

 GTS Global United Technology Services Co., Ltd.

Report No.: GTS202003000049F01

Test Report (Bluetooth)

Applicant:	Shenzhen Dangs Science and Technology Co., Ltd
Address of Applicant: Manufacturer:	901,GDC Building,Keji Mid 3rd Road Maling Community, Yuehai Sub-district,Nanshan,Shenzhen,China Shenzhen Dangs Science and Technology Co., Ltd
Address of Manufacturer: Factory:	901,GDC Building,Keji Mid 3rd Road Maling Community, Yuehai Sub-district,Nanshan,Shenzhen,China Shenzhen Xinxiang Electronic Technology Co.,LTD
Address of Factory:	3F No.18 Lingbei Five Road FengHuang First Industrial Zone Fuyong Town Boan Disttct Shenzhen, China
Equipment Under Test (El	JT)
Product Name:	Smart Projector
Model No.:	DBF1C, DBF1, DBF1S, DBM1, DBC1, DBC1S, DBD1, DBD1S, DBB1, DBB1C, DBB1S, DBB2, DBB2S, DBH1, DBH1S, DBH1C, DBX1, DBF3, DBF3PRO, DBF3M, DBF3J, DBF3H, DBTH2020, DBW2020, DBTW2020, DBF4
Model No.: Trade Mark:	DBB1, DBB1C, DBB1S, DBB2, DBB2S, DBH1, DBH1S, DBH1C, DBX1, DBF3, DBF3PRO, DBF3M, DBF3J, DBF3H,
	DBB1, DBB1C, DBB1S, DBB2, DBB2S, DBH1, DBH1S, DBH1C, DBX1, DBF3, DBF3PRO, DBF3M, DBF3J, DBF3H, DBTH2020, DBW2020, DBTW2020, DBF4
Trade Mark: FCC ID:	DBB1, DBB1C, DBB1S, DBB2, DBB2S, DBH1, DBH1S, DBH1C, DBX1, DBF3, DBF3PRO, DBF3M, DBF3J, DBF3H, DBTH2020, DBW2020, DBTW2020, DBF4 DangBei 2AV2JDBF1C001
Trade Mark:	DBB1, DBB1C, DBB1S, DBB2, DBB2S, DBH1, DBH1S, DBH1C, DBX1, DBF3, DBF3PRO, DBF3M, DBF3J, DBF3H, DBTH2020, DBW2020, DBTW2020, DBF4 DangBei
Trade Mark: FCC ID: Applicable standards:	DBB1, DBB1C, DBB1S, DBB2, DBB2S, DBH1, DBH1S, DBH1C, DBX1, DBF3, DBF3PRO, DBF3M, DBF3J, DBF3H, DBTH2020, DBW2020, DBTW2020, DBF4 DangBei 2AV2JDBF1C001 FCC CFR Title 47 Part 15 Subpart C Section 15.247
Trade Mark: FCC ID: Applicable standards: Date of sample receipt:	DBB1, DBB1C, DBB1S, DBB2, DBB2S, DBH1, DBH1S, DBH1C, DBX1, DBF3, DBF3PRO, DBF3M, DBF3J, DBF3H, DBTH2020, DBW2020, DBTW2020, DBF4 DangBei 2AV2JDBF1C001 FCC CFR Title 47 Part 15 Subpart C Section 15.247 March 17, 2020

In the configuration tested, the EUT complied with the standards specified above. *

Authorized Signature:

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 46

Version 2

Version No.	Date	Description
00	March 31, 2020	Original

Prepared By:

hantou

Date:

March 31, 2020

March 31, 2020

Project Engineer

Check By:

Date: obinson C

Reviewer

3 Contents

1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	Test mode	7
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6	TEST FACILITY	7
	5.7	TEST LOCATION	7
	5.8	Additional Instructions	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	10
7	TES 7.1	T RESULTS AND MEASUREMENT DATA	-
7	-		10
7	7.1	ANTENNA REQUIREMENT	10
7	7.1 7.2	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER	10 11 14 18
7	7.1 7.2 7.3	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER	10 11 14 18 22
7	7.1 7.2 7.3 7.4	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER	10 11 14 18 22
7	7.1 7.2 7.3 7.4 7.5	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER	10 11 14 18 22 26 27
7	7.1 7.2 7.3 7.4 7.5 7.6	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	10 11 14 18 22 26 27 29
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER	10 11 14 18 22 26 27 29 30
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9 7.9.7	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE Conducted Emission Method	10 14 14 18 22 26 27 29 30 30
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE Conducted Emission Method Radiated Emission Method	10 11 14 18 22 26 27 29 30 30 34
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.92 7.10	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE Conducted Emission Method PROVIDE A CONDUCTOR CONTRACTOR CONTRACTO	10 11 14 18 22 26 27 29 30 30 30 34 36
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.92 7.10 7.10	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE 1 Conducted Emission Method SPURIOUS EMISSION 1 Conducted Emission Method	10 11 14 18 22 26 27 29 30 30 34 36 36
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.92 7.10	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE Conducted Emission Method PSURIOUS EMISSION 1 Conducted Emission Method	10 11 14 18 22 26 27 29 30 30 34 36 36
8	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.9 7.92 7.10 7.10 7.10	ANTENNA REQUIREMENT CONDUCTED EMISSIONS CONDUCTED PEAK OUTPUT POWER 20DB EMISSION BANDWIDTH CARRIER FREQUENCIES SEPARATION HOPPING CHANNEL NUMBER DWELL TIME PSEUDORANDOM FREQUENCY HOPPING SEQUENCE BAND EDGE 1 Conducted Emission Method SPURIOUS EMISSION 1 Conducted Emission Method	10 11 14 18 22 26 27 29 30 30 30 34 36 36 38

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Frequency Range Measurement Uncertainty			
Radiated Emission	Emission200MHz-1GHz3.9679dBEmission1GHz-18GHz4.29dB		(1)		
Radiated Emission			(1)		
Radiated Emission			(1)		
Radiated Emission			(1)		
AC Power Line Conducted Emission	0 15MHz ~ 30MHz 3 44dB				
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	5%.		

5 General Information

5.1 General Description of EUT

Product Name:	Smart Projector
Model No.:	DBF1C, DBF1, DBF1S, DBM1, DBC1, DBC1S, DBD1, DBD1S, DBB1, DBB1C, DBB1S, DBB2, DBB2S, DBH1, DBH1S, DBH1C, DBX1, DBF3, DBF3PRO, DBF3M, DBF3J, DBF3H, DBTH2020, DBW2020, DBTW2020, DBF4
Test Model No:	DBF1C
	lentical in the same PCB layout, interior structure and electrical circuits. and model name for commercial purpose.
Test sample(s) ID:	GTS202003000049-1
Sample(s) Status:	Engineer sample
Serial No.:	DZXF1CJ4194900099
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Integral Antenna
Antenna gain:	3.4dBi(Declared by applicant)
Power supply:	AC ADAPTER
	MODEL:HDZ1201-3C REV:02
	AC INPUT:100-240V AC, 60/50Hz
	INCOMING CUR RENT:2.0A Max
	DC OUTPUT:DC19V $=$ = = 6.32A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
5	he test voltage was tuned from 85% to 115% of the nominal rated supply e worst case was under the nominal rated supply condition. So the report just a.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC — Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

6 Test Instruments list

Rad	Radiated Emission:							
ltem	m Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron		GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020		
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020		
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020		
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020		
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020		
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020		

Con	Conducted Emission							
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020		
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020		
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020		
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020		
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020		

RF C	onducted Test:					
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020

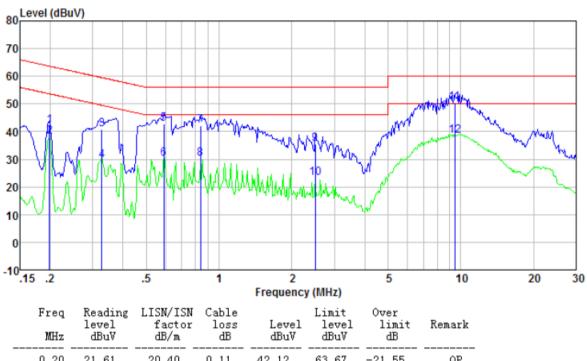
Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020			
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020			

