 pt
Φ 1000000 GHz s BW 1.0 MHz 1000000 GHz NOTE RC 50. X Δ2 t Δ2 t 4 396	γ 2 ms (Δ) 4.33 dB	MHz		Sweep		Span 0 H (10001 pt

Dwell NVNT 2-DH1 2441MHz Ant1

nter Freq 2.441000000 GHz	PNO: Fast Trig	Delzy-1.000 r p:Video wn:30 dB	ns Avg Type	: Log-Pwr		
Ref Offset 7 2 dB					ΔMkr1	385.0 j 4.46 d
X2 ^{1Δ2}						.1803
0						
and the state of the second se	where I would be added as a	a de al mante	and acceletowned with	Adapter in the	and the lost of	Abrilda
	Support Distantia	d in charge	ninia ani ana li		in a trai	
nter 2.44 1000000 GHz s BW 1.0 MHz	#vBw 1.0		nişar başılanışılı	Sweep	10.00 ms	Span 0 1 (10001 p
nter 2.441000000 GHz s BW 1.0 MHz HODE TRC SQ. X	#VBW 1.0		FUNCTION WOTH	and the second se	10.00 ms	Span 0 (10001 p
nter 2.441000000 GHz s BW 1.0 MHz HODE TRC SOL X Δ2 1 1 1 (Δ) 385.0	#VBW 1.0	MHz	FUNCTION WIDTH	and the second se		Span 0 (10001 p

Dwell NVNT 2-DH3 2441MHz Ant1

enter Freq 2.4410000	00 GHz	Fast Trig	Delzy-1.000 r : Video en: 30 dB	ms Avg Type	: Log-Pwr		NACE 22,200 NACE 22,200 NACE 22,200 NACE 22,200
Ref Offset 4.8 dB dBidiv Ref 20.00 dBn						∆Mkr1	1.637 m 1.05 d
10	142						
X2							
0							
0							
	6. AN		Har war	Sactore Store Brown	- In comme	wath sail	
		the total a start a	addel on the	aisonullainta	diable open	anii daji	the deputy
		#VBW 1.0	MHz		Sweep	10.00 ms	Span 0 H (10001 pl
	x	¥.	FUNCTION	FUNCTION WID TH		10.00 ms	Span 0 H (10001 pl
S BW 1.0 MHz 1 HODE TRC 50. A2 1 1 (A) F 1 1		¥.		FUNCTION WIDTH		al section and the section and the	Span 0 H (10001 pl
s BW 1.0 MHz R MODE TRC SO. A2 1 t (A) F 1 t	× 1.657 ma (/A)	۷ 1.05 dB		FUNCTION W/DTH		al section and the section and the	Span 0 H (10001 pt
s BW 1.0 MHz R HOOF TRC SO. Δ2 1 t (Δ) F 1 t	× 1.657 ma (/A)	۷ 1.05 dB		FUNCTION WD1H		al section and the section and the	Span 0 H (10001 pl
s BW 1.0 MHz A MORE TRC 50. Δ2 1 t (Δ) F 1 t	× 1.657 ma (/A)	۷ 1.05 dB		FUNCTION W/DTH		al section and the section and the	Span 0 H (10001 pl
s BW 1.0 MHz 4 MOE TRC 50. Δ2 1 t (Δ) F 1 t	× 1.657 ma (/A)	۷ 1.05 dB		FUNCTION WIDTH		al section and the section and the	Span 0 F (10001 pt

steet Spectrum Analyzer - Serpt SA D SE 000 AC enter Freq 2.441000000 GHz	PNO: Fast -+-	P.1.0 Trig Delay-1.000 Trig: Video #Atten: 30 dB	ms Avg Type	: Log-Pwr	1967 1	M Sep 22, 2000
Ref Offset 4.8 dB d Bidiy Ref 20.00 dBm					AMkr1 2	.885 ms -0.81 dB
00	14:	2				
X2	ARTYWE STUCTURE					
00						
nn <mark>hatt haa ja</mark>			<mark>ha par tablaka</mark>			in the second
enter 2.441000000 GHz		1.0 MHz				Span 0 H
enter 2.441000000 GHz es BW 1.0 MHz R HCCE TRC SOL X	#VBW	1.0 MHz Function	FUNCTION WID TH	Sweep		Span 0 H 10001 pts
enter 2.441000000 GHz es BW 1.0 MHz R H00E 15C S0. X A A2 1 t (A) 2.89 3 F 1 t 396		1.0 MHz FUNCTION	tee para kahalakak	Sweep	10.00 ms (Span 0 H 10001 pts
enter 2.441000000 GHz es BW 1.0 MHz R HODE TRC SQ. X 2 F 1 t (2) 2.68 3 5	#VBW ۲ 5 ms (۵) -0,81 o	1.0 MHz FUNCTION	tee para kahalakak	Sweep	10.00 ms (Span 0 H 10001 pts
enter 2.441000000 GHz es BW 1.0 MHz R HCOE TRC SC X 4 A2 1 t (A) 2.88 2 F 1 t 998 4 5 5 6 7 8	#VBW ۲ 5 ms (۵) -0,81 o	1.0 MHz FUNCTION	tee para kahalakak	Sweep	10.00 ms (Span 0 H
enter 2.441000000 GHz es BW 1.0 MHz R HOOF TRC SD. X 2 F 1 t (Δ) 2.88 3 4 5 6 7 7	#VBW ۲ 5 ms (۵) -0,81 o	1.0 MHz FUNCTION	tee para kahalakak	Sweep	10.00 ms (Span 0 H 10001 pts

