

Report No: CCISE200900401

FCC	REPORT
	(BLE)

Applicant:	Shenzhen Peicheng Technology Co., Ltd			
Address of Applicant:	5th Floor, B Building, Baotian Industrial Zone, Qianjin 2nd road, Xixiang, Bao'an District, Shenzhen, Guangdong, Chin 518102			
Equipment Under Test (E	EUT)			
Product Name:	Tablet pc			
Model No.:	K75, K76, K77, K78, K79, K80			
Trade mark:	SMART TEK			
FCC ID:	2AV6Y-K75			
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247			
Date of sample receipt:	02 Sep., 2020			
Date of Test:	02 Sep., to 20 Oct., 2020			
Date of report issued:	20 Oct., 2020			
Test Result:	PASS *			

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version 2

Version No.	Date	Description
00	20 Oct., 2020	Original

Tested by:

Mike.OU Test Engineer

Date: 20 Oct., 2020

Winner Thang

Reviewed by:

Project Engineer

20 Oct., 2020 Date:

Project No.: CCISE2009004

CCIS

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	
_			
3		-	-
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
5	5.1	CLIENT INFORMATION	5
-	5.2	GENERAL DESCRIPTION OF E.U.T.	-
-	5.3	TEST ENVIRONMENT AND MODE	
5	5.4	DESCRIPTION OF SUPPORT UNITS	6
5	5.5	MEASUREMENT UNCERTAINTY	6
5	5.6	LABORATORY FACILITY	6
5	5.7	LABORATORY LOCATION	
5	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
6	5.1	ANTENNA REQUIREMENT:	8
-	6.2	CONDUCTED EMISSION	-
	5.3	CONDUCTED OUTPUT POWER	
-	6.4	OCCUPY BANDWIDTH	
-	6.5	POWER SPECTRAL DENSITY	
6	6.6	BAND EDGE	
	6.6.1		-
6	6.6.2 3.7	2 Radiated Emission Method	
C	6.7.1		
	6.7.2		
_	•		
7		Т SETUP PHOTO	
8	EUT	CONSTRUCTIONAL DETAILS	29
APP	ENDIX	A - BLE	

Test Summary 4

Test Items	Section in CFR 47	Result			
Antenna requirement	15.203 & 15.247 (b)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.247 (b)(3)	Pass			
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass			
Power Spectral Density	15.247 (e)	Pass			
Band Edge	15.247 (d)	Pass			
Spurious Emission	15.205 & 15.209	Pass			
Remark: Pass: The EUT complies with the essential requirements in the standard. N/A: Not Applicable. 					

2. N/A: NOt Applicable.

З. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	Shenzhen Peicheng Technology Co., Ltd		
Address:	th Floor, B Building, Baotian Industrial Zone, Qianjin 2nd road, Xixiang, ao'an District, Shenzhen, Guangdong, China 518102		
Manufacturer/ Factory:	Shenzhen Peicheng Technology Co., Ltd		
Address:	5th Floor, B Building, Baotian Industrial Zone, Qianjin 2nd road, Xixiang, Bao'an District, Shenzhen, Guangdong, China 518102		

5.2 General Description of E.U.T.

Product Name:	Tablet pc
Model No.:	K75, K76, K77, K78, K79, K80
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.8 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V, 3000mAh
AC adapter:	Model: FX2U-0501150U Input: AC100-220V, 50/60Hz, 0.4A Output: DC 5.0V, 1.5A
Remark:	Model No.: K75, K76, K77, K78, K79, K80 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and mode

Operating Environment:

Operating Environment.	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <u>https://portal.a2la.org/scopepdf/4346-01.pdf</u>

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd. Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: <u>http://www.ccis-cb.com</u>

5.8 Test Instruments list

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-21-2020	07-20-2021		
Loop Antenna	SCHWARZBECK	FMZB1519B	044	03-07-2020	03-06-2021		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-20-2020	06-19-2021		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020		
EMI Test Software	AUDIX	E3	Version: 6.110919b)		
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021		
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021		
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A		
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0				

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	07-17-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		

