



# VARIANT RADIO TEST REPORT (FCC Part 15 Subpart C / IC RSS-210)

| Applicant: | Shenzhen Zolon Technology Co., Ltd.                                                                               |
|------------|-------------------------------------------------------------------------------------------------------------------|
| Address:   | 401, Building 3, Shenzhen Software Park, Maling Community, Yuehai Sub-district, Nanshan District, Shenzhen, China |

| Manufacturer:  | Shenzhen Zolon Technology Co., Ltd.                                                                               |
|----------------|-------------------------------------------------------------------------------------------------------------------|
| Address:       | 401, Building 3, Shenzhen Software Park, Maling Community, Yuehai Sub-district, Nanshan District, Shenzhen, China |
| Product:       | Pay Tablet                                                                                                        |
| Brand Name:    | ZOLON                                                                                                             |
| Model Name:    | M8                                                                                                                |
| FCC ID:        | 2AV5BM8                                                                                                           |
| Date of tests: | Sep. 19, 2021 ~ Oct. 12, 2021                                                                                     |

The tests have been carried out according to the requirements of the following standard:

- □ Part 15 Subpart C §15. 225 / IC RSS-210 issue 10(December 2019)
- RSS-Gen Issue 5 Amendment 1 (March 2019)
- **ANSI C63.10-2013**

CONCLUSION: The submitted sample was found to COMPLY with the test requirement

| 5011012051011. The submitted sample was found to <u>oomir Li</u> with the test requirement |                             |  |  |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|
| Prepared by Simon Wang                                                                     | Approved by Luke Lu         |  |  |  |  |
| Engineer / Mobile Department                                                               | Manager / Mobile Department |  |  |  |  |
| Simon Wang                                                                                 | lupe lu                     |  |  |  |  |
| Date: May. 29, 2024                                                                        | Date: May. 29, 2024         |  |  |  |  |

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <a href="http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/">http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/</a> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report,



# **Report Revise Record**

| ISSUE NO.         | REASON FOR CHANGE                                                                                                 | DATE ISSUED   |
|-------------------|-------------------------------------------------------------------------------------------------------------------|---------------|
| W7L-P21090022RF07 | Original release                                                                                                  | Oct. 13, 2021 |
| W7L-P24050005RF07 | Based on the original report changing the applicant information and manufacturer information, brand name, FCC ID. | May. 29, 2024 |

Tel: +86 755 8869 6566



# **TABLE OF CONTENTS**

| 1. | GEN  | IERAL DESCRIPTION                                            | 5  |
|----|------|--------------------------------------------------------------|----|
|    | 1.1  | Applicant                                                    | 5  |
|    | 1.2  | Manufacturer                                                 |    |
|    | 1.3  | General Description Of EUT                                   | 5  |
|    | 1.4  | Modification of EUT                                          | 5  |
|    | 1.5  | Applicable Standards                                         | 5  |
| 2. | TES  | T CONFIGURATION OF EQUIPMENT UNDER TEST                      | 6  |
|    | 2.1  | Descriptions of Test Mode                                    | 6  |
|    | 2.2  | Test Configurations                                          | 7  |
|    | 2.3  | Support Equipment                                            | 8  |
|    | 2.4  | Test Setup                                                   | 8  |
|    | 2.5  | Measurement Results Explanation Example                      | 10 |
| 3. | TES  | T RESULT                                                     | 11 |
|    | 3.1  | 20dB and 99% Bandwidth Measurement                           | 11 |
|    | 3.2  | Frequency Stability Measurement                              | 12 |
|    | 3.3  | Field Strength of Fundamental Emissions and Mask Measurement | 14 |
|    | 3.4  | Radiated Emissions Measurement                               | 17 |
|    | 3.5  | AC Conducted Emission Measurement                            | 23 |
|    | 3.6  | Antenna Requirements                                         | 27 |
| 4  | LIST | OF MEASURING EQUIPMENT                                       | 28 |
| 5  | UNC  | ERTAINTY OF EVALUATION                                       | 29 |



# **Summary of Test RESULT**

| FCC Rule            | IC Rule              | Description                             | Limit                                         | Result | Remark |
|---------------------|----------------------|-----------------------------------------|-----------------------------------------------|--------|--------|
| -                   | RSS-Gen<br>6.7       | 99% Bandwidth                           | -                                             | Pass   | -      |
| 15.225(a)(b)(c)     | RSS-210<br>Annex B.6 | Field Strength of Fundamental Emissions | 15.225(a)(b)(c)<br>RSS-210<br>Annex B.6       | Pass   | -      |
| 15.215              | -                    | 20dB Spectrum<br>Bandwidth              | 15.215                                        | Pass   | -      |
| 15.225(d)<br>15.209 | RSS-210<br>Annex B.6 | Radiated Emission                       | 15.225(d) &<br>15.209<br>RSS-210<br>Annex B.6 | Pass   | -      |
| 15.207              | RSS-GEN<br>8.8       | AC Conducted Emission                   | 15.207(a)                                     | Pass   | -      |
| 15.225(e)           | Annex B.6            | Frequency Stability                     | < ±100 ppm                                    | Pass   |        |
| 15.203              | RSS-Gen<br>6.8       | Antenna Requirement                     | N/A                                           | Pass   | -      |

Email: customerservice.sw@bureauveritas.com

### 1. General Description

### 1.1 Applicant

### Shenzhen Zolon Technology Co., Ltd.

401, Building 3, Shenzhen Software Park, Maling Community, Yuehai Sub-district, Nanshan District, Shenzhen, China

### 1.2 Manufacturer

### Shenzhen Zolon Technology Co., Ltd.

401, Building 3, Shenzhen Software Park, Maling Community, Yuehai Sub-district, Nanshan District, Shenzhen, China

### 1.3 General Description Of EUT

| Items                 | Description        |
|-----------------------|--------------------|
| Tx/Rx Frequency Range | 13.553 ~ 13.567MHz |
| Channel Number        | 1                  |
| 20dBW                 | 2.683 kHz          |
| 99%OBW                | 2.284 kHz          |
| Antenna Type          | Loop Antenna       |
| Type of Modulation    | ASK                |

**Remark:** The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

### 1.4 Modification of EUT

No modifications are made to the EUT during all test items.

