

TEST REPORT

No. I20D00101-SRD21

For

Client: NetEase Youdao Information Technology

(Beijing) Co., Ltd.

Production: Youdao Dictionary Pen 2

Model Name: YDP021

Brand Name: youdao

FCC ID: 2AV6G-YDP021

Hardware Version: WM86-V4

Software Version: V1.3.6AD

Issued date: 2020-09-15

NOTE

- 1. The test results in this test report relate only to the devices specified in this report.
- 2. This report shall not be reproduced except in full without the written approval of East China Institute of Telecommunications.
- For the test results, the uncertainty of measurement is not taken into account when
 judging the compliance with specification, and the results of measurement or the average
 value of measurement results are taken as the criterion of the compliance with
 specification directly.

Test Laboratory:

East China Institute of Telecommunications

Add: Block No.4, No.766, Jingang Road, Pudong District, Shanghai, P. R. China

Tel: +86 21 63843300

E-Mail: welcome@ecit.org.cn

Revision Version

Report Number	Revision	Date	Memo
I20D00101-SRD21	00	2020-09-02	Initial creation of test report
I20D00101-SRD21	01	2020-09-15	First modification of test report

CONTENTS

1. TEST I	_ABORATORY	6
1.1.	TESTING LOCATION	6
1.2.	TESTING ENVIRONMENT	6
1.3.	PROJECT DATA	6
1.4.	SIGNATURE	6
2. CLIEN	T INFORMATION	7
2.1.	APPLICANT INFORMATION	7
2.2.	MANUFACTURER INFORMATION	7
3. EQUIP	MENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1.	ABOUT EUT	8
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	8
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	8
4. REFER	RENCE DOCUMENTS	9
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	9
4.2.	REFERENCE DOCUMENTS FOR TESTING	9
5. TEST F	RESULTS	10
5.1.	SUMMARY OF TEST RESULTS	10
5.2.	STATEMENTS	11
6. TEST E	EQUIPMENTS UTILIZED	12
6.1.	CONDUCTED TEST SYSTEM	12
6.2.	RADIATED EMISSION TEST SYSTEM	12
6.3.	SOFTWARE	12
7. MEAS	JREMENT UNCERTAINTY	13
8. TEST E	ENVIRONMENT	14
ANNEX A	A. DETAILED TEST RESULTS	15

ANNEX A.1.	PEAK OUTPUT POWER-CONDUCTED	15
ANNEX A.2.	FREQUENCY BAND EDGES-CONDUCTED	18
ANNEX A.3.	CONDUCTED EMISSION	21
ANNEX A.4.	RADIATED EMISSION	23
ANNEX A.5.	TIME OF OCCUPANCY (DWELL TIME)	32
ANNEX A.6.	20DB BANDWIDTH	36
ANNEX A.7.	CARRIER FREQUENCY SEPARATION	38
ANNEX A.8.	NUMBER OF HOPPING CHANNELS	40
ANNEX A.9.	AC POWERLINE CONDUCTED EMISSION	42
ANNEX B.	ACCREDITATION CERTIFICATE	44

1. Test Laboratory

1.1. Testing Location

Company Name	East China Institute of Telecommunications
Address	Block No.4, No.766, Jingang Road, Pudong District, Shanghai, P. R. China
Postal Code	201206
Telephone	+86 21 63843300
FCC registration No	CN1177

1.2. Testing Environment

Normal Temperature	15°C-35°C
Relative Humidity	20%-75%

1.3. Project Data

Project Leader	Xu Yuting
Testing Start Date	2020-07-20
Testing End Date	2020-08-29

1.4. Signature

Liu Yan

(Prepared this test report)

Fan Songvan

(Reviewed this test report)

Zheng Zhongbin

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name	NetEase Youdao Information Technology (Beijing) Co., Ltd.			
Addross	No.7 Building,Zhongguancun Software Park West No.10 Xibeiwang East			
Address	RD,Haidian			
Telephone	+86 13810968741			
Postcode	100193			

2.2. Manufacturer Information

Company Name	Mobiwire Mobiles(NingBo) Co.,LTD
Address	Building A,No.999 Dacheng East Road,Fenghua District,Ningbo City,Zhejiang Province,PRC
Telephone	13586835362
Postcode	/

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Production	Youdao Dictionary Pen 2
Model name	YDP021
BT Frequency	2402MHz-2480MHz
BT Channel	Ch0-78
BT type of modulation	GFSK/ π /4 DQPSK/8DPSK
Extreme Temperature	-10/+50°C
Nominal Voltage	3.85V
Extreme High Voltage	4.40 V
Extreme Low Voltage	3.50V
Maximum of Antenna Gain	Bluetooth: -0.52dBi

Note:

- a. Photographs of EUT are shown in ANNEX A of this test report.
- b. The value of the antenna gain is provided by the customer. For specific antenna information, please check the antenna specifications of the customer.

3.2.Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of receipt
N01	/	WM86-V4	V1.3.6AD	2020-07-14
N02	/	WM86-V4	V1.3.6AD	2020-07-14
N04	/	WM86-V4	V1.3.6AD	2020-07-14

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Туре	Manufacturer
AE1	RF cable		AE1

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

All technical documents are supplied by the client or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
	FCC CFR 47, Part 15, Subpart C:	
	15.205 Restricted bands of operation;	2018-10-01
FCC Part15	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902-928MHz,	
	2400-2483.5MHz, and 5725-5850MHz.	
ANSI C63.10	American National Standard of Procedures for Compliance Testing of	2013
ANSI C63.10	Unlicensed Wireless Devices	2013
	Guidance for Performing Compliance Measurements on	
KDB 558074	Frequency Hopping Spread Spectrum systems (DSS) Operating	v05r02
	Under §15.247	

5. Test Results

5.1. Summary of Test Results

Measurement Items	Sub-clause of Part15C	Verdict
Maximum Peak Output Power	15.247(b)	Р
20dB Occupied Bandwidth	15.247(a)	Р
Band Edges Compliance	15.247(b)	Р
Time Of Occupancy (Dwell Time)	15.247(a)	Р
Carrier Frequency Separation	15.247(a)	Р
Number Of Hopping Channels	15.247(a)	Р
Transmitter Spurious Emission-Conducted	15.247	Р
Transmitter Spurious Emission-Radiated	15.209/15.247	Р
AC Powerline Conducted Emission	15.107/15.207	Р

Note: please refer to Annex A in this test report for the detailed test results.

The following terms are used in the above table.

Р	Pass, the EUT complies with the essential requirements in the standard.
NP	Not Perform, the test was not performed by ECIT.
NA	Not Applicable, the test was not applicable.
F	Fail, the EUT does not comply with the essential requirements in the standard.