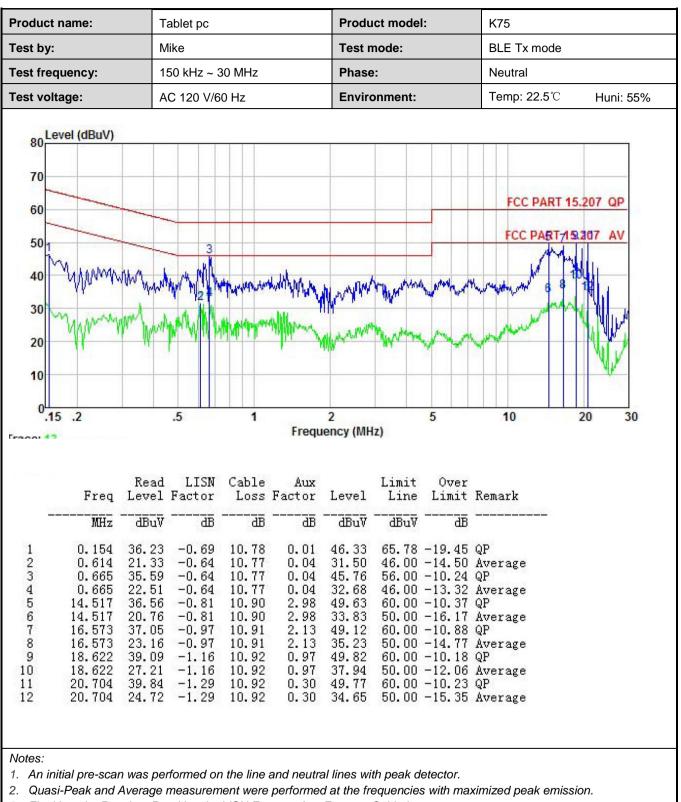
Test results and Measurement Data 6

6.1 Antenna requirement:

antenna is 0.8 dBi.

Standard requirement:	FCC Part 15 C Section 15.203 /247(b)
responsible party shall be us antenna that uses a unique so that a broken antenna ca electrical connector is prohit 15.247(b) (4) requirement: (4) The conducted output po antennas with directional ga section, if transmitting anten power from the intentional ra	be designed to ensure that no antenna other than that furnished by the sed with the device. The use of a permanently attached antenna or of an coupling to the intentional radiator, the manufacturer may design the unit in be replaced by the user, but the use of a standard antenna jack or bited. ower limit specified in paragraph (b) of this section is based on the use of this that do not exceed 6 dBi. Except as shown in paragraph (c) of this anas of directional gain greater than 6 dBi are used, the conducted output adiator shall be reduced below the stated values in paragraphs (b)(1), tion, as appropriate, by the amount in dB that the directional gain of the
E.U.T Antenna:	
The BLE antenna is an Intern	hal antenna which cannot replace by end-user, the best-case gain of the

6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.207	7				
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Frequency range (MHz)					
	Quasi-peak Average					
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30 * Decreases with the logarithm	60	50			
Test procedure:	 The E.U.T and simulators line impedance stabilizati 50ohm/50uH coupling im The peripheral devices ar LISN that provides a 50ol termination. (Please refer photographs). Both sides of A.C. line ard interference. In order to fi positions of equipment ar according to ANSI C63.10 	on network (L.I.S.N.), wh pedance for the measuri re also connected to the hm/50uH coupling impect to the block diagram of e checked for maximum nd the maximum emission and all of the interface cab	hich provides a ng equipment. main power through a lance with 50ohm the test setup and conducted on, the relative les must be changed			
Test setup:	Reference	80cm Filter EMI Receiver	– AC power			
Test Instruments:	Refer to section 5.9 for details	i				
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Product name:	Tablet pc	Tablet pc Product model:		K75			
est by:	Mike	Mike		ode:	BLE Tx mode		
est frequency:	150 kHz ~ 3	150 kHz ~ 30 MHz Phase: AC 120 V/60 Hz Environment:		Line Temp: 22.5℃ Huni: 55%			
est voltage:	AC 120 V/6						
80 Level (dBuV) 70 60 50 40 40 40 40 40 40 40 40 40 4	.5	hyperice Million of the second	2	5	FCC PART		
ace: 15	ead LISN	Cable Aux	lency (MHz Level	Limit Over	Remark		
Freq Le	vel Factor BuV dB		 dBu⊽	dBuV dB			

3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.4 Occupy Bandwidth

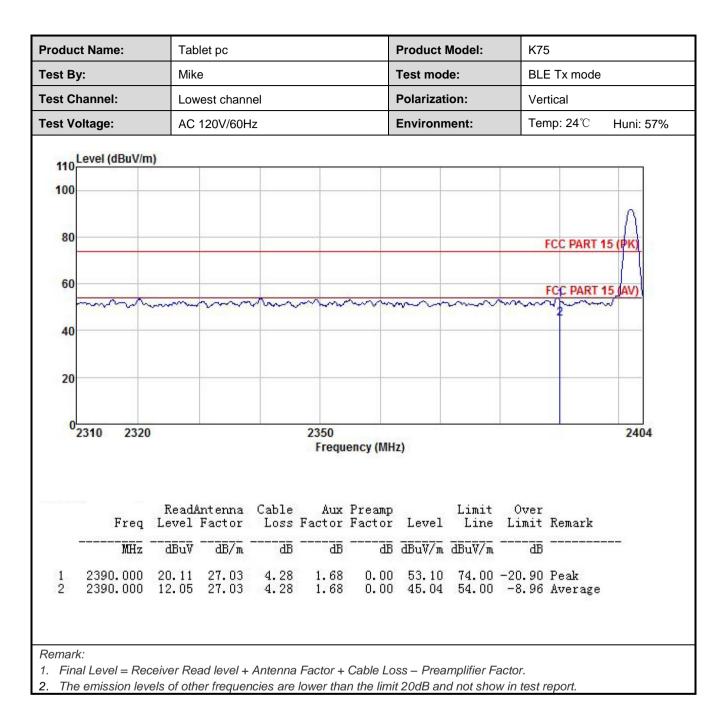
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table			
	Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