### 1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.225
- ANSI C63.10-2013
- RSS-210 Issue 10
- RSS-Gen Issue 5

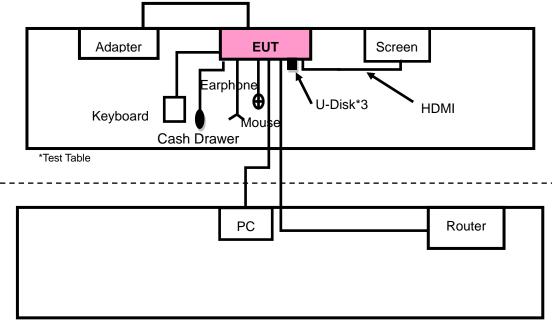


# 2. Test Configuration of Equipment Under Test

### 2.1 Descriptions of Test Mode

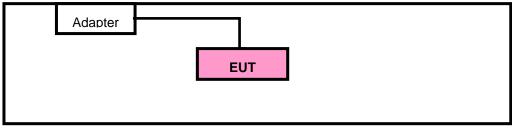
Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

|                                   | Test Items                                   |                                                         |  |  |  |  |
|-----------------------------------|----------------------------------------------|---------------------------------------------------------|--|--|--|--|
| AC Power Line Conducted Emissions |                                              | Field Strength of Fundamental Emissions                 |  |  |  |  |
| 2                                 | 0dB Spectrum Bandwidth                       | Frequency Stability                                     |  |  |  |  |
| R                                 | adiated Emissions 9kHz~30MHz                 | Radiated Emissions 30MHz~1GHz                           |  |  |  |  |
| No                                | te:                                          |                                                         |  |  |  |  |
| 1.                                | The EUT was programmed to be in continuous   | ly transmitting mode.                                   |  |  |  |  |
| 2.                                | The ancillary equipment, NFC card, is used   | to make the EUT (NFC) continuously transmit at          |  |  |  |  |
|                                   | 13.56MHz and is placed around 3 cm gap to th | e EUT.                                                  |  |  |  |  |
| 3.                                | Pre-Scan has been conducted to determine the | ne worst-case mode from all possible combinations       |  |  |  |  |
|                                   | between available modulations, work in modes | s and data rates. Selected for the final test as listed |  |  |  |  |
|                                   | below.                                       |                                                         |  |  |  |  |


| Frequency                                                                                         | Work in Modes                             | Туре                 | Data Rate<br>(Kbps)                     |  |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|-----------------------------------------|--|--|--|
| 13.56 MHz                                                                                         | Card Emulation Reader/Writer Peer-to-Peer | □A<br>□B<br>☑F<br>□V | □ 106<br><b>□</b> 212<br>□ 424<br>□ 848 |  |  |  |
| Remark:  The mark"  " means is chosen for testing;  The mark"  " means is not chosen for testing. |                                           |                      |                                         |  |  |  |

Tel: +86 755 8869 6566




### 2.2 Test Configurations

#### <AC Conducted Emissions>



<sup>\*</sup> Kept in a remote area

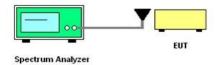
#### < For Fundamental Emissions and Mask and Radiated Emissions Measurement >



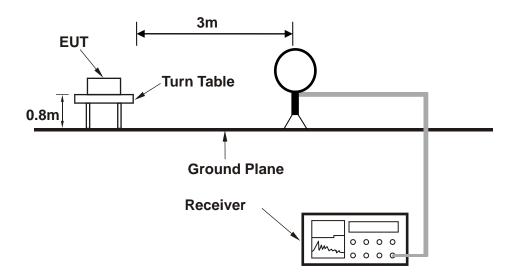
\*Test Table

People's Republic of China Email: <a href="mailto:customerservice.sw@bureauveritas.com">customerservice.sw@bureauveritas.com</a>

### 2.3 Support Equipment

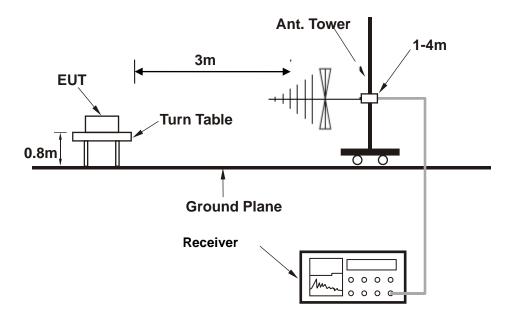

| NO. | PRODUCT     | BRAND    | MODEL NO.     | SERIAL NO. | FCC ID |
|-----|-------------|----------|---------------|------------|--------|
| 1   | Laptop      | Lenovo   | Thnikpad L440 | R90FTFKP   | N/A    |
| 3   | SD          | San Disk | Ultra         | N/A        | N/A    |
| 4   | Earphone    | Nokia    | WH-108        | RTF        | N/A    |
| 5   | Wireless AP | ABOCOM   | WR224GR       | 060500749P | N/A    |

# 2.4 Test Setup

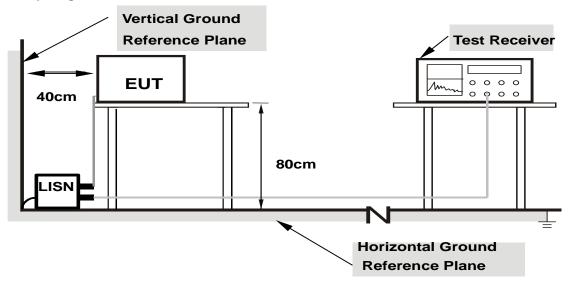

The EUT is continuously communicating during the tests.

EUT was set in the Hidden menu mode to enable NFC communications.

### **Setup diagram for Conducted Test**




### Setup diagram for Radiation(9KHz~30MHz) Test






### Setup diagram for Radiation(Below 1G) Test



### **Setup diagram for AC Conducted Emission Test**



Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

# 2.5 Measurement Results Explanation Example

#### For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

### Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 5 + 10 = 15 (dB)

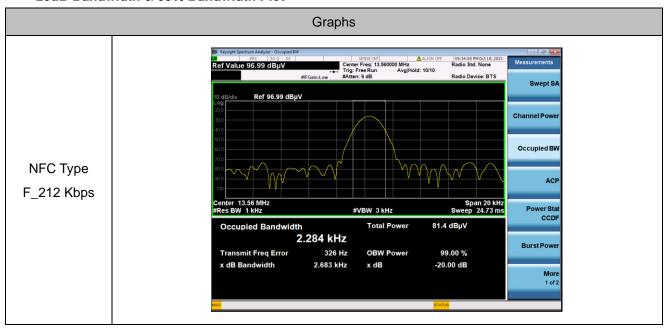
Email: <u>customerservice.sw@bureauveritas.com</u>