Test Conditions

Tnom	Normal Temperature	
Tmin	Low Temperature	
Tmax	High Temperature	
Vnom	Normal Voltage	
Vmin	Low Voltage	
Vmax	High Voltage	
Hnom	Norm Humidity	
Anom	Norm Air Pressure	

For this report, all the test case listed above are tested under Normal Temperature and Normal Voltage, and also under norm humidity, the specific conditions as following:

Temperature	Tnom	25℃
Voltage	Vnom	3.85V
Humidity	Hnom	48%
Air Pressure	Anom	1010hPa

Note:

- a. All the test data for each data were verified, but only the worst case was reported.
- b.The GFSK, $\pi/4$ DQPSK and 8DPSK were set in DH1 for GFSK, 2-DH1 for $\pi/4$ DQPSK, 3-DH1 for 8DPSK.
- c.The DC and low frequency voltages' measurement uncertainty is ±2%.

5.2. Statements

The Youdao Dictionary Pen 2 is new product for testing.

ECIT only performed test cases which identified with P/NP/NA/F results in Annex A.

ECIT has verified that the compliance of the tested device specified in section 3 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 4 of this test report.

6. Test Equipments Utilized

6.1. Conducted Test System

Item	Instrument Name	Туре	SN	Manufacturer	Cal. Date	Cal. interval
1	Vector Signal Analyzer	FSQ26	101091	R&S	2020-05-10	1 year
2	DC Power Supply	ZUP60-14	LOC-220Z0 06-0007	TDL-Lambda	2020-05-10	1 year

6.2. Radiated Emission Test System

Item	Instrument Name	Туре	SN	Manufacturer	Cal. Date	Cal.
1	Universal Radio Communication Tester	CMU200	123123	R&S	2020-05-10	1 year
2	EMI Test Receiver	ESU40	100307	R&S	2020-05-10	1 year
3	TRILOG Broadband Antenna	VULB9163	VULB9163- 515	Schwarzbeck	2020-02-28	2 years
4	Double- ridged Waveguide Antenna	ETS-3117	00135890	ETS	2020-02-28	2 years
5	2-Line V-Network	ENV216	101380	R&S	2020-05-10	1 year

Climate chamber

No.	Equipment	Model	Serial Number	Manufacturer	Cal. Date	Cal.
1	Climate chamber	UT333 BT	C191995461	UNI-T	2020-05-10	1 years

6.3. Software

Name	Version
Eagle CE WLAN auto test system	V3.0
EMC32	V9.15

Anechoic chamber

Fully anechoic chamber by ETS.

7. Measurement Uncertainty

Measurement uncertainty for all the testing in this report are within the limit specified in ECIT documents . The detailed measurement uncertainty is defined in ECIT documents.

Measurement Items	Range	Confidence Level	Calculated Uncertainty
Peak Output Power-Conducted	2402MHz-2480MHz	95%	±0.544dB
Frequency Band Edges-Conducted	2402MHz-2480MHz	95%	±0.544dB
Conducted Emission	30MHz-2GHz	95%	\pm 0.90dB
Conducted Emission	2GHz-3.6GHz	95%	±0.88dB
Conducted Emission	3.6GHz-8GHz	95%	±0.96dB
Conducted Emission	8GHz-20GHz	95%	±0.94dB
Conducted Emission	20GHz-22GHz	95%	±0.88dB
Conducted Emission	22GHz-26GHz	95%	±0.86dB
Transmitter Spurious Emission-Radiated	9KHz-30MHz	95%	±5.66dB
Transmitter Spurious Emission-Radiated	30MHz-1000MHz	95%	±4.98dB
Transmitter Spurious Emission-Radiated	1000MHz -18000MHz	95%	±5.06dB
Transmitter Spurious Emission-Radiated	18000MHz -40000MHz	95%	±5.20dB
Dwell Time	2402MHz-2480MHz	95%	±0.218ms
20dB Bandwidth	2402MHz-2480MHz	95%	±62.04Hz
AC Power line Conducted Emission	0.15MHz-30MHz	95%	$\pm 3.66\mathrm{dB}$

8. Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Ground system resistance	< 0.5 Ω

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. =30 %, Max. = 60 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω

Fully-anechoic chamber1 (6.9 meters×10.9 meters×5.4 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 25 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Electrical insulation	> 10 kΩ
Ground system resistance	< 0.5 Ω
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