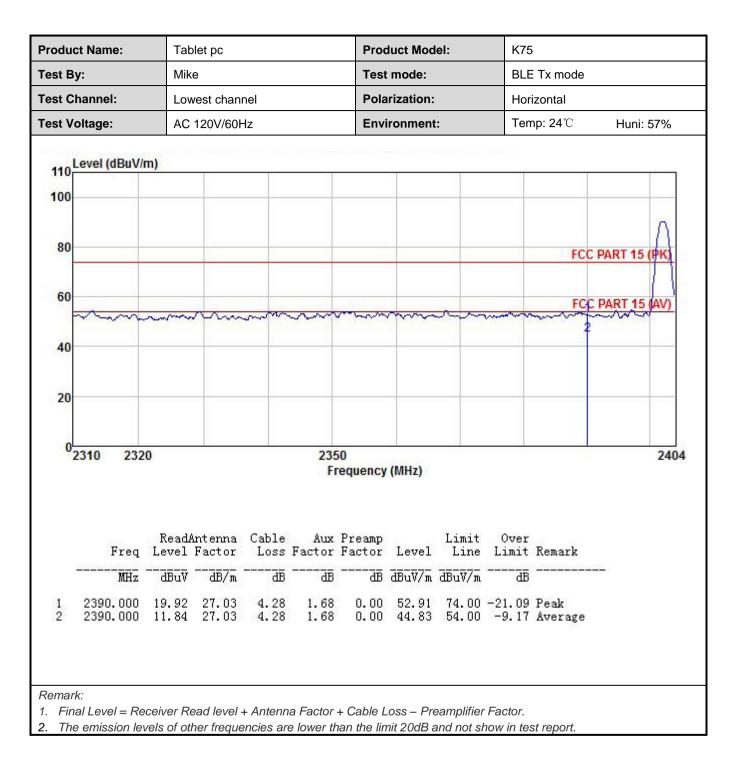
6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Limit:	8 dBm/3kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