### 3. Test Result

### 3.1 20dB and 99% Bandwidth Measurement

### 3.1.1 Limit of 20dB and 99% Bandwidth

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


### 3.1.2 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

#### 3.1.3 Test Result of 20dB and 99% Bandwidth

| Test Mode :             | NFC                |    | Temperature : |        | 23°C       |         |
|-------------------------|--------------------|----|---------------|--------|------------|---------|
| Test Engineer : Jace hu |                    |    | Relative Humi | dity : | 70%        |         |
| Mode                    | Frequency 20dB Ban |    | dwidth [kHz]  | 99     | % OBW[kHz] | Verdict |
| NFC Type F_212 Kbps     | 13.56MHz           | 2. | .683          |        | 2.284      | PASS    |

#### 20dB Bandwidth & 99% Bandwidth Plot



Email: customerservice.sw@bureauveritas.com



### 3.2 Frequency Stability Measurement

### 3.2.1 Limit of Frequency Stability

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

#### 3.2.2 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is  $(fc-f)/fc \times 10^6$  ppm and the limit is less than  $\pm 100$ ppm.
- 6. Extreme temperature rule is -20°C~50°C.

### 3.2.3 Test Result of Frequency Stability

The NFC Type F\_212 Kbps is the worst case, Only report worst mode data



### NFC Type F\_212 Kbps

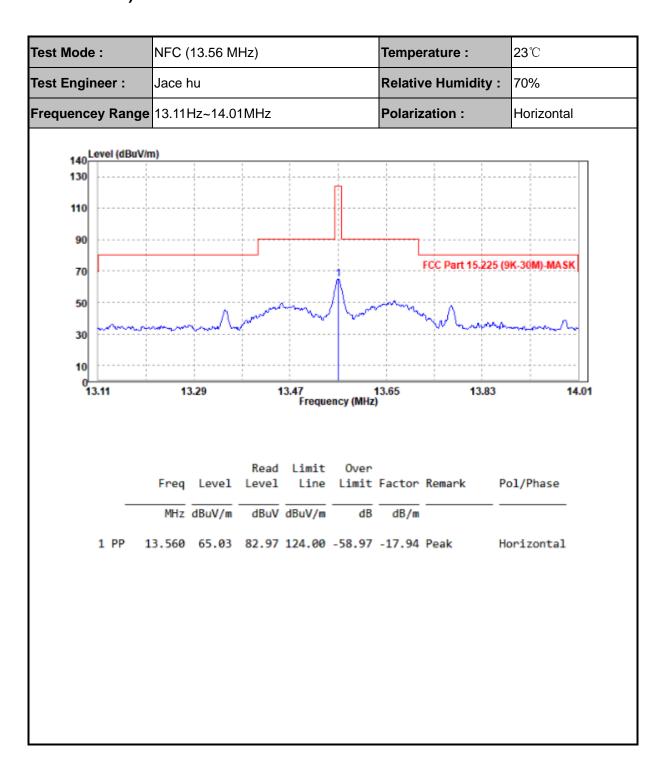
| Voltage<br>(Vdc) | Temperature<br>(°C) | Measurement<br>Frequency (MHz) | Frequency<br>Tolerance(ppm) | Limit(ppm) | Result |
|------------------|---------------------|--------------------------------|-----------------------------|------------|--------|
| 22.8             | 20                  | 13.55989                       | -8.11                       |            | Pass   |
| 25.2             | 20                  | 13.5599                        | -7.37                       |            | Pass   |
|                  | -20                 | 13.55993                       | -5.16                       |            | Pass   |
|                  | -10                 | 13.55987                       | -9.59                       |            | Pass   |
|                  | 0                   | 13.55992                       | -5.90                       | ±100       | Pass   |
| 24               | 10                  | 13.5599                        | -7.37                       | 1100       | Pass   |
| 24               | 20                  | 13.55988                       | -8.85                       |            | Pass   |
|                  | 30                  | 13.55994                       | -4.42                       |            | Pass   |
|                  | 40                  | 13.55993                       | -5.16                       |            | Pass   |
|                  | 50                  | 13.55995                       | -3.69                       |            | Pass   |

Email: customerservice.sw@bureauveritas.com

### 3.3 Field Strength of Fundamental Emissions and Mask Measurement

### 3.3.1 Limit of Field Strength of Fundamental Emissions and Mask

| Rules and specifications | FCC CFR 47 Part 15 section 15.225<br>IC RSS-210 B.6 |                      |                      |                |  |  |  |
|--------------------------|-----------------------------------------------------|----------------------|----------------------|----------------|--|--|--|
| Description              | Compliance with th                                  | e spectrum mask is t | ested with RBW set t | o 9kHz.        |  |  |  |
| Frog of Emission (MUT)   | Field Strength                                      | Field Strength       | Field Strength       | Field Strength |  |  |  |
| Freq. of Emission (MHz)  | (µV/m) at 30m                                       | (dBµV/m) at 30m      | (dBµV/m) at 10m      | (dBµV/m) at 3m |  |  |  |
| 1.705~13.110             | 30                                                  | 29.5                 | 48.58                | 69.5           |  |  |  |
| 13.110~13.410            | 106                                                 | 40.5                 | 59.58                | 80.5           |  |  |  |
| 13.410~13.553            | 334                                                 | 50.5                 | 69.58                | 90.5           |  |  |  |
| 13.553~13.567            | 15848                                               | 84.0                 | 103.08               | 124.0          |  |  |  |
| 13.567~13.710            | 334                                                 | 50.5                 | 69.58                | 90.5           |  |  |  |
| 13.710~14.010            | 106                                                 | 40.5                 | 59.58                | 80.5           |  |  |  |
| 14.010~30.000            | 30                                                  | 29.5                 | 48.58                | 69.5           |  |  |  |


#### 3.3.2 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHz.

Note: Emission level (dB $\mu$ V/m) = 20 log Emission level ( $\mu$ V/m).