7 Test results and Measurement Data

7.1 Antenna requirement

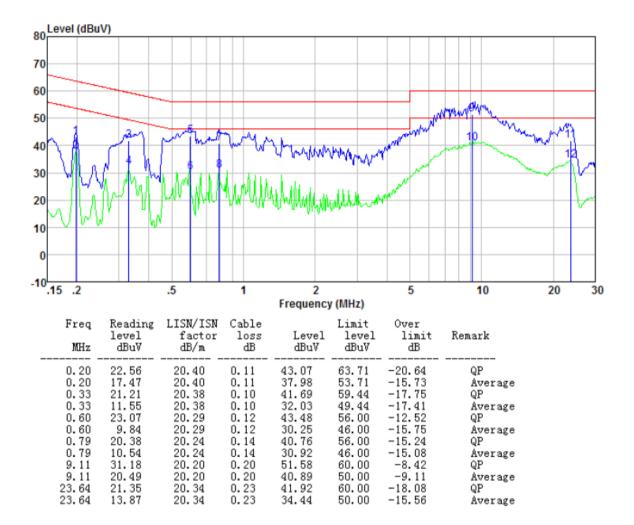
Standard requirement:	FCC Part15 C Section 15.203 /247(c)							
15.203 requirement:								
responsible party shall be us antenna that uses a unique	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.							
15.247(c) (1)(i) requiremen	t:							
operations may employ trans maximum conducted output	(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.							
E.U.T Antenna:	E.U.T Antenna:							
The antenna is integral ante II for details	The antenna is integral antenna, the best case gain of the antenna is 3.4dBi, reference to the appendix II for details							

	•						
Test Requirement:	FCC Part1	5 C Section 1	5.207				
Test Method:	ANSI C63.	10:2013					
Test Frequency Range:	150KHz to	30MHz					
Class / Severity:	Class B						
 Receiver setup:	RBW=9KH	Iz, VBW=30K	Hz, Sweep ti	me=auto			
Limit:				Limi	t (dBuV)		
Linnt.	Freque	ncy range (MF	lz) Q	uasi-peak		rage	
			o 46*				
		0.5-5		56	4	46	
		5-30		60	5	50	
	* Decrease	es with the log	arithm of the	frequency.			
Test setup:		Reference	e Plane				
	LISN 40cm 80cm Filter AC power Full E.U.T EMI Receiver Test table/Insulation plane EMI Receiver Remarkc E.U.T Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0. Bm						
Test procedure:	line imp	J.T and simula edance stabili 50uH coupling	zation netwo	ork (L.I.S.N.).	This provides	sa	
	LISN th termina photogr	. ,	50ohm/50uH efer to the b	coupling imp lock diagram	edance with of the test se	50ohm etup and	
	 Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 						
Test Instruments:	Refer to se	ection 6.0 for c	letails				
Test mode:	Refer to section 5.2 for details						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V,	60Hz	1	1	1		
Test results:	Pass						


7.2 Conducted Emissions

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:


Line:

0.20 0.20 0.33 0.33 0.59 0.59 0.84	21.61 17.49 20.38 9.04 22.24 9.80 21.86	20.40 20.40 20.39 20.39 20.29 20.29 20.29 20.23	0.11 0.11 0.10 0.10 0.12 0.12 0.12 0.14	42.12 38.00 40.87 29.53 42.65 30.21 42.23	63.67 53.67 59.53 49.53 56.00 46.00 56.00	-21.55 -15.67 -18.66 -20.00 -13.35 -15.79 -13.77	QP Average QP Average QP Average QP
0.84	9.80	20.23	0.14	30.17	46.00	-15.83	Average
2.50	15.05	20.20	0.18	35.43	56.00	-20.57	QP
2.50	2.96	20.20	0.18	23.34	46.00	-22.66	Average
9.45	29.93	20.20	0.20	50.33	60.00	-9.67	QP
9.45	18.17	20.20	0.20	38.57	50.00	-11.43	Åverage

Neutral:

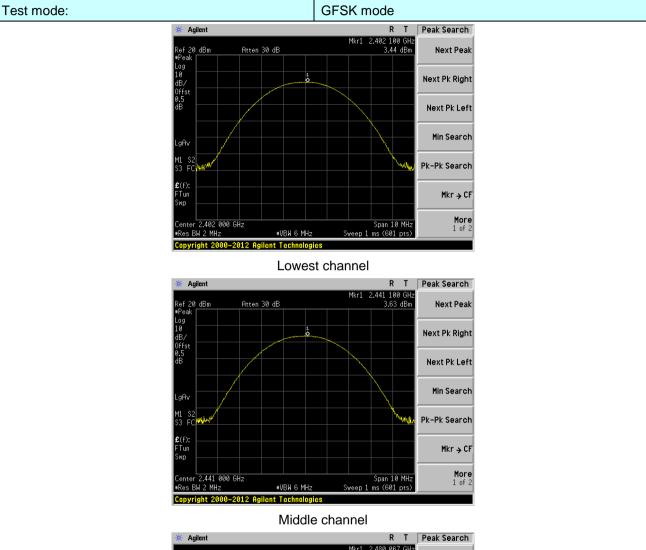
Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

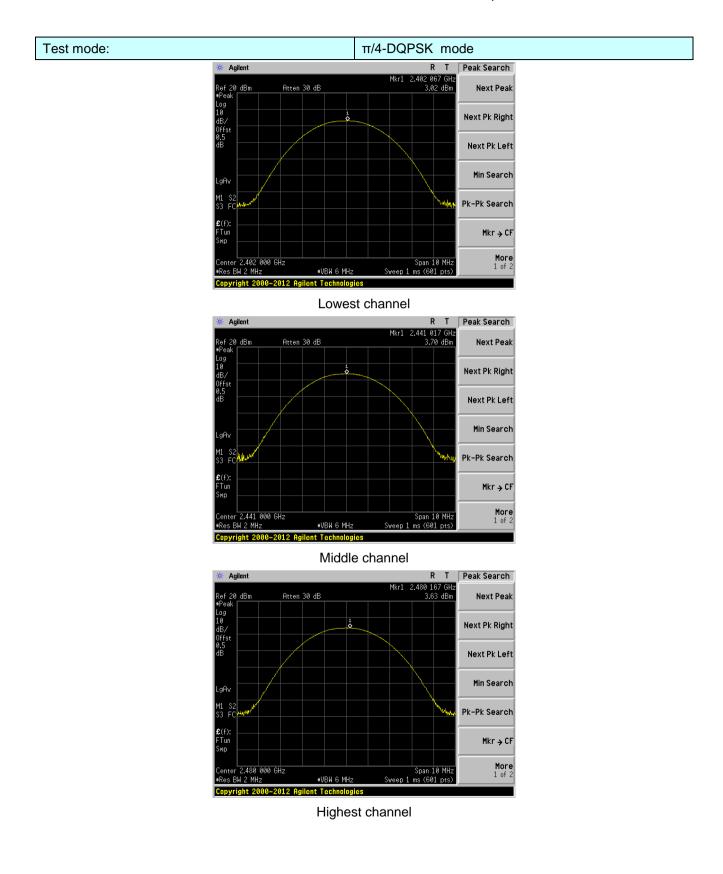
3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013
Limit:	20.97dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