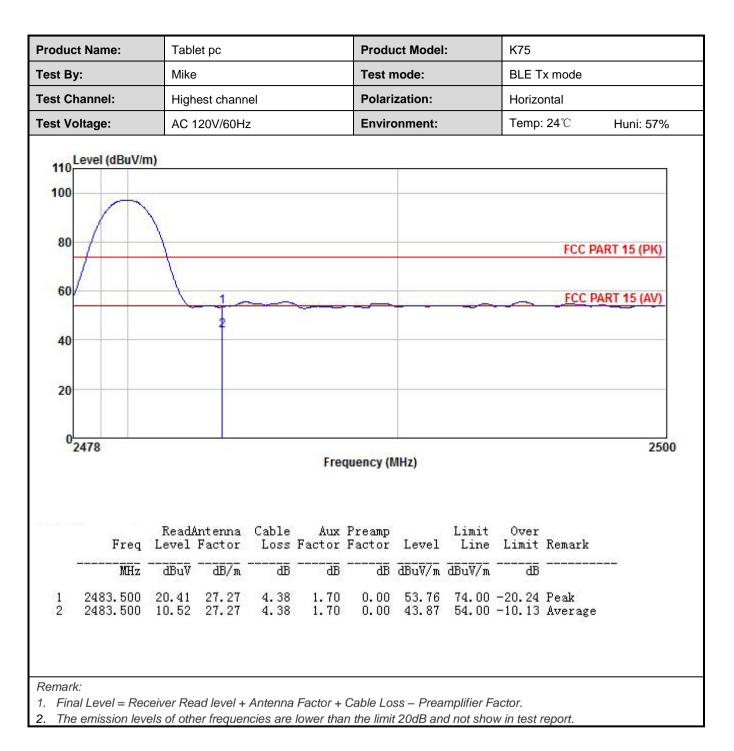
6.6 Band Edge

6.6.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				


6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	2310 MHz to 2	2390 MHz ai	nd 24	83.5MHz to 2	2500 I	MHz	
Test Distance:	3m						
Receiver setup:	Frequency	Detector	,	RBW		/BW	Remark
	Above 1GHz	Peak		1MHz		MHz	Peak Value
	Fraguan	RMS	Limit	1MHz		MHz	Average Value Remark
Limit:	Frequen		Limit (dBuV/m @3 54.00		5111)	Average Valu	
						Peak Value	
Test Procedure:	 the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emis the limit s of the EU have 10 c 	d at a 3 met ine the posi- was set 3 m which was r ana height is d to determi- zontal and v measureme suspected e then the an- d the rota ta eceiver syst Bandwidth ssion level o pecified, the T would be B margin w	ter ca tion o neters mount s varie ine th ertica ent. emiss tenna able v readin tem w with N of the en tes repor	amber. The ta of the highest is away from the ted on the top ed from one r ne maximum val polarization sion, the EUT a was turned from maximum Hol EUT in peak sting could be ted. Otherwis	ble wa radiat he intro- of a neter /alue s of th was a b heig bm 0 of ak De d Mode stopp se the bone by	as rotat tion. erference variable to four of the fine ante arrange thes fror degrees tect Fundes e was 1 bed and emission y one us	e-height antenna meters above ield strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and 0 dB lower than d the peak values ons that did not sing peak, quasi-
Test setup:		umtable) G Test Recei	3m		Antenna Tr	ower	
Test Instruments:	Refer to section	on 5.9 for de	tails				
Test mode:	Refer to section	on 5.3 for de	tails				
Test results:	Passed						



	Tablet pc			Product	Model:	K75	5		
est By:	Mike	Mike		Test mode:		BLE	BLE Tx mode		
Test Channel:	Highest channel		Polarization:			Vertical			
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz		Environment: Temp: 2		np: 24 ℃	Huni: 57%		
110 100 80 60 40	2						FCC PART		
20 0 2478		Free	quency (N	IHz)				2500	
0 <mark></mark>	eadAntenna (vel Factor	Cable Aux	Preamp		Limit Line	Over Limit	Remark	2500	
0 <mark>2478</mark> R Freq Le	eadAntenna (vel Factor	Cable Aux	Preamp Factor		Line		Remark	2500	

6.7 Spurious Emission

6.7.1 Conducted Emission Method

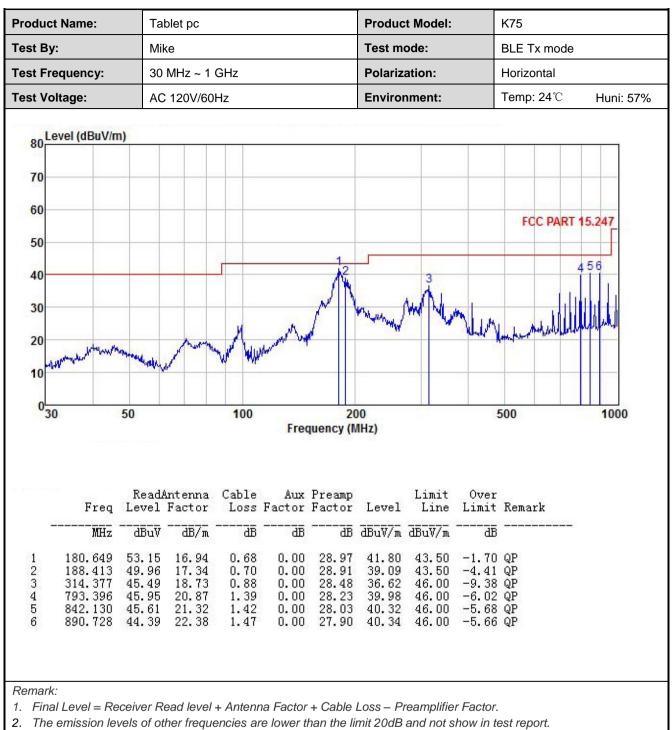
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency Detector RBW		RBW	VB	W	Remark	
	30MHz-1GHz	Quasi-pea	eak 120KHz		300KHz		Quasi-peak Value
	Above 1GHz	Peak	k 1MHz		3MHz		Peak Value
	Above IGI12	RMS	S 1MHz		3MHz		Average Value
Limit:	Frequency Limit (dBuV/m @3m) Remark					Remark	
	30MHz-88M	Hz		40.0		G	asi-peak Value
	88MHz-216N	/Hz		43.5		G	uasi-peak Value
	216MHz-960I	MHz		46.0			asi-peak Value
	960MHz-1G	Hz		54.0			aluasi-peak Value
	Above 1GH	17		54.0			Average Value
			-	74.0			Peak Value table 0.8m(below
	 The table of highest rad The EUT antenna, we tower. The antenni the ground Both horized make the n For each se case and the meters and to find the n The test-rest specified E If the emission the limit sp of the EUT have 10 dE 	was rotated liation. was set 3 hich was m ha height is to determ ontal and v neasuremen suspected of hen the an d the rota ta maximum re eceiver sys Bandwidth w sion level of ecified, ther would be B margin wo	d 360 me noun s va nine vertic ent. emis ntenn able eadii stem with I of the n tes repc ould	0 degrees t aters away to the on the to the maximu- cal polarizat ssion, the E ma was turned ng. n was set Maximum H e EUT in pe sting could to prted. Other be re-tested	o deter from the cop of a ne met um valu- cions of EUT was do to he from 0 to Pea old Mo oak moo coe stop wise th d one b	mine ne inten varial er to f ue of the a as arra eights degre k Det de. de was ped ar e emis y one	a 3 meter camber. the position of the erference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ses to 360 degrees tect Function and a 10 dB lower than nd the peak values ssions that did not using peak, quasi- reported in a data
Test setup:		3m <				Antenna Search Antenn Test eiver –	1