Email: customerservice.sw@bureauveritas.com

### 3.3.3 Test Results of Field Strength of Fundamental Emissions and Mask (1.705 MHz ~ 30 MHz)





| Test Mode :     | NFC (            | (13.56 M                                 | lHz)  |                 |                 | Tempe  | rature :         | 23℃               |
|-----------------|------------------|------------------------------------------|-------|-----------------|-----------------|--------|------------------|-------------------|
| Test Engineer : | Jace I           | Jace hu Relative Humidity: 70            |       |                 |                 | : 70%  |                  |                   |
| requencey Ran   | <b>ge</b> 13.111 | 13.11Hz~14.01MHz Polarization : Vertical |       |                 |                 |        | Vertical         |                   |
| 140 Level (dBuV | //m)             |                                          |       |                 |                 |        |                  | •                 |
| 130             |                  |                                          |       |                 | ļ               |        |                  |                   |
| 110             |                  |                                          |       |                 |                 |        |                  |                   |
| 90              |                  |                                          |       |                 |                 |        |                  |                   |
|                 |                  |                                          |       |                 | 1               | F      | CC Part 15.225 ( | 9K-30M)-MASK      |
| 70              |                  |                                          |       |                 | 1               |        |                  |                   |
| 50              | war of the same  | ~~~~                                     | - MAN | m               | WV              | my     | mhaman           | anner de la comme |
| 30              | -                |                                          |       |                 |                 |        |                  |                   |
| 10              |                  |                                          |       |                 |                 |        | -                |                   |
| 13.11           | 13.              | 29                                       | 13    | 3.47<br>Eroguer | 1;<br>ncy (MHz) | 3.65   | 13.83            | 14.01             |
|                 |                  |                                          |       | rrequei         | icy (mriz)      |        |                  |                   |
|                 |                  |                                          | Read  | Limit           | 0ver            |        |                  |                   |
|                 | Freq             | Level                                    |       |                 |                 | Factor | Remark           | Pol/Phase         |
| _               | MHz              | dBuV/m                                   | dBuV  | dBuV/m          | dB              | dB/m   |                  |                   |
| 1 PP            | 13.560           | 69.11                                    | 87.05 | 124.00          | -54.89          | -17.94 | Peak             | Vertical          |
|                 |                  |                                          |       |                 |                 |        |                  |                   |
|                 |                  |                                          |       |                 |                 |        |                  |                   |
|                 |                  |                                          |       |                 |                 |        |                  |                   |
|                 |                  |                                          |       |                 |                 |        |                  |                   |
|                 |                  |                                          |       |                 |                 |        |                  |                   |
|                 |                  |                                          |       |                 |                 |        |                  |                   |
|                 |                  |                                          |       |                 |                 |        |                  |                   |
|                 |                  |                                          |       |                 |                 |        |                  |                   |

### 3.4 Radiated Emissions Measurement

#### 3.4.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

| Frequencies | Field Strength | Measurement Distance |
|-------------|----------------|----------------------|
| (MHz)       | (μV/m)         | (meters)             |
| 0.009~0.490 | 2400/F(kHz)    | 300                  |
| 0.490~1.705 | 24000/F(kHz)   | 30                   |
| 1.705~30.0  | 30             | 30                   |
| 30~88       | 100            | 3                    |
| 88~216      | 150            | 3                    |
| 216~960     | 200            | 3                    |
| Above 960   | 500            | 3                    |

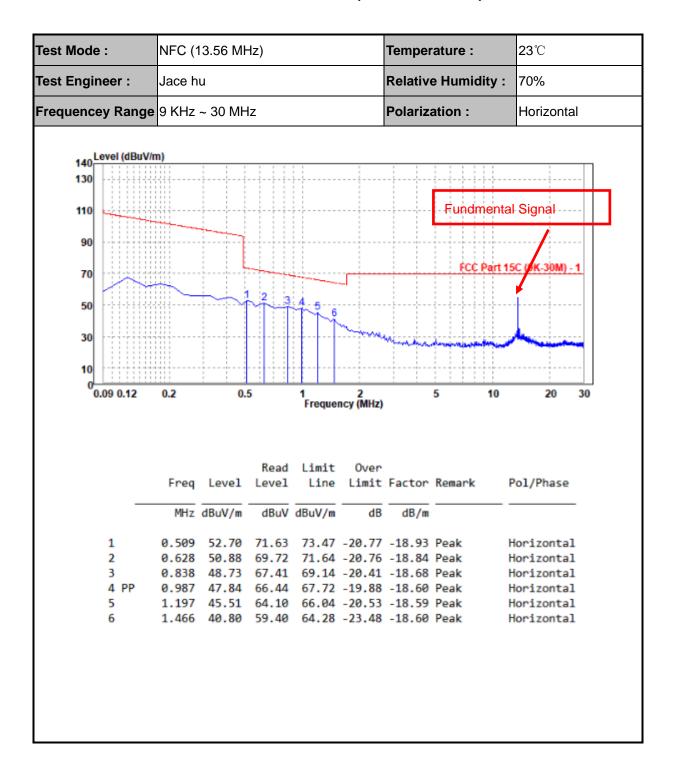
### 3.4.2 Measuring Instrument Setting

The following table is the setting of receiver.

| Receiver Parameter             | Setting             |
|--------------------------------|---------------------|
| Attenuation                    | Auto                |
| Frequency Range: 9kHz~150kHz   | RBW 200Hz for QP    |
| Frequency Range: 150kHz~30MHz  | RBW 9kHz for QP     |
| Frequency Range: 30MHz~1000MHz | RBW 120kHz for Peak |

**Note:** The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

### 3.4.3 Test Procedures


- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the

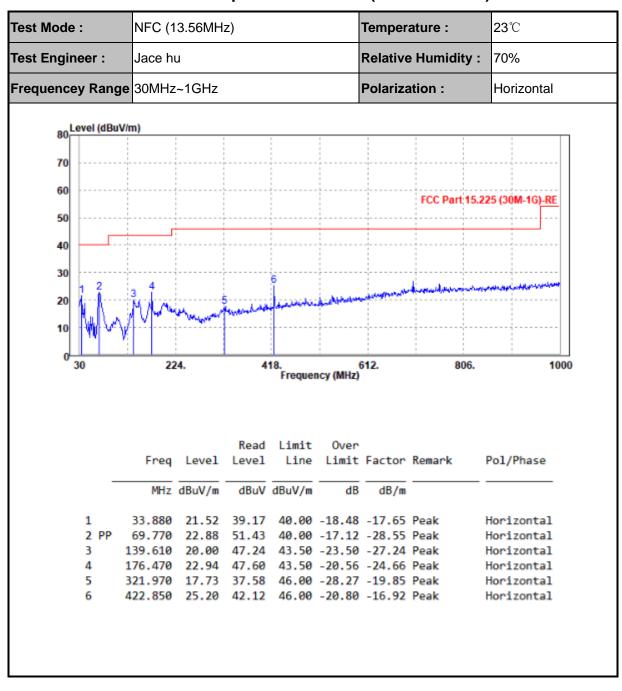


turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.

- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.