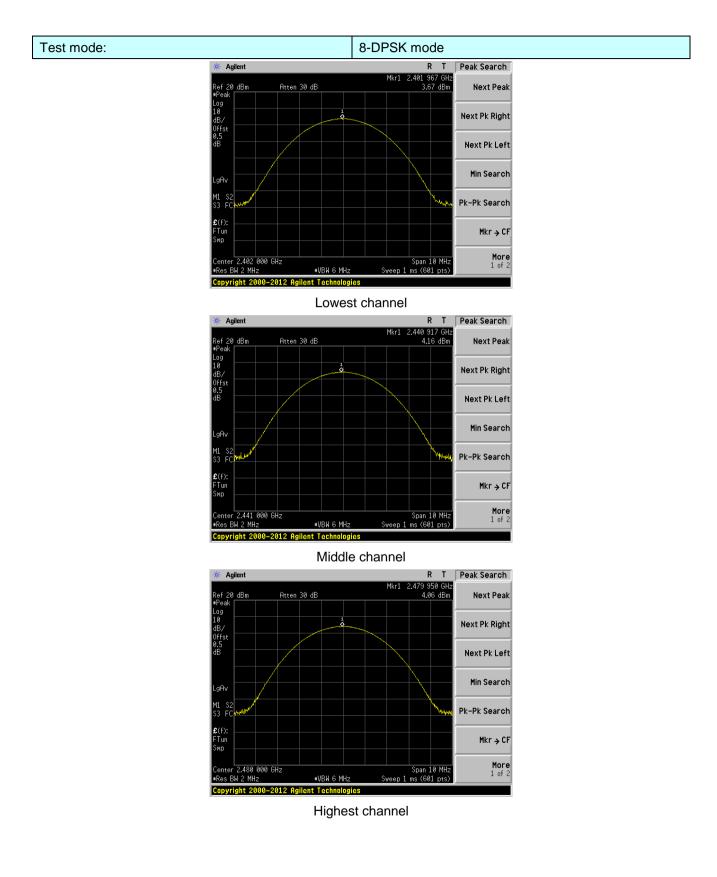

7.3 Conducted Peak Output Power

Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
	Lowest	3.44			
GFSK	Middle	3.63	20.97	Pass	
	Highest	3.64			
	Lowest	3.02			
π/4-DQPSK	Middle	3.70	20.97	Pass	
	Highest	3.63			
	Lowest	3.67			
8-DPSK	Middle	4.16	20.97	Pass	
	Highest	4.06			



Test plot as follows:



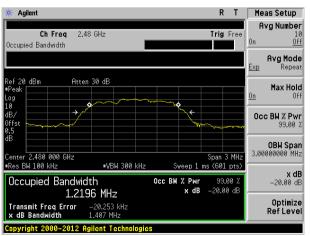
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

7.4 20dB Emission Bandwidth

Measurement Data

Mode	Test channel	20dB Emission Bandwidth (MHz)	Result	
	Lowest	1.423		
GFSK	Middle	1.409	Pass	
	Highest	1.407		
	Lowest	1.424		
π/4-DQPSK	Middle	1.420	Pass	
	Highest	1.417		
	Lowest	1.402		
8-DPSK	Middle	1.398	Pass	
	Highest	1.393		

Test plot as follows:


Test mode:

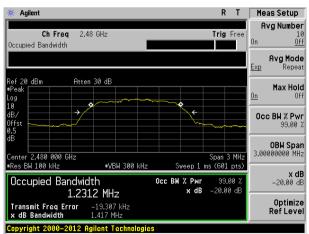
	GFSK mode	
* Agilent	RT	Meas Setup
Ch Freq 2.402 GHz Occupied Bandwidth	Trig Free	Avg Number 10 On <u>Off</u>
		Avg Mode Exp Repeat
Ref 20 dBm Atten 30 dB #Peak Log 10		Max Hold On Off
dB/ offst 0.5		Occ BW % Pwr 99.00 %
dB Center 2.402 000 GHz •Res BW 100 kHz •VBW 300 kHz	Span 3 MHz z Sweep 1 ms (601 pts)	OBW Span 3.00000000 MHz
Occupied Bandwidth 1.2273 MHz	Осс ВИ % Рыг 99.00 % х dB -20.00 dB	x dB -20.00 dB
Transmit Freq Error -37.262 kHz × dB Bandwidth 1.423 MHz		Optimize RefLevel

Lowest channel

* Agilent R T	Meas Setup
Ch Freq 2.441 GHz Trig Free Occupied Bandwidth	Avg Number 10 On <u>Off</u>
	Avg Mode Exp Repeat
Ref 20 dBm Atten 30 dB +Peak Log 10 • • • • • • • • • • • • • • • • • • •	Max Hold On Off
dB/ Offst dB	Occ BW % Pwr 99.00 %
Center 2.441 000 GHz Span 3 MHz •Res BW 100 kHz •VBW 300 kHz Sweep 1 ms (601 pts)	OBW Span 3.00000000 MHz
Оссирied Bandwidth Осс вн % Рыг 99.00 % 1.2249 MHz × dB -20.00 dB	x dB -20.00 dB
Transmit Freq Error -28.257 kHz x dB Bandwidth 1.409 MHz Copyright 2000-2012 Agilent Technologies	Optimize RefLevel