<u>CCIS</u>

	AE EUT Horn Antenna Tower Horn Antenna Tower (Turntable) Ground Reference Plane Test Receiver
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	 Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case. 9 kHz to 30MHz is lower than the limit 20dB, so only shows the data of above 30MHz in this report.


Measurement Data (worst case):

Below 1GHz:

oduct Name: Tablet pc Product Model:			K75				
st By:	Mike		Test mode:		BLE Tx mode		
st Frequency:	30 MHz ~ 1 GHz		Polarization:	larization: Vertical			
st Voltage:	AC 120V/60Hz		Environment:		Temp: 24 ℃	Huni: 57%	
80 Level (dBuV/m) 70 60 50 40 30 20	3 Mum Ma	A A A			FCC PAR	6	
10							
0 <mark>50</mark> 50	100	2 Frequency (1	00 MHz)		500	1000	
F	100 eadAntenna Cable vel Factor Loss	Frequency (۱ Aux Preamp	MHz) Limit			1000	
F Freq Le	eadAntenna Cable	Frequency (1 Aux Preamp Factor Factor	MHz) Limit	Limi	r t Remark	1000	

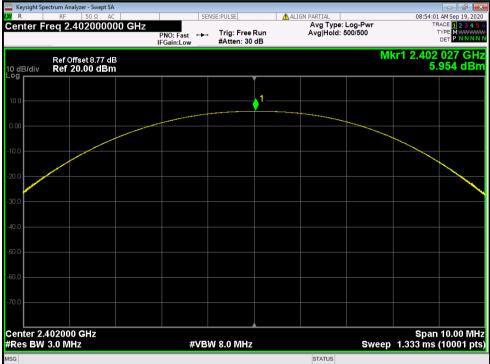
3. The Aux Factor is a notch filter switch box loss, this item is not used.

3. The Aux Factor is a notch filter switch box loss, this item is not used.

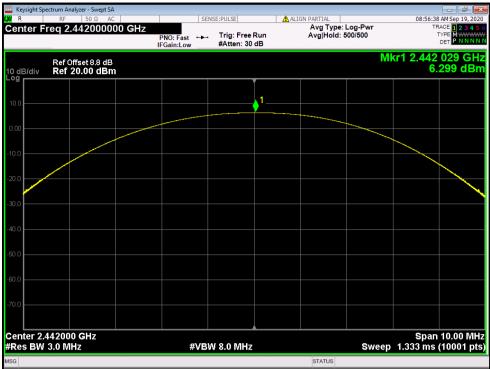
Above 1GHz

			Те	est channe	el: Lowest c	nannel			
	1			Detecto	or: Peak Val	le			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	47.97	30.78	6.80	2.44	41.81	46.18	74.00	-27.82	Vertical
4804.00	48.49	30.78	6.80	2.44	41.81	46.70	74.00	-27.30	Horizontal
	1	1		Detector:	Average Va	alue		r	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	39.68	30.78	6.80	2.44	41.81	37.89	54.00	-16.11	Vertical
4804.00	40.78	30.78	6.80	2.44	41.81	38.99	54.00	-15.01	Horizontal
			Т		el: Middle ch				
					or: Peak Val	Je		[
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	48.12	30.96	6.86	2.47	41.84	46.57	74.00	-27.43	Vertical
4884.00	48.55	30.96	6.86	2.47	41.84	47.00	74.00	-27.00	Horizontal
				Detector:	Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	40.96	30.96	6.86	2.47	41.84	39.41	54.00	-14.59	Vertical
4884.00	40.33	30.96	6.86	2.47	41.84	38.78	54.00	-15.22	Horizontal
			Te	est channe	el: Highest c	hannel			
				Detecto	or: Peak Val	he			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	48.69	31.11	6.91	2.49	41.87	47.33	74.00	-26.67	Vertical
4960.00	48.37	31.11	6.91	2.49	41.87	47.01	74.00	-26.99	Horizontal
				Detector:	Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	40.24	31.11	6.91	2.49	41.87	38.88	54.00	-15.12	Vertical
4960.00	40.46	31.11	6.91	2.49	41.87	39.10	54.00	-14.90	Horizontal
Remark: 1. Final Le	vel =Receiv	ver Read leve	el + Anteni	na Factor +	Cable Loss	+ Aux Factor	– Preamplifie	r Factor.	