ANNEX A. Detailed Test Results

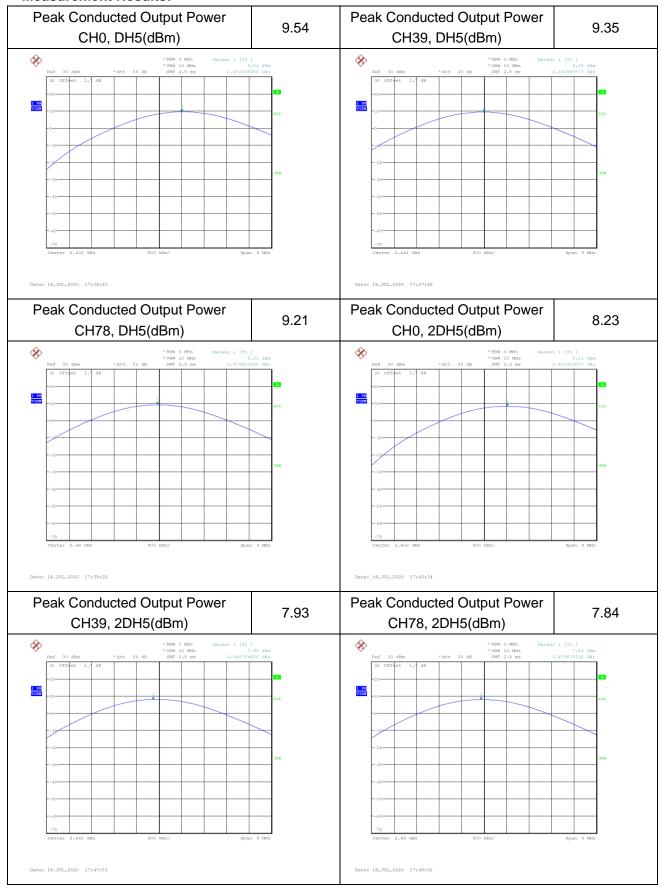
ANNEX A.1. Peak Output Power-Conducted

A.1.1 Measurement Limit

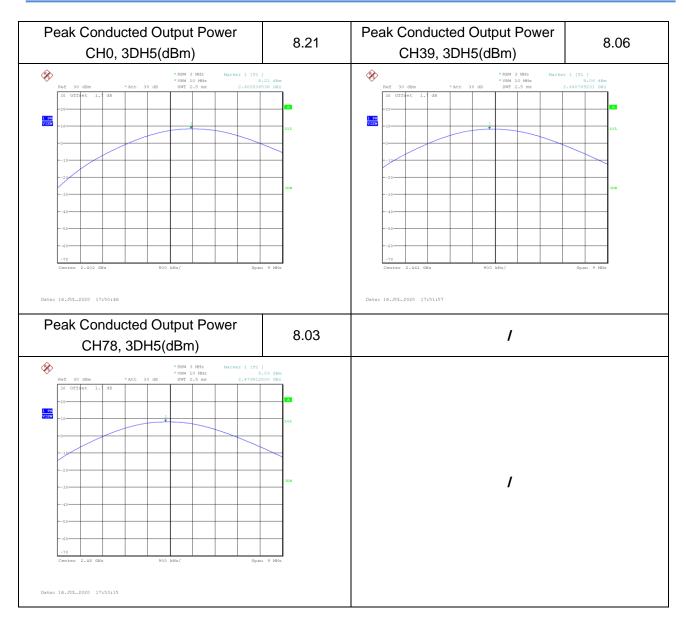
Standard	Limit (dBm)
FCC 47 Part 15.247(b)(1)	< 21

A.1.2 Test Condition:

Hopping Mode	RBW	VBW	Span	Sweeptime
Hopping OFF	3MHz	10MHz	9MHz	Auto


A.1.3 Test procedure

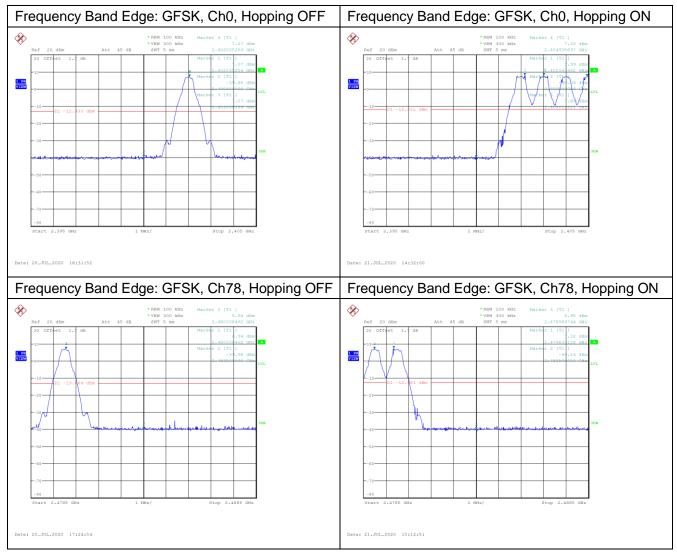
The measurement is according to ANSI C63.10 clause 7.8.5.


- 1. The output power of EUT was connected to the spectrum analyzer and CBT32 by cable and divide. The path loss was compensated to the results for each measurement.
- 2. Enable EUT transmitter maximum power continuously.
- 3. Measure the conducted output power and record the results it.

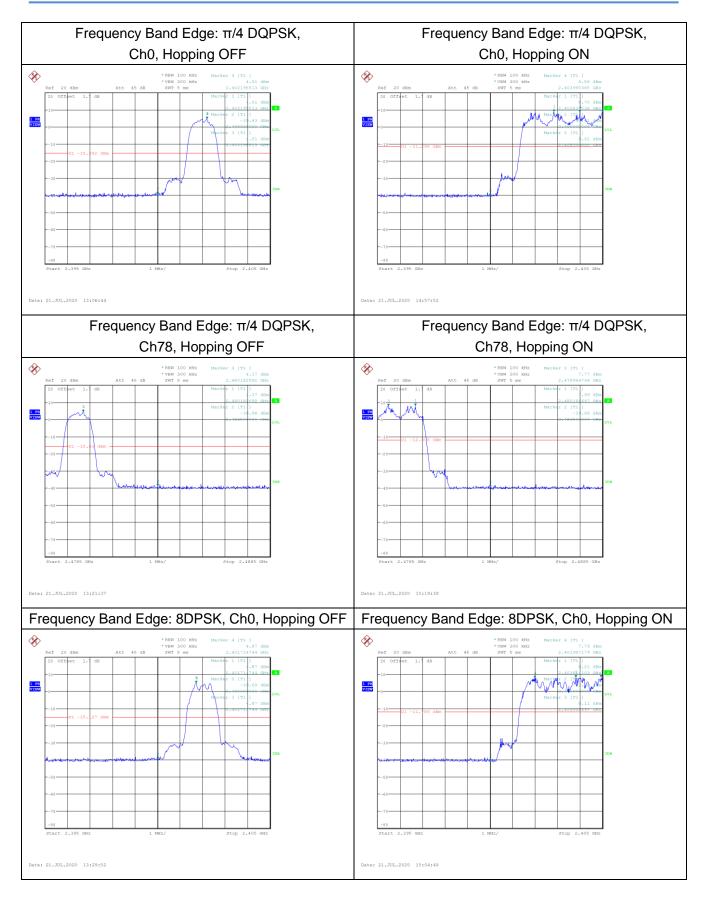
Measurement Results:

ANNEX A.2. Frequency Band Edges-Conducted

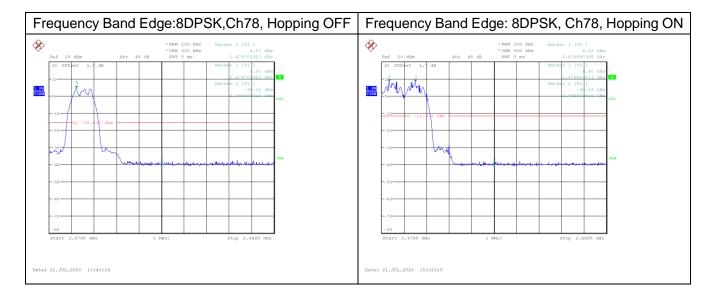
A.2.1 Measurement Limit:


Standard	Limited(dBc)
FCC 47 CFR Part 15.247(d)	>20

A.2.2 Test procedure

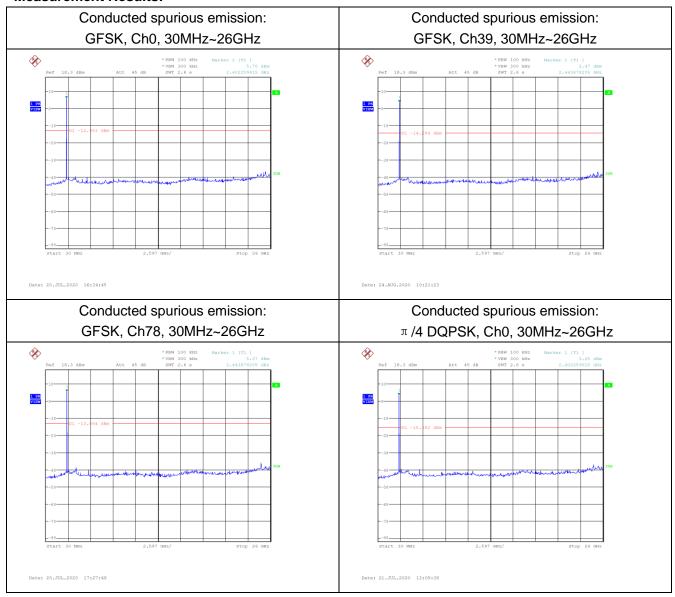

The measurement is according to ANSI C63.10 clause 7.8.6.