Middle channel

Test mode:


π/4-DQPSK mode

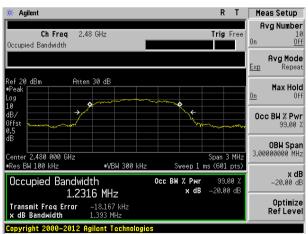
🔆 Agilent				R	Т	Meas Setup
Ch Freq 2.4 Occupied Bandwidth	02 GHz			Trig	Free	Avg Number 10 On <u>Off</u>
						Avg Mode Exp Repeat
#Peak	1 30 dB	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•			Max Hold On Off
dB/ Offst 0.5			4	~~~~	~~~	0cc BW % Pwr 99.00 %
dB Center 2.402 000 GHz •Res BW 100 kHz	•VBW 300		Sweep 1	Span 3		OBW Spar 3.00000000 MHz
Occupied Bandwic				99. -20.01	00 %	x dB -20.00 dB
Transmit Freq Error x dB Bandwidth						Optimize RefLeve
Copyright 2000-2012 A	gilent Technol	ogies				

Lowest channel

🔆 Agilent 🛛 🦷 R T	Meas Setup
Ch Freq 2.441 GHz Trig Free Occupied Bandwidth	Avg Number 10 On <u>Off</u>
	Avg Mode Exp Repeat
Ref 20 dBm Atten 30 dB ■Peak Log 10 • • • • • • • • • • • • • • • • • • •	Max Hold On Off
dB/ 0ffst 0.5 dB	Occ BW % Pwr 99.00 %
Center 2.441 000 GHz Span 3 MHz Res BW 100 kHz VBW 300 kHz Sweep 1 ms (601 pts)	0BW Span 3.00000000 MHz
Оссирied Bandwidth Осс вм 2 Рмг 99.00 % 1.2348 MHz × dв -20.00 dB	x dB -20.00 dB
Transmit Freq Error -29.539 kHz x dB Bandwidth 1.420 MHz Copyright 2000-2012 Agilent Technologies	Optimize RefLevel

Middle channel

Test mode:


8-DPSK mode

🔆 Agilent			R	Т	Meas Setup
Ch Freq 2.402 Occupied Bandwidth	2 GHz		Trig	Free	Avg Number 10 On <u>Off</u>
					Avg Mode Exp Repeat
Ref 20 dBm Atten 3 Peak Log 10	30 dB				Max Hold On Off
dB/ Offst 0.5		e e	~~	~	0cc BW % Pwr 99.00 %
dB Center 2.402 000 GHz •Res BW 100 kHz	#VBW 300 kHz	Sweep 1	Span 3		OBW Span 3.00000000 MHz
Occupied Bandwidt	h	Occ BW % Pwr x dB	99. -20.0	00 %	x dB -20.00 dB
Transmit Freq Error – x dB Bandwidth 1	36.283 kHz .402 MHz				Optimize RefLevel
Copyright 2000-2012 Agi	lent Technologie	8			

Lowest channel

🔆 Agilent 🛛 🦷 R T	Meas Setup
Ch Freq 2.441 GHz Trig Free Occupied Bandwidth	Avg Number 10 On <u>Off</u>
	Avg Mode Exp Repeat
Ref 20 dBm Atten 30 dB ■Peak Log 10 • • • • • • • • • • • • • • • • • • •	Max Hold On Off
dB/ 0.5 dB	Occ BW % Pwr 99.00 %
Center 2.441 000 GHz Span 3 MHz Res BW 100 kHz VBW 300 kHz Sweep 1 ms (601 pts)	0BW Span 3.00000000 MHz
Occupied Bandwidth Occ BW % Pwr 99.00 % 1.2278 MHz × dB -20.00 dB	x dB -20.00 dB
Transmit Freq Error -26.483 kHz x dB Bandwidth 1.398 MHz Copyright 2000-2012 Agilent Technologies	Optimize RefLevel