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

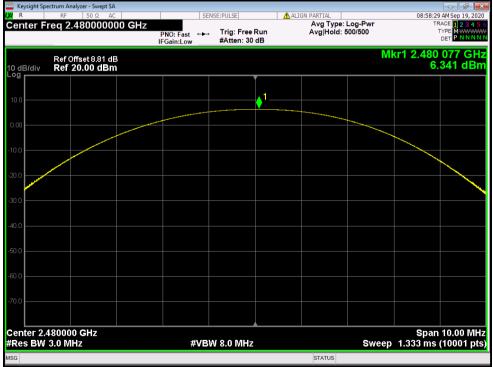


Appendix A - BLE


Maximum Conducted Output Power

_										
(Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict	
			(MHz)		Power	Factor	Power	(dBm)		
					(dBm)	(dB)	(dBm)			
	NVNT	BLE	2402	Ant1	5.954	0	5.954	30	Pass	
	NVNT	BLE	2442	Ant1	6.299	0	6.299	30	Pass	
	NVNT	BLE	2480	Ant1	6.341	0	6.341	30	Pass	

Power NVNT BLE 2402MHz Ant1



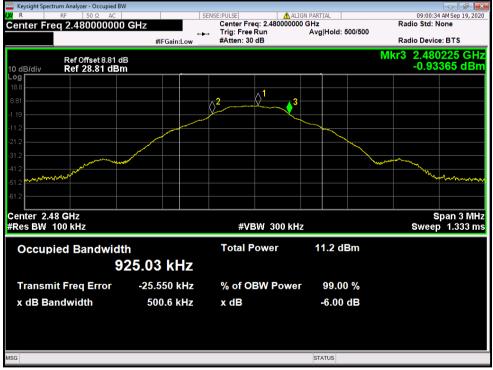
Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

-6dB Bandwidth

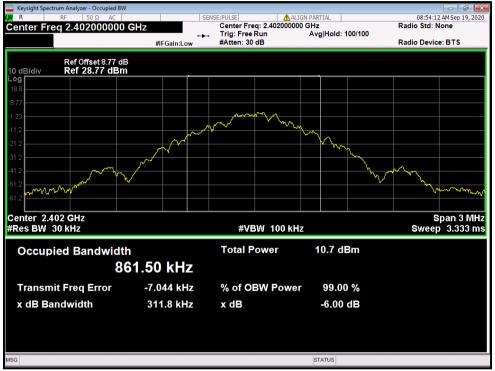
Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.501	0.5	Pass
NVNT	BLE	2442	Ant1	0.501	0.5	Pass
NVNT	BLE	2480	Ant1	0.501	0.5	Pass

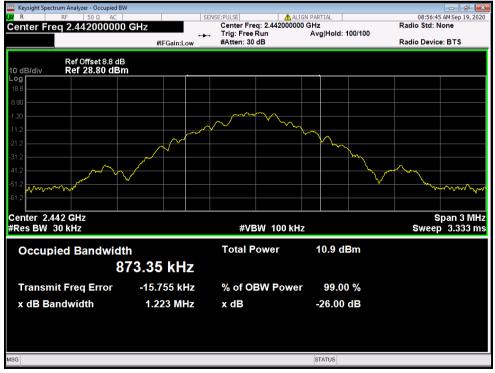
-6dB Bandwidth NVNT BLE 2402MHz Ant1


Keysight Spectrum Analyzer - Occupied BW				
		PULSE ALIC	GN PARTIAL	09:01:33 AM Sep 19, 2020 Radio Std: None
Center Freq 2.402000000 GHz		Trig: Free Run	Avg Hold: 500/500	Radio Sta. None
	#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
Ref Offset 8.77 dB 10 dB/div Ref 28.77 dBm			M	kr3 2.402244 GHz -0.94733 dBm
Log				
8.77		2 1 3		
-1.23			<u> </u>	
-11.2				
-31.2				
-41.2			\	
-51.2				mmmuhh
-61.2				
Center 2.402 GHz #Res BW 100 kHz		#VBW 300 kHz	2	Span 3 MHz Sweep 1.333 ms
Occupied Bandwidth		Total Power	10.7 dBm	
925.2	26 kHz			
Transmit Freq Error -	6.083 kHz	% of OBW Power	99.00 %	
x dB Bandwidth	500.6 kHz	x dB	-6.00 dB	
MSG			STATUS	