#### 3.4.4 Test Results of Radiated Emissions (9 KHz ~ 30 MHz)






| Relative Humidity: 70%  equencey Range 9 KHz ~ 30 MHz  Polarization: Vertical  140  130  110  90  70  Fundmental Signal Foct Part 15C (9K/SOM) - 1  50  30  10  0.09 0.12 0.2 0.5 1  Frequency (MHz) 5 10 20 30  Read Limit Over Limit Factor Remark Pol/Phase  MHz dBuV/m dBuV dBuV/m dB dB/m  1 PP 0.539 50.52 69.43 72.98 -22.46 -18.91 Peak Vertical 2 0.688 39.78 58.57 70.85 -31.07 -18.79 Peak Vertical 3 0.868 36.36 55.03 68.84 -32.48 -18.67 Peak Vertical 4 0.957 35.51 54.12 67.98 -32.47 -18.61 Peak Vertical 5 1.227 31.73 50.32 65.83 -34.10 -18.59 Peak Vertical 6 1.526 31.15 49.74 63.93 -32.78 -18.59 Peak Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | est Mode :       | NFC (13.56                                                                | 6 MHz)                                            |                                                                      |                                                                       | Tempe                                            | rature :                              | 23℃                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|---------------------------------------|-------------------------------------------------------------|
| 140   130   110   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 | est Engineer :   | Jace hu                                                                   |                                                   |                                                                      |                                                                       | Relativ                                          | e Humidity :                          | 70%                                                         |
| Fundmental Signs   Fundmental | requencey Range  | 9 KHz ~ 30                                                                | MHz                                               |                                                                      |                                                                       | Polarization : Ve                                |                                       | Vertical                                                    |
| Fundmental Signs   Fundmental | Lovel (dDvV)     | iren l                                                                    |                                                   |                                                                      |                                                                       |                                                  |                                       |                                                             |
| Fundmental Signs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                                           |                                                   |                                                                      |                                                                       |                                                  |                                       |                                                             |
| Freq Level Level Line Limit Factor Remark Pol/Phase    Read Limit Over   Frequency (MHz)   5   10   20   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130              |                                                                           |                                                   |                                                                      |                                                                       |                                                  |                                       |                                                             |
| Freq Level Line Limit Factor Remark Pol/Phase    Read Limit Over   Level Line Limit Factor Remark Pol/Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110              | <u>                                     </u>                              |                                                   | ++                                                                   |                                                                       |                                                  |                                       |                                                             |
| Freq Level Line Limit Factor Remark Pol/Phase    Read Limit Over   Level Line Limit Factor Remark Pol/Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90               |                                                                           |                                                   |                                                                      |                                                                       |                                                  | Fur                                   | ndmental Signa                                              |
| Freq Level Level Line Limit Factor Remark Pol/Phase    Read Limit Over   Line Limit Factor Remark   Pol/Phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                                           |                                                   |                                                                      |                                                                       |                                                  | : : : <del> </del>                    |                                                             |
| Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Phase  MHz dBuV/m dBuV dBuV/m dB dB/m  1 PP 0.539 50.52 69.43 72.98 -22.46 -18.91 Peak Vertical 2 0.688 39.78 58.57 70.85 -31.07 -18.79 Peak Vertical 3 0.868 36.36 55.03 68.84 -32.48 -18.67 Peak Vertical 4 0.957 35.51 54.12 67.98 -32.47 -18.61 Peak Vertical 5 1.227 31.73 50.32 65.83 -34.10 -18.59 Peak Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 70               | 1111                                                                      |                                                   | -                                                                    | -                                                                     |                                                  |                                       |                                                             |
| Read Limit Over   Freq Level Level Line Limit Factor Remark   Pol/Phase   MHz   dBuV/m   dBuV   dBuV/m   dB   dB/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50               |                                                                           | ~ <del>\</del>                                    |                                                                      |                                                                       |                                                  |                                       |                                                             |
| Read Limit Over   Frequency (MHz)   5   10   20   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30               |                                                                           | \^\~                                              | 34<br>TT 5                                                           | 6                                                                     |                                                  |                                       |                                                             |
| 0.09 0.12 0.2 0.5 1 2 Frequency (MHz) 5 10 20 30  Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Phase  MHz dBuV/m dBuV dBuV/m dB dB/m  1 PP 0.539 50.52 69.43 72.98 -22.46 -18.91 Peak Vertical 2 0.688 39.78 58.57 70.85 -31.07 -18.79 Peak Vertical 3 0.868 36.36 55.03 68.84 -32.48 -18.67 Peak Vertical 4 0.957 35.51 54.12 67.98 -32.47 -18.61 Peak Vertical 5 1.227 31.73 50.32 65.83 -34.10 -18.59 Peak Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30               |                                                                           |                                                   |                                                                      |                                                                       |                                                  |                                       |                                                             |