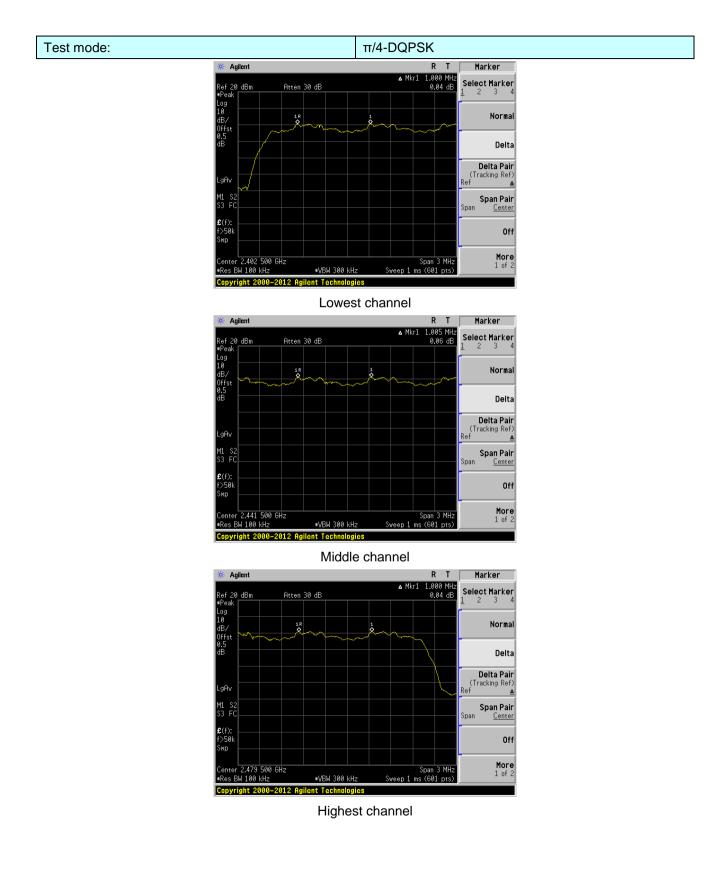
Middle channel

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Limit:		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details Refer to section 5.2 for details Pass	
Test mode:		
Test results:		

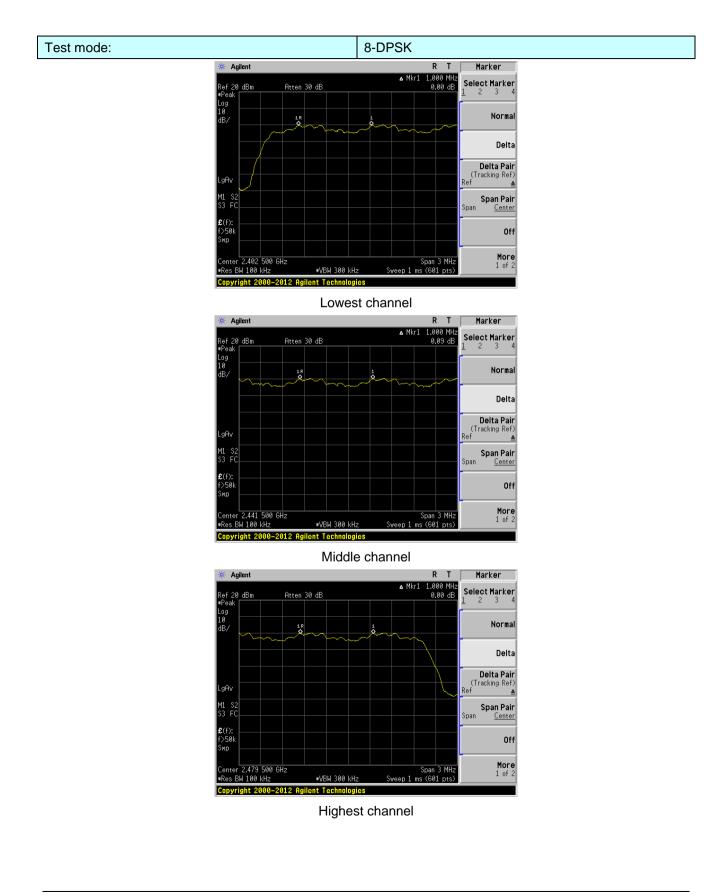
7.5 Carrier Frequencies Separation

Measurement Data