- 1. Connect the EUT to spectrum analyzer.
- 2. Set RBW=100KHz, VBW=300KHz, span more than 1.5 times channel bandwidth (2MHz).
- 3. Detector =peak, sweep time=auto couple, trace mode=max hold.
- 4. Allow sweep to continue until the trace stabilizes.

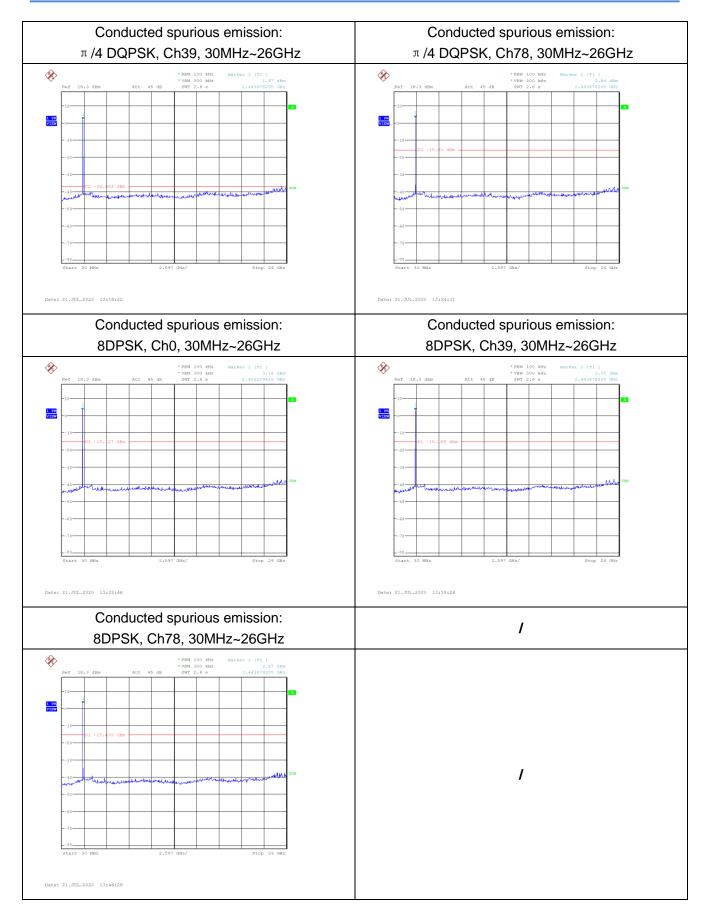

Measurement results:

ANNEX A.3. Conducted Emission

A.3.1 Measurement Limit:


Standard	Limit
FCC 47 CFR Part15.247 (d)	20dB below peak output power in 100KHz bandwidth

A.3.2 Test procedures


The measurement is according to ANSI C63.10 clause 7.8.8.

- 1. Connect the EUT to spectrum analyzer.
- 2. Set RBW=100KHz, VBW=300KHz.
- 3. Detector =peak, sweep time=auto couple, trace mode=max hold.

Measurement Results:

ANNEX A.4. Radiated Emission

A.4.1 Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

Limit in restricted band:

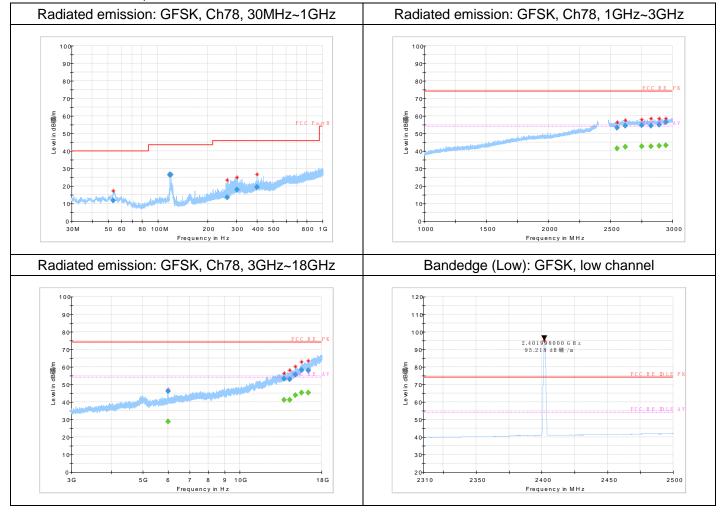
Frequency of emission (MHz)	Field strength (uV/m)	Field strength (dBuV/m)
30~88	100	40
88~216	150	43.5
216~960	200	46
Above 960	500	54

A.4.2 Test Method

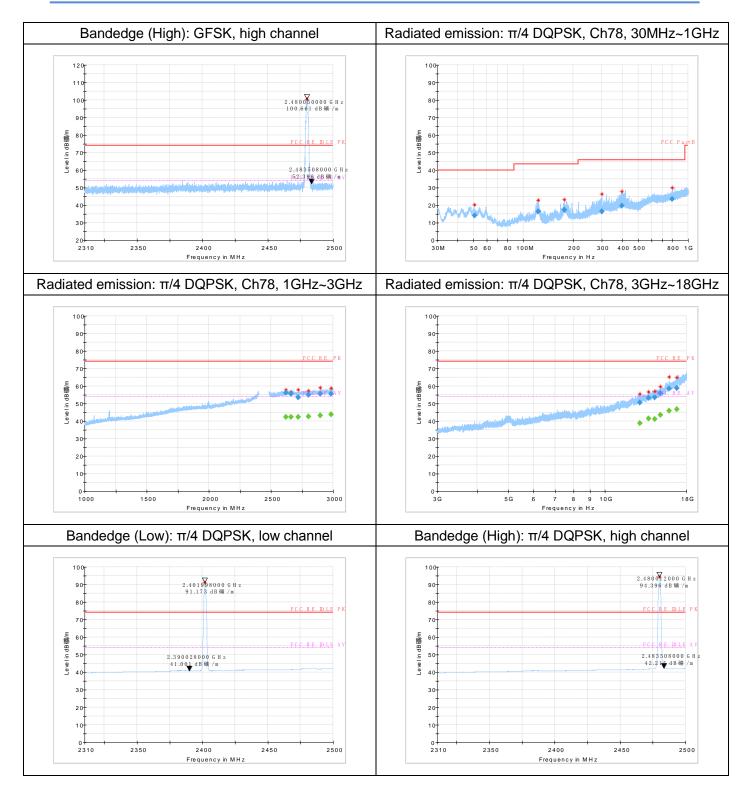
Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a non-conducting platform, the top of which is 80 cm above the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, For emissions testing at or below 1 GHz, the table height shall be 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m. but it may be larger or smaller to accommodate various sized EUTs. For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also ANSI C63.10-2013 section 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