-6dB Bandwidth NVNT BLE 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2480MHz Ant1




Occupied Channel Bandwidth

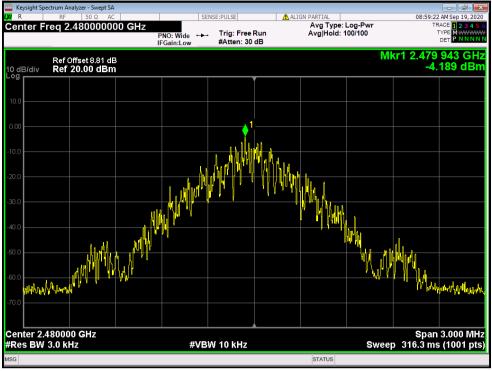
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	0.8614961295
NVNT	BLE	2442	Ant1	0.8733503943
NVNT	BLE	2480	Ant1	0.8747089861

OBW NVNT BLE 2402MHz Ant1

OBW NVNT BLE 2442MHz Ant1

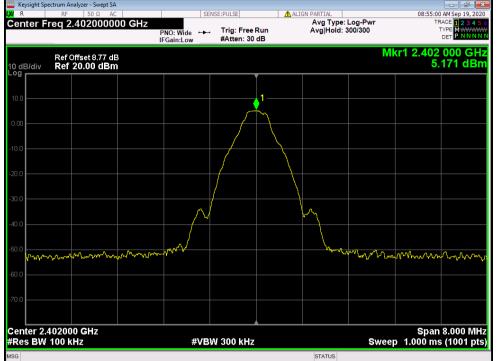
OBW NVNT BLE 2480MHz Ant1

Maximum Power Spectral Density Level


Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-4.736	8	Pass
NVNT	BLE	2442	Ant1	-4.342	8	Pass
NVNT	BLE	2480	Ant1	-4.189	8	Pass

PSD NVNT BLE 2402MHz Ant1

PSD NVNT BLE 2442MHz Ant1



PSD NVNT BLE 2480MHz Ant1

Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-55.07	-20	Pass
NVNT	BLE	2480	Ant1	-54.81	-20	Pass

Band Edge NVNT BLE 2402MHz Ant1 Ref

Band Edge NVNT BLE 2402MHz Ant1 Emission

Keysight Spee									00.55.05	
Center Fr	req 2.35	50 Ω AC 60000000 GHz			Free Run n: 30 dB	ALIGI	Avg Type: Avg Hold: 3		TF	AM Sep 19, 2020 ACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN
10 dB/div		et 8.77 dB .00 dBm						1		02 0 GHz 309 dBm
10.0										
-10.0										-14.63 dBm
-30.0										
-50.0 Martal	Universited Weber	งม _{าวทางกล} ะเอา _ค างจะเป็นสู่ไปกล่	แหม่กำลุงคำไปสาวจากสาย	n In Almany	ang galant by	Wahrmhith	no market		atrad man	alun 2
-60.0										
Start 2.30 #Res BW			#VI	BW 300	kHz			Sweep		40600 GHz (1001 pts)
MKR MODE TR 1 N 1 2 N 1 3 N 1 4 N 1 5	C SCL f f f f	× 2.402 0 2.400 0 2.390 0 2.374 6	GHz -51.36 GHz -52.67	9 dBm 4 dBm 5 dBm 2 dBm	FUNCTION	FUNCTI	ON WIDTH	FU	NCTION VALUE	
6 7 8 9										
10				11	1					•
MSG							STATUS			

Keysight Spectrum Analyzer - Swept SA R RF 50 Ω AC	SENSE:PULSE	ALIGN PARTIAL	08:59:27 AM Sep 19, 2020
Center Freq 2.480000000 GHz	PNO: Wide +++ Trig: Free IFGain:Low #Atten: 30	Avg Type: Log-Pwr Run Avg Hold: 300/300	TRACE 12345 TYPE MWWWW DET PNNNN
Ref Offset 8.81 dB 0 dB/div Ref 20.00 dBm			Mkr1 2.479 936 GH 5.546 dBn
10.0		1	
0.00		\sim	
10.0			
20.0	/		
30.0			
10.0			
50.0 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	warner	how when	mon Malphana
50.0			
0.0			
enter 2.480000 GHz Res BW 100 kHz	#VBW 300 kHz	Sw	Span 8.000 MH reep 1.000 ms (1001 pt
SG		STATUS	