Dwell NVNT 2-DH5 2441MHz Ant1

Dwell NVNT 3-DH1 2441MHz Ant1

nter Freq 2.441		PHO: Fast Trig	Delay-1.000 m p: Video ten: 30 dB	at Avg Type	: Log-Pwr		AACE 122,300 NACE 123,300 NACE
Ref Offset Bidly Ref 20.0						∆Mkr1	386.0 µ -5.30 di
X=	1Δ2						11801.5
Dentitudine in	antes a fille distance	and the standard in such	áb a tá kező itelete	unwikati hatada	Children and State	Line allow	
nter 2.441000000 s BW 1.0 MHz		#vBW 1.0		in the History Andrew State Heard Company and the State		10.00 ms	Span 0 H
nter 2.44100000		#VBW 1.0		FUNCTION WOTH	Sweep		Span 0 H

Dwell NVNT 3-DH3 2441MHz Ant1

anter Freq 2.441000000		Fast Tri	g Delzy-1.000 g: Video ten: 30 dB	ms Avy	g Type: L	.og-Pwr		CPM Sep 22, 20 TACE DECEMENT TYPE CONTRACT OF CONTRACT
Ref Offset 4.8 dB							ΔMkr1	1.636 m -4.30 di
	162							
0								
a resolution of the second	the second		Add No. 4 west	antin satu Nation				<mark>den bi</mark>
nter 2.441000000 GHz s BW 1.0 MHz	the second	Contral Manhatra Contra	inter the	nation and the second			10.00 ms	Span 0 F (10001 pt
nter 2.441000000 GHz s BW 1.0 MHz HOOE TRC SOL X	wenter	#VBW 1.0	0 MHz	FUNCTION WE		Sweep		Span 0 F (10001 pl
nter 2.44 1000000 GHz s BW 1.0 MHz HODE TRC 50. X 42 1 t (4)	warden	#VBW 1.0	0 MHz			Sweep	10.00 ms	Span 0 F (10001 pt
nter 2.44 1000000 GHz s BW 1.0 MHz MODE 1RC 50. Χ Δ2 1 1 (Δ)	1.636 ms (Δ)	#VBW 1.0	0 MHz			Sweep	10.00 ms	Span 0 H (10001 pt
nter 2.44 1000000 GHz s BW 1.0 MHz HODE TRC 50. X 42 1 t (4)	1.636 ms (Δ)	#VBW 1.0	0 MHz			Sweep	10.00 ms	Span 0 F (10001 pt
nter 2.44 1000000 GHz s BW 1.0 MHz 1 MODE 1RC 50. X	1.636 ms (Δ)	#VBW 1.0	0 MHz			Sweep	10.00 ms	Span 0 F

Dwell NVNT 3-DH5 2441MHz Ant1

enter Freq 2.441000	000 GHz	ant Trig	Delzy-1.000 n : Video en: 30 dB	ALIBIANTS RS Avg Type	: Log-Pwr		GIAN Sep 22, 200 NACE 112 SALE NUME DBT 20000000
Ref Offset 4.8 o						ΔMkr1	2.887 m -5.93 di
X		142					
10							THOL
10							
10							
		and the second sec					
and the second second			Pol Parte	(type) - type () and ()	Calle Note R		
enter 2.441000000 GH	łz		and would be			10.00 ms	Span 0 F
enter 2.441000000 GH s BW 1.0 MHz R MODE TRC 50.	×	#VBW 1.0	and would be		Sweep		Span 0 F
nter 2.441000000 GH s BW 1.0 MHz H KOE TRC SO. A2 1 t (A) F 1 t		hite as Al	MHz	(Ing pushina)	Sweep	10.00 ms	Span 0 F
enter 2.441000000 GH es BW 1.0 MHz R MODE TRC SC. A2 1 t (4) F 1 t	× 2,887 ms (Δ)	#VBW 1.0	MHz	(Ing pushina)	Sweep	10.00 ms	Span 0 F
enter 2.441000000 GH es BW 1.0 MHz R Mode TRC SO. A2 1 t (A) F 1 t	× 2,887 ms (Δ)	#VBW 1.0	MHz	(Ing pushina)	Sweep	10.00 ms	Span 0 H
A A A A A A A A A A A A A A A A A A A	× 2,887 ms (Δ)	#VBW 1.0	MHz	(Ing pushina)	Sweep	10.00 ms	Span 0 H

-----End of report-----