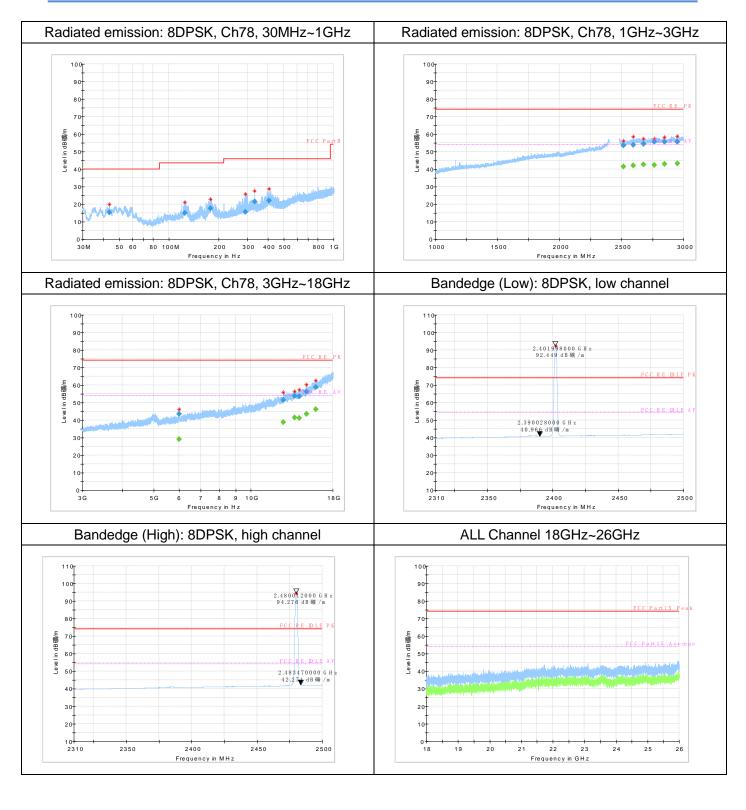
Frequency of emission (MHz)	RBW/VBW	Sweep Time (s)
30~1000	100KHz/300KHz	5
1000~4000	1MHz/3MHz	15
4000~18000	1MHz/3MHz	40
18000~26500	1MHz/3MHz	20


A.4.3 Measurement Results:

A "reference path loss" is established and A_{Rpi} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.


The measurement results are obtained as described below:

A_{Rpi} = Cable loss + Antenna Gain-Preamplifier gain


Result= $P_{Mea} + A_{Rpi}$

GFSK Ch0 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl(dB)	PMea(dBuV/m)	Polarity
54.2	12.23	-15.4	27.63	V
118.0	13.38	-16.4	29.78	Н
123.3	11.37	-16.9	28.27	Н
230.8	12.29	-13.5	25.79	V
328.9	13.17	-10.2	23.37	V
331.9	18.75	-10.2	28.95	V

GFSK Ch0 1GHz-3GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl(dB)	PMea(dBuV/m)	Polarity
2586.0	54.23	17.6	36.63	Н
2669.4	55.25	17.8	37.45	Н
2751.1	55.04	18	37.04	Н
2820.6	55.03	18.3	36.73	V
2901.7	55.15	18.7	36.45	Н
2961.7	55.58	19	36.58	V

GFSK Ch0 1GHz-3GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl(dB)	PMea(dBuV/m)	Polarity
2586.0	42.08	17.6	24.48	Н
2669.4	42.44	17.8	24.64	Н
2751.1	42.6	18	24.6	Н
2820.6	42.61	18.3	24.31	V
2901.7	43.33	18.7	24.63	Н
2961.7	43.18	19	24.18	V

GFSK Ch0 3GHz-18GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
4803.8	46.84	1.3	45.54	Н
13677.9	53.34	18.3	35.04	V
14422.9	53.73	19.5	34.23	V
14961.8	55.05	21.7	33.35	V
15947.2	58.53	25.3	33.23	V
16745.2	58.93	26.8	32.13	V

GFSK Ch0 3GHz-18GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14961.8	42.79	21.7	21.09	V
15947.2	46.21	25.3	20.91	V
16745.2	46.99	26.8	20.19	V

$\pi/4$ DQPSK Ch0 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB) PMea(dBuV/m)		Polarity
54.6	11.98	-15.4	27.38	V
118.1	25.23	-16.4	41.63	Н
120.0	27.46 -16.6		44.06	Н
168.0	16.58 -16.2 32.		32.78	V
291.2	18.1	-11.7	29.8	V
602.5	19.31	-3	22.31	V

$\pi/4$ DQPSK Ch0 1GHz-3GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2583.6	54.62	17.5	37.12	Н
2671.0	54.23	17.8	36.43	Н
2736.0	56	17.9	38.1	Н
2797.8	2797.8 55.13		36.93	V
2863.3	54.95	18.4	36.55	V
2944.0	55.37	18.8	36.57	Н

π/4 DQPSK Ch0 1GHz-3GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2583.6	42.12	17.5	24.62	Н
2671.0	42.44	17.8	24.64	Н
2736.0	42.62	17.9	24.72	П
2797.8	42.84	18.2	24.64	V
2863.3	42.68	18.4	24.28	V
2944.0	43.34	18.8	24.54	Н

π/4 DQPSK Ch0 3GHz-18GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
4803.8	48.45	1.3	47.15	Н
13723.5	53.45	18.4	35.05	Н
14877.0	55.92	21.8	34.12	V
15575.2	57.41	24.4	33.01	V
16008.8	58.07	25.2	32.87	Н
16750.8	59.05	26.8	32.25	V

π/4 DQPSK Ch0 3GHz-18GHz (Average)

Frequency(MHz)	Result(dBuV/m)	BuV/m) ARpl (dB) PMea(dBuV/		Polarity
14877.0	43.38	21.8	21.58	V
15575.2	45	24.4	20.6	V
16008.8	46.1	25.2	20.9	Н
16750.8	47	26.8	20.2	V

8DPSK Ch0 30MHz-1GHz

Frequency(MHz)	Result(dBuV/m)	ARpl (dB) PMea(dBuV/m)		Polarity
35.9	14.13	-16.6	30.73	V
58.7	15.96	-15.4	31.36	V
126.9	17.25	-17.3	34.55	Н
182.1	16.58 -15.8 32.3		32.38	Н
293.0	17.09	-11.7	28.79	Н
419.5	21.4	-8.3	29.7	Н