Band Edge NVNT BLE 2480MHz Ant1 Ref

Band Edge NVNT BLE 2480MHz Ant1 Emission

Keysight Spectrum Analyzer - Swept SA	SENSE:PULSE	ALIGN PARTIAL	08:59:33 AM Sep 19, 2020
Center Freq 2.526000000 GHz	PNO: Fast +++ Trig: Free R IFGain:Low #Atten: 30 d	Avg Type: Log-Pwi un Avg Hold: 300/300	
Ref Offset 8.81 dB 10 dB/div Ref 20.00 dBm			Mkr1 2.479 9 GHz 5.774 dBm
-10.0			-14.45 dBm
-20.0			
-40.0	°⊷-վ∕≈;+sibiliku,hjp:II.u,hju+b=belgt,gan/hilvine-ra	athan / may and a start and a start for	and for the second s
-60.0			
Start 2.47600 GHz #Res BW 100 kHz	#VBW 300 kHz	s	Stop 2.57600 GHz weep 9.600 ms (1001 pts)
MKR MODE TRC SCL X	Y FUNCT	ION FUNCTION WIDTH	FUNCTION VALUE
1 N 1 f 2.479.9 GH 2 N 1 f 2.483.5 GH 3 N 1 f 2.500.0 GH 4 N 1 f 2.483.5 GH	z -49.261 dBm z -52.305 dBm		
5 6 7 8			10 10
9 10 11			
MSG	III	STATUS	4

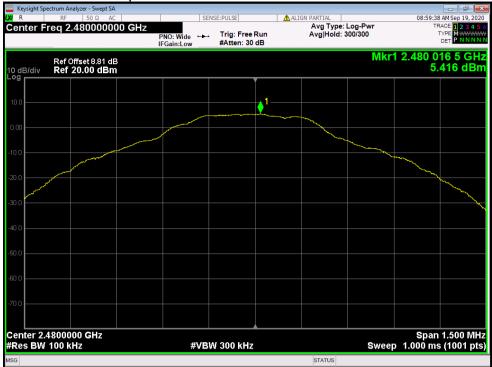
Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-41.35	-20	Pass
NVNT	BLE	2442	Ant1	-42.95	-20	Pass
NVNT	BLE	2480	Ant1	-42.93	-20	Pass

Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

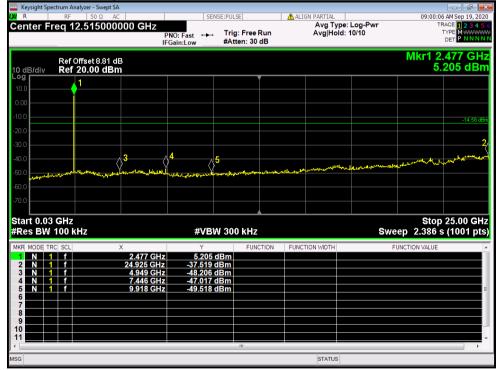
Tx. Spurious NVNT BLE 2402MHz Ant1 Emission


Keysight Spe	ctrum A	nalyzer - Swept SA 50 Ω AC			NSE:PULSE		ALIGN PARTIA		08-55-2	8 AM Sep 19, 2020
		2.5150000	P	NO: Fast ↔	T		Avg	Type: Log-Pw lold: 10/10	r TI	RACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N
Ref Offset 8.77 dB Mkr1 2.402 GH 10 dB/div Ref 20.00 dBm 4.928 dBr										
Log 10.0	_	1				Ť				
-10.0										-15.11 dBm
-20.0										2.
-40.0	marter	- marine and a strategy of the state of the	4		Hadrag Brown And Ar		And the state of t	monorto	well-work for the state of the	and the state of t
-60.0 -70.0										
Start 0.03 GHz Stop 25.00 GH #Res BW 100 kHz #VBW 300 kHz Sweep 2.386 s (1001 pt										
MKR MODE TR	C SCL	X		Y		NCTION	FUNCTION WIDT	н	FUNCTION VALUE	
1 N 1 2 N 1 3 N 1 4 N 1	f f f		2.402 GHz 24.850 GHz 4.699 GHz 7.072 GHz	-49.708	dBm dBm dBm					
5 N 1 6 7 8			9.519 GHz	-50.037	dBm					
9 10 11										
MSG STATUS										
						_				



Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

Tx. Spurious NVNT BLE 2442MHz Ant1 Emission



Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission

-----End of report-----