| Read   Limit   Over   Frequency (MHz)   S   10   20   30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                                                           |                                                   |                                                                      |                                                                       |                                                  |                                       |                                                             |
| Read Limit Over Freq Level Level Line Limit Factor Remark Pol/Phase  MHz dBuV/m dBuV/m dBuV/m dB dB/m  1 PP 0.539 50.52 69.43 72.98 -22.46 -18.91 Peak Vertical 2 0.688 39.78 58.57 70.85 -31.07 -18.79 Peak Vertical 3 0.868 36.36 55.03 68.84 -32.48 -18.67 Peak Vertical 4 0.957 35.51 54.12 67.98 -32.47 -18.61 Peak Vertical 5 1.227 31.73 50.32 65.83 -34.10 -18.59 Peak Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 0.2                                                                       | 0.5                                               | 1                                                                    | 2                                                                     |                                                  | 5 10                                  | 20 30                                                       |
| 1 PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                                                           |                                                   | Freque                                                               | ency (MHz)                                                            | )                                                |                                       | 20 30                                                       |
| 2 0.688 39.78 58.57 70.85 -31.07 -18.79 Peak Vertical<br>3 0.868 36.36 55.03 68.84 -32.48 -18.67 Peak Vertical<br>4 0.957 35.51 54.12 67.98 -32.47 -18.61 Peak Vertical<br>5 1.227 31.73 50.32 65.83 -34.10 -18.59 Peak Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                |                                                                           | el Level                                          | Limit<br>Line                                                        | Over                                                                  | Factor                                           |                                       |                                                             |
| 3 0.868 36.36 55.03 68.84 -32.48 -18.67 Peak Vertical<br>4 0.957 35.51 54.12 67.98 -32.47 -18.61 Peak Vertical<br>5 1.227 31.73 50.32 65.83 -34.10 -18.59 Peak Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                |                                                                           | el Level                                          | Limit<br>Line                                                        | Over                                                                  | Factor                                           |                                       |                                                             |
| 4 0.957 35.51 54.12 67.98 -32.47 -18.61 Peak Vertical<br>5 1.227 31.73 50.32 65.83 -34.10 -18.59 Peak Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | MHz dBuV                                                                  | rel Level //m dBuV 52 69.43                       | Limit<br>Line<br>dBuV/m                                              | Over<br>Limit<br>dB                                                   | Factor dB/m -18.91                               | Remark                                | Pol/Phase<br>————<br>Vertical                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                | MHz dBuV<br>0.539 50.<br>0.688 39.                                        | dBuV dBuV 52 69.43 78 58.57                       | Limit<br>Line<br>dBuV/m<br>72.98<br>70.85                            | Over<br>Limit<br>dB<br>-22.46                                         | Factor<br>dB/m<br>-18.91<br>-18.79               | Remark Peak Peak                      | Pol/Phase<br>—————<br>Vertical<br>Vertical                  |
| 0 1.520 51.15 45.74 05.55 -52.70 -10.55 Fedk Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2<br>3<br>4      | MHz dBuV<br>0.539 50.<br>0.688 39.<br>0.868 36.<br>0.957 35.              | dBuV 52 69.43 78 58.57 36 55.03 51 54.12          | Limit<br>Line<br>dBuV/m<br>72.98<br>70.85<br>68.84<br>67.98          | Over<br>Limit<br>dB<br>-22.46<br>-31.07<br>-32.48<br>-32.47           | Factor dB/m -18.91 -18.79 -18.67 -18.61          | Remark  Peak Peak Peak Peak Peak      | Pol/Phase  Vertical Vertical Vertical Vertical              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>3<br>4<br>5 | MHz dBuV<br>0.539 50.<br>0.688 39.<br>0.868 36.<br>0.957 35.<br>1.227 31. | dBuV 52 69.43 78 58.57 36 55.03 51 54.12 73 50.32 | Limit<br>Line<br>dBuV/m<br>72.98<br>70.85<br>68.84<br>67.98<br>65.83 | Over<br>Limit<br>dB<br>-22.46<br>-31.07<br>-32.48<br>-32.47<br>-34.10 | Factor  dB/m  -18.91 -18.79 -18.67 -18.61 -18.59 | Remark  Peak Peak Peak Peak Peak Peak | Pol/Phase  Vertical  Vertical  Vertical  Vertical  Vertical |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>3<br>4<br>5 | MHz dBuV<br>0.539 50.<br>0.688 39.<br>0.868 36.<br>0.957 35.<br>1.227 31. | dBuV 52 69.43 78 58.57 36 55.03 51 54.12 73 50.32 | Limit<br>Line<br>dBuV/m<br>72.98<br>70.85<br>68.84<br>67.98<br>65.83 | Over<br>Limit<br>dB<br>-22.46<br>-31.07<br>-32.48<br>-32.47<br>-34.10 | Factor  dB/m  -18.91 -18.79 -18.67 -18.61 -18.59 | Remark  Peak Peak Peak Peak Peak Peak | Pol/Phase  Vertical  Vertical  Vertical  Vertical  Vertical |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>3<br>4<br>5 | MHz dBuV<br>0.539 50.<br>0.688 39.<br>0.868 36.<br>0.957 35.<br>1.227 31. | dBuV 52 69.43 78 58.57 36 55.03 51 54.12 73 50.32 | Limit<br>Line<br>dBuV/m<br>72.98<br>70.85<br>68.84<br>67.98<br>65.83 | Over<br>Limit<br>dB<br>-22.46<br>-31.07<br>-32.48<br>-32.47<br>-34.10 | Factor  dB/m  -18.91 -18.79 -18.67 -18.61 -18.59 | Remark  Peak Peak Peak Peak Peak Peak | Pol/Phase  Vertical  Vertical  Vertical  Vertical  Vertical |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>3<br>4<br>5 | MHz dBuV<br>0.539 50.<br>0.688 39.<br>0.868 36.<br>0.957 35.<br>1.227 31. | dBuV 52 69.43 78 58.57 36 55.03 51 54.12 73 50.32 | Limit<br>Line<br>dBuV/m<br>72.98<br>70.85<br>68.84<br>67.98<br>65.83 | Over<br>Limit<br>dB<br>-22.46<br>-31.07<br>-32.48<br>-32.47<br>-34.10 | Factor  dB/m  -18.91 -18.79 -18.67 -18.61 -18.59 | Remark  Peak Peak Peak Peak Peak Peak | Pol/Phase  Vertical  Vertical  Vertical  Vertical  Vertical |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>3<br>4<br>5 | MHz dBuV<br>0.539 50.<br>0.688 39.<br>0.868 36.<br>0.957 35.<br>1.227 31. | dBuV 52 69.43 78 58.57 36 55.03 51 54.12 73 50.32 | Limit<br>Line<br>dBuV/m<br>72.98<br>70.85<br>68.84<br>67.98<br>65.83 | Over<br>Limit<br>dB<br>-22.46<br>-31.07<br>-32.48<br>-32.47<br>-34.10 | Factor  dB/m  -18.91 -18.79 -18.67 -18.61 -18.59 | Remark  Peak Peak Peak Peak Peak Peak | Pol/Phase  Vertical  Vertical  Vertical  Vertical  Vertical |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>3<br>4<br>5 | MHz dBuV<br>0.539 50.<br>0.688 39.<br>0.868 36.<br>0.957 35.<br>1.227 31. | dBuV 52 69.43 78 58.57 36 55.03 51 54.12 73 50.32 | Limit<br>Line<br>dBuV/m<br>72.98<br>70.85<br>68.84<br>67.98<br>65.83 | Over<br>Limit<br>dB<br>-22.46<br>-31.07<br>-32.48<br>-32.47<br>-34.10 | Factor  dB/m  -18.91 -18.79 -18.67 -18.61 -18.59 | Remark  Peak Peak Peak Peak Peak Peak | Pol/Phase  Vertical  Vertical  Vertical  Vertical  Vertical |