8DPSK Ch0 1GHz-3GHz (Peak)

Frequency(MHz)	Result(dBuV/m) ARpl (dB		PMea(dBuV/m)	Polarity
2548.1	53.3 17 36.3		36.3	V
2646.4	54.3 17.8 36.5		V	
2720.9	54.56	17.9	36.66	V
2802.5	2802.5 55.23 18.2 37.03		37.03	Н
2886.6	54.26	18.6	35.66	V
2963.8	55.46	19	9 36.46 H	

8DPSK Ch0 1GHz-3GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
2646.4	42.36	17.8	24.56	V
2720.9	42.21	17.9	24.31	V
2802.5	42.75	18.2	24.55	Н
2886.6	42.85	18.6	24.25	V
2963.8	43.21	19	24.21	Н

8DPSK Ch0 3GHz-18GHz (Peak)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
4803.7	48.18	1.3	46.88	Н
12905.4	50.56	16.3	34.26	Н
13830.4	52.55	18.3	34.25	V
14851.5	54.93	21.3	33.63	Н
15572.5	56.69	24.3	32.39	Н
16860.3	59.66	27.1	32.56	V

8DPSK Ch0 3GHz-18GHz (Average)

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14851.5	42.7	21.3	21.4	Н
15572.5	44.96	24.3	20.66	Н
16860.3	47.27	27.1	20.17	V

Note: Only the worst case is written in the report.

ANNEX A.5. Time Of Occupancy (Dwell Time)

A.5.1 Measurement Limit:

Standard	Limit (ms)
FCC 47 Part 15.247 (a) (1) (iii)	< 400

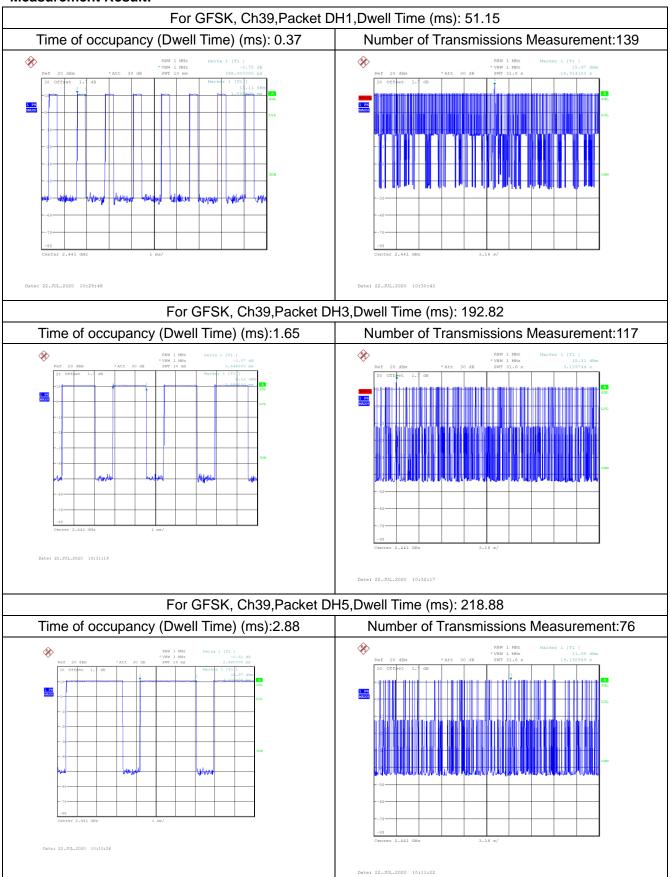
A.5.2 Test procedures

The measurement is according to ANSI C63.10 clause 7.8.4

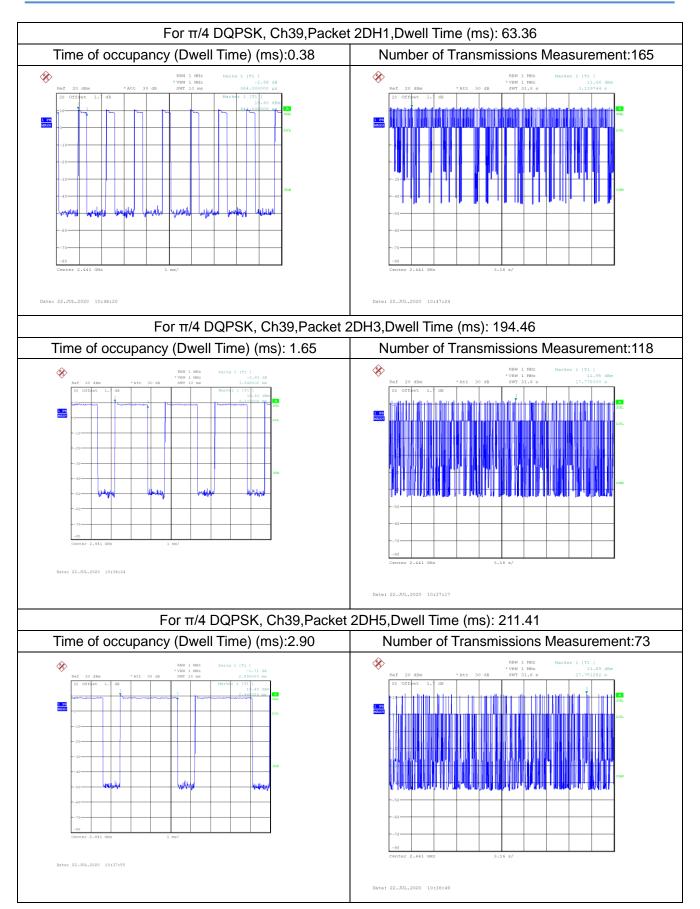
- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit maximum power.
- 3. Set the spectrum analyzer as step 4 to step 8.
- 4. Span: Zero span, centered on a hopping channel.
- 5. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 6. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to showtwo successive hops on a channel.
- 7. Detector function: Peak.
- 8. Trace: Max hold.
- 9. Use the marker-delta function, and record it.

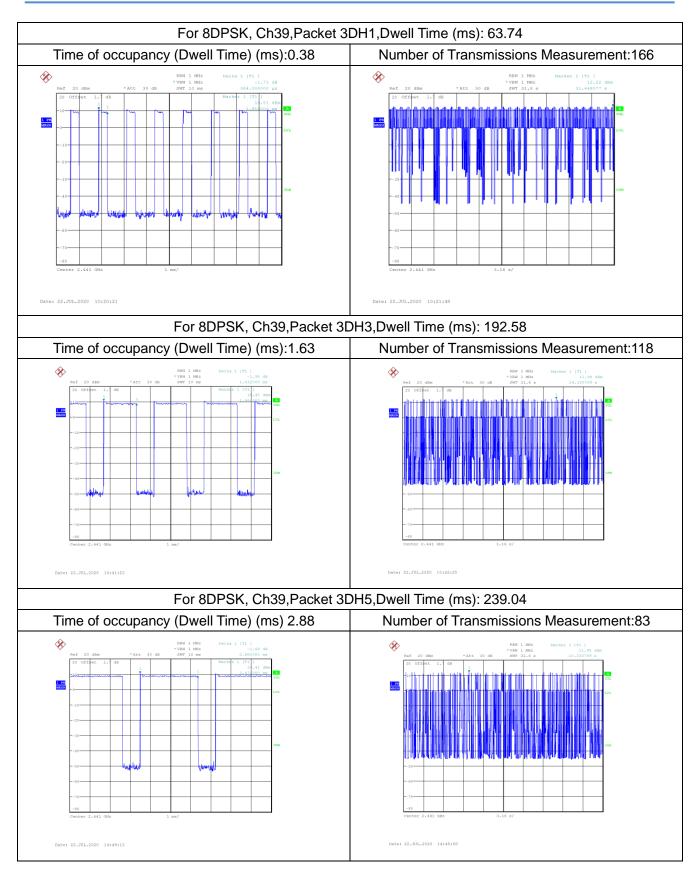
Note: For AFH mode, Test Period = 0.4 (second/ channel) x 20 Channel = 8 sec,

For FHSS mode, Test Period = 0.4 (second/ channel) x 79 Channel = 31.6 sec,


So the Time of Occupancy (Dwell Time) of AFH mode= Time of Occupancy (Dwell Time) of FHSS mode / 79 Channel x 20 Channel

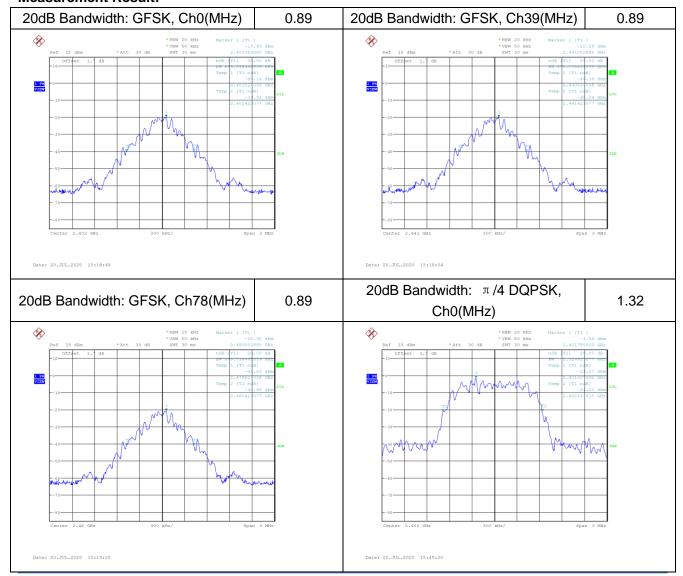
Modulation type	Frequency(MHz)	Dwell Time (ms)	Limit(ms)	Conclusion
AFH(GFSK DH5)	2402-2421MHz	63.36	400	Р
AFH(π/4 DQPSK DH5)	2402-2421MHz	67.2	400	Р
AFH(8DPSK DH5)	2402-2421MHz	65.6	400	Р


Page Number: 32 of 44 Report Issued Date: Sept.15, 2020

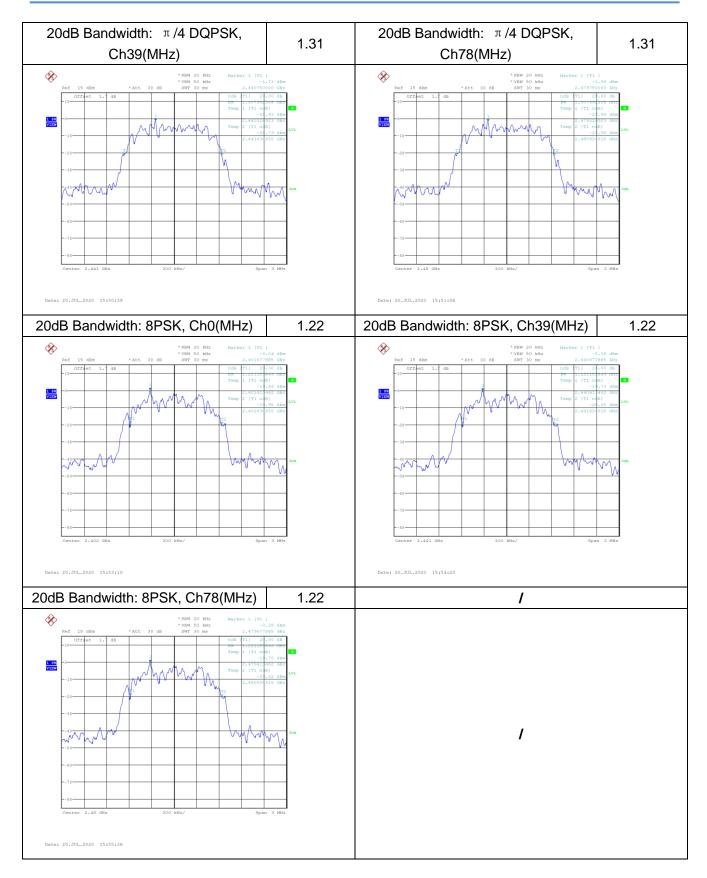

Measurement Result:

ANNEX A.6. 20dB Bandwidth

A.6.1 Measurement Limit:


Standard	Limit
FCC 47 Part 15.247 (a) (1)	N/A

A.6.2 Test procedures


The measurement is according to ANSI C63.10 clause 7.8.7

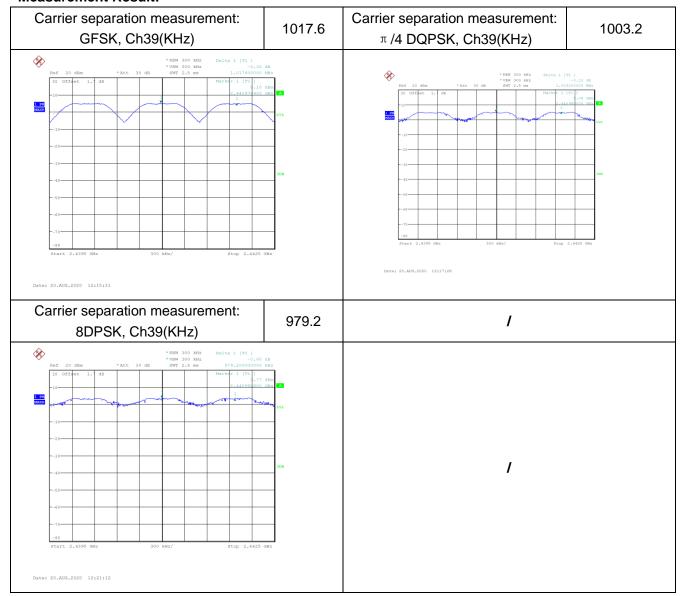
- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit maximum power.
- 3. Set the spectrum analyzer as step 4 to step 7.
- 4. Span: two or five times of OBW
- 5. RBW= 1% to 5% of the OBW; VBW is approximately three times of RBW; Max Hold.
- 6. Select the max peak, and N DB DOWN=20dB.
- 7. Record the results.