BV 7Layers Communications Technology

Email: customerservice.sw@bureauveritas.com

### 3.4.5 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)



ng, People's Republic of China Email: <a href="mailto:customerservice.sw@bureauveritas.com">customerservice.sw@bureauveritas.com</a>



| est Mode :     | NFC (1                                     | 3.56MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z)                                                        |                                                    |                                                            | Temper                                    | ature :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23℃                                       |        |
|----------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------|
| est Engineer : | Jace h                                     | Jace hu Rela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           | Relative Humidity :                                |                                                            | 70%                                       | 70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |        |
| requencey Rang | <b>e</b> 30MHz                             | 30MHz~1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                                                    |                                                            | Polariza                                  | ation :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vertical                                  |        |
|                | •                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                    |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                         |        |
| 80 Level (dBuV | //m)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | !                                                  | !                                                          | !                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | $\neg$ |
| 70             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                    |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | -      |
|                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                    |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |
| 60             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                    |                                                            |                                           | FCC Part 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 (30M-1G) <u>-RE</u>                    | Ē      |
| 50             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                    |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | -      |
| 40             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                    |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | -      |
| 1 -            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                    |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |
| 302            | 11 -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | 6                                                  |                                                            |                                           | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | w      |
| 20             | r™.i                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . substitut                                               | والم ومسالم                                        | housempayer                                                | Paringhan March                           | Will with the same of the same |                                           | -      |
| 10             |                                            | A PARTICIPATION OF A PARTICIPATI | with the same                                             |                                                    |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | -      |
| .0             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                    |                                                            | i                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |
|                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                    |                                                            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |        |
| 0 30           | 22                                         | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                         | 18.                                                |                                                            | 612.                                      | 806.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                         | 000    |
| 0 30           | 22                                         | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                         | 18.<br>Frequer                                     | icy (MHz)                                                  | 512.                                      | 806.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                         | 000    |
| 0 30           | 22                                         | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                         | 18.<br>Frequer                                     |                                                            | 612.                                      | 806.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                         | 000    |
| 0 30           | 22                                         | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                         | 18.<br>Frequer                                     |                                                            | 512.                                      | 806.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                         | 000    |
| 0 30           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Read                                                      | Frequer                                            | Over                                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 000    |
| 0 30           |                                            | 4.<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Read                                                      | Frequer                                            | Over                                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1<br>Pol/Phase                            | 000    |
| 30             | Freq                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Read<br>Level                                             | Frequer                                            | Over                                                       | Factor                                    | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | 000    |
| 0 30           | Freq                                       | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Read<br>Level                                             | Limit<br>Line<br>dBuV/m                            | Over<br>Limit                                              | Factor                                    | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | 000    |
| _              | Freq                                       | Level<br>dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Read<br>Level<br>dBuV<br>49.21<br>55.50                   | Limit<br>Line<br>dBuV/m<br>40.00                   | Over<br>Limit<br>dB<br>-9.09                               | Factor<br>dB/m<br>-18.30<br>-28.35        | Remark Peak Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pol/Phase                                 | 000    |
| 1 PP<br>2<br>3 | Freq<br>MHz<br>33.880<br>69.770<br>112.450 | Level<br>dBuV/m<br>30.91<br>27.15<br>24.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Read<br>Level<br>dBuV<br>49.21<br>55.50<br>51.74          | Limit<br>Line<br>dBuV/m<br>40.00<br>40.00<br>43.50 | Over<br>Limit<br>dB<br>-9.09<br>-12.85<br>-19.31           | Factor  dB/m  -18.30 -28.35 -27.55        | Remark Peak Peak Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pol/Phase  Vertical Vertical Vertical     | 000    |
| 1 PP<br>2      | Freq<br>MHz<br>33.880<br>69.770            | Level  dBuV/m  30.91 27.15 24.19 28.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Read<br>Level<br>dBuV<br>49.21<br>55.50<br>51.74<br>53.48 | Limit<br>Line<br>dBuV/m<br>40.00                   | Over<br>Limit<br>dB<br>-9.09<br>-12.85<br>-19.31<br>-15.23 | Factor  dB/m  -18.30 -28.35 -27.55 -25.21 | Remark  Peak Peak Peak Peak Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pol/Phase<br>————<br>Vertical<br>Vertical | 0000   |

### 3.5 AC Conducted Emission Measurement

#### 3.5.1 Limit of AC Conducted Emission

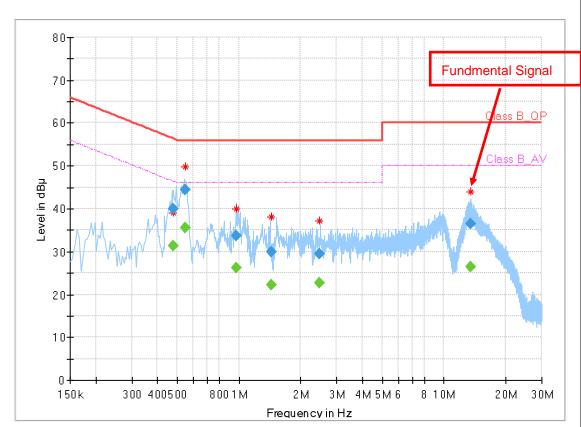
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

| Frequency of Emission | Conducted Limit (dBμV) |           |  |  |
|-----------------------|------------------------|-----------|--|--|
| (MHz)                 | Quasi-Peak             | Average   |  |  |
| 0.15-0.5              | 66 to 56*              | 56 to 46* |  |  |
| 0.5-5                 | 56                     | 46        |  |  |
| 5-30                  | 60                     | 50        |  |  |

<sup>\*</sup>Decreases with the logarithm of the frequency.

#### 3.5.2 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.


Tel: +86 755 8869 6566



### 3.5.3 Test Result of AC Conducted Emission

| Test Mode :     | NFC           | Temperature :       | <b>25</b> ℃ |
|-----------------|---------------|---------------------|-------------|
| Test Engineer : | Carl Xie      | Relative Humidity : | 55%         |
| Test Voltage :  | 120Vac / 60Hz | Phase :             | Line        |
| Function Type : | NFC           |                     |             |