Measurement Result:

ANNEX A.7. Carrier Frequency Separation

A.7.1 Measurement Limit:

Standard	Limit (KHz)			
FCC 47 Part 15.247 (a) (1)	Over 25KHz or (2/3)*20dB bandwidth			


A.7.2 Test procedures

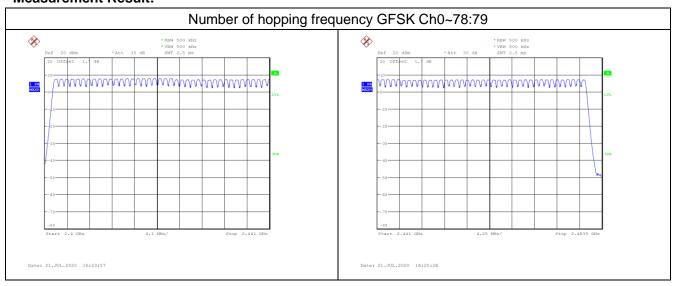
The measurement is according to ANSI C63.10 clause 7.8.2.

- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit in hopping mode.
- 3. Span: Wide enough to capture the peaks of two adjacent channels.
- 4. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 5. Video (or average) bandwidth (VBW) ≥ RBW.
- 6. Sweep: Auto.
- 7. Detector function: Peak.
- 8. Trace: Max hold.
- 9. Allow the trace to stabilize.

Measurement Result:

ANNEX A.8. Number Of Hopping Channels

A.8.1 Measurement Limit:


Standard	Limit			
FCC 47 CFR Part 15.247 (a)(1)(iii)	At least 15 non-overlapping channels			

A.8.2 Test procedure

The measurement is according to ANSI C63.10 clause 7.8.3.

- 1. Connect the EUT through cable and divide with CBT32 and spectrum analyzer.
- 2. Enable the EUT transmit in hopping mode.
- 3. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 4. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 5. VBW \geq RBW.
- 6. Sweep: Auto.
- 7. Detector function: Peak.
- 8. Trace: Max hold.
- 9. Allow the trace to stabilize.
- 10. Record the test results.

Measurement Result:

ANNEX A.9. AC Powerline Conducted Emission

Method of Measurement: See ANSI C63.10-2013-clause 6.2

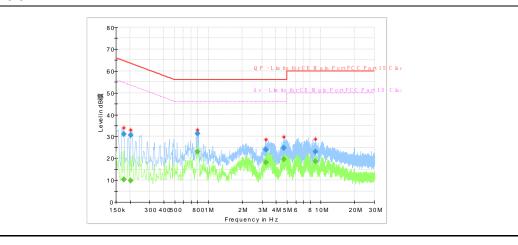
- 1 The one EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is selected for the final measurement, while applying the appropriate modulating signal to the EUT.
- 2 If the EUT is relocated from an exploratory test site to a final test site, the highest emissions shall be remaximized at the final test location before final ac power-line conducted emission measurements are performed.
- The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) is then performed for the full frequency range for which the EUT is being tested for compliance without further variation of the EUT arrangement, cable positions, or EUT mode of operation.
- If the EUT is comprised of equipment units that have their own separate ac power connections, e.g., floor-standing equipment with independent power cords for each shelf that are able to connect directly to the ac power network, each current-carrying conductor of one unit is measured while the other units are connected to a second (or more) LISN(s). All units shall be separately measured. If a power strip is provided by the manufacturer, to supply all of the units making up the EUT, only the conductors in the power cord of the power strip shall be measured.

If the EUT uses a detachable antenna, these measurements shall be made with a suitable dummy load connected to the antenna output terminals; otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended. When measuring the ac conducted emissions from a device that operates between 150 kHz and 30 MHz a non-detachable antenna may be replaced with a dummy load for the measurements within the fundamental emission band of the transmitter, but only for those measurements.36 Record the six highest EUT emissions relative to the limit of each of the current-carrying conductors of the power cords of the equipment that comprises the EUT over the frequency range specified by the procuring or regulatory agency. Diagram or photograph the test setup that was used. See Clause 8 for full reporting requirements.

Test Condition:

Voltage (V)	Frequency (Hz)			
120	60			

Page Number: 42 of 44 Report Issued Date: Sept.15, 2020



Measurement Result and limit:

(Quasi-peak-average Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Average Limit (dBμV)	Conclusion	
0.15 to 0.5	66 to 56	56 to 46		
0.5 to 5	56	46	Р	
5 to 30	60	50		

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Frequency	QuasiPeak	Average	Limit	Margin	Meas.	Bandwidth	Line	Filter	Corr.
(MHz)	(dB μ V)	(dB µ V)	(dB μ	(dB)	Time	(kHz)			(dB)
0.176119		10.16	54.67	44.51	15000.	9.000	L1	ON	9.6
0.176119	31.17		64.67	33.49	15000.	9.000	L1	ON	9.6
0.202238		9.80	53.52	43.72	15000.	9.000	N	ON	9.7
0.202238	30.48	-	63.52	33.03	15000.	9.000	N	ON	9.7
0.799238		22.96	46.00	23.04	15000.	9.000	L1	ON	9.6
0.799238	31.42		56.00	24.58	15000.	9.000	L1	ON	9.6
3.246938		18.19	46.00	27.81	15000.	9.000	N	ON	9.9
3.246938	24.00		56.00	32.00	15000.	9.000	N	ON	9.9
4.676006		19.45	46.00	26.55	15000.	9.000	L1	ON	9.8
4.676006	24.66		56.00	31.34	15000.	9.000	L1	ON	9.8
8.925900		18.48	50.00	31.52	15000.	9.000	L1	ON	9.9
8.925900	22.93		60.00	37.07	15000.	9.000	L1	ON	9.9

ANNEX B. Accreditation Certificate

Accredited Laboratory

A2LA has accredited

EAST CHINA INSTITUTE OF TELECOMMUNICATIONS

Shanghai, People's Republic of China

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 6th day of May 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3682.01 Valid to February 28, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

*********END OF REPORT*******