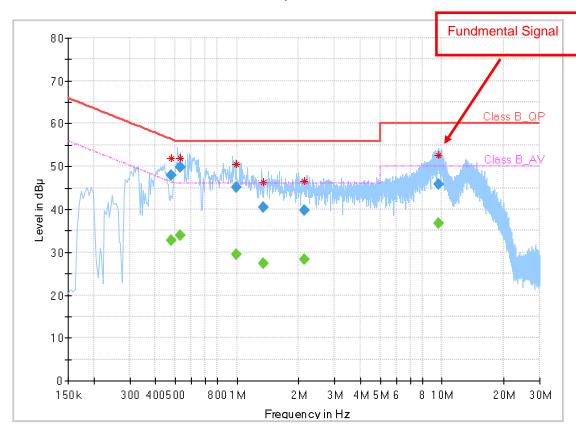




| Frequency | QuasiPeak | CAverage | Limit  | Margin | Line | Filter | Corr. |
|-----------|-----------|----------|--------|--------|------|--------|-------|
| (MHz)     | (dBµV)    | (dBµV)   | (dBµV) | (dB)   |      |        | (dB)  |
| 0.480000  |           | 31.28    | 46.34  | 15.06  | L1   | ON     | 9.7   |
| 0.480000  | 40.03     |          | 56.34  | 16.31  | L1   | ON     | 9.7   |
| 0.544000  |           | 35.58    | 46.00  | 10.42  | L1   | ON     | 9.7   |
| 0.544000  | 44.34     |          | 56.00  | 11.66  | L1   | ON     | 9.7   |
| 0.968000  |           | 26.28    | 46.00  | 19.72  | L1   | ON     | 9.7   |
| 0.968000  | 33.73     |          | 56.00  | 22.27  | L1   | ON     | 9.7   |
| 1.436000  |           | 22.12    | 46.00  | 23.88  | L1   | ON     | 9.7   |
| 1.436000  | 29.92     |          | 56.00  | 26.08  | L1   | ON     | 9.7   |
| 2.464000  |           | 22.61    | 46.00  | 23.39  | L1   | ON     | 9.7   |
| 2.464000  | 29.49     |          | 56.00  | 26.51  | L1   | ON     | 9.7   |
| 13.564000 |           | 26.44    | 50.00  | 23.56  | L1   | ON     | 9.8   |
| 13.564000 | 36.51     |          | 60.00  | 23.50  | L1   | ON     | 9.8   |

BV 7Layers Communications Technology (Shenzhen) Co., Ltd

Room B37, Warehouse A5, No.3 Chiwan 4th Road, Zhaoshang Street, Nanshan District Shenzhen, Guangdong, People's Republic of China


Tel: +86 755 8869 6566 Fax: +86 755 8869 6577

Email: <u>customerservice.sw@bureauveritas.com</u>



| Test Mode :     | NFC          | Temperature :       | 25℃     |
|-----------------|--------------|---------------------|---------|
| Test Engineer : | Carl Xie     | Relative Humidity : | 55%     |
| Test Voltage :  | AC 120V/60Hz | Phase :             | Neutral |
| Function Type:  | NEC          |                     |         |

Full Spectrum



| Frequency | QuasiPeak | CAverage | Limit | Margin | Line | Filter | Corr. |
|-----------|-----------|----------|-------|--------|------|--------|-------|
| (MHz)     | (dB µ V)  | (dB µ V) | (dB μ | (dB)   |      |        | (dB)  |
|           |           |          | \/\   |        |      |        |       |
| 0.480000  |           | 32.83    | 46.34 | 13.51  | N    | ON     | 9.7   |
| 0.480000  | 48.04     |          | 56.34 | 8.30   | N    | ON     | 9.7   |
| 0.528000  |           | 33.81    | 46.00 | 12.19  | N    | ON     | 9.7   |
| 0.528000  | 49.74     |          | 56.00 | 6.26   | N    | ON     | 9.7   |
| 0.992000  |           | 29.45    | 46.00 | 16.55  | N    | ON     | 9.7   |
| 0.992000  | 45.20     |          | 56.00 | 10.80  | N    | ON     | 9.7   |
| 1.348000  |           | 27.45    | 46.00 | 18.55  | N    | ON     | 9.8   |
| 1.348000  | 40.40     |          | 56.00 | 15.60  | N    | ON     | 9.8   |
| 2.140000  |           | 28.38    | 46.00 | 17.62  | N    | ON     | 9.8   |
| 2.140000  | 39.78     |          | 56.00 | 16.22  | N    | ON     | 9.8   |
| 9.636000  |           | 36.84    | 50.00 | 13.16  | N    | ON     | 9.8   |
| 9.636000  | 45.75     |          | 60.00 | 14.25  | N    | ON     | 9.8   |





3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with

any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to

ensure that no antenna other than that furnished by the responsible party shall be used with the

device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to

the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The

manufacturer may design the unit so that the user can replace a broken antenna, but the use of a

standard antenna jack or electrical connector is prohibited.

3.6.2 Antenna Connected Construction

An Loop Antenna design is used.

3.6.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi.



# 4 List of Measuring Equipment

| Equipment                   | Manufacturer    | Model No.    | Serial No.                      | Last Cal.  | Next Cal.  |
|-----------------------------|-----------------|--------------|---------------------------------|------------|------------|
| 3m Semi-anechoic<br>Chamber | ETS-LINDGREN    | 9m*6m*6m     | Euroshieldpn-<br>CT0001143-1216 | May. 19,20 | May. 18,23 |
| Bilog Antenna               | ETS-LINDGREN    | 3143B        | 00161965                        | Mar. 05,21 | Mar. 04,22 |
| Test Software               | E3              | V 9.160323   | N/A                             | N/A        | N/A        |
| 10dB Attenuator             | JFW/USA         | 50HF-010-SMA | 1505                            | Jun. 03,21 | Jun. 02,22 |
| MXE EMI Receiver            | KEYSIGHT        | N9038A-544   | MY54450026                      | Apr. 22,21 | Apr. 21,22 |
| Signal Pre-Amplifier        | EMSI            | EMC 9135     | 980249                          | Jun. 02,21 | Jun. 01,22 |
| Loop Antenna                | SCHWARZBEC<br>K | FMZB1519B    | 00173                           | Sep. 04,21 | Sep. 05,22 |

**NOTE:** 1. The calibration interval of the above test instruments is 12 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 525120; The Designation No. is CN1171.

Email: <u>customerservice.sw@bureauveritas.com</u>



# 5 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| MEASUREMENT         | FREQUENCY     | UNCERTAINTY |
|---------------------|---------------|-------------|
| Conducted emissions | 9kHz~30MHz    | 2.42dB      |
| Radiated emission   | 30MHz ~ 1GMHz | 2.50dB      |
|                     | 1GHz ~ 18GHz  | 3.51dB      |
|                     | 18GHz ~ 40GHz | 3.96dB      |

| MEASUREMENT                | UNCERTAINTY |
|----------------------------|-------------|
| Occupied Channel Bandwidth | ±196.4Hz    |
| RF output power, conducted | ±2.31dB     |
| Power density, conducted   | ±2.31dB     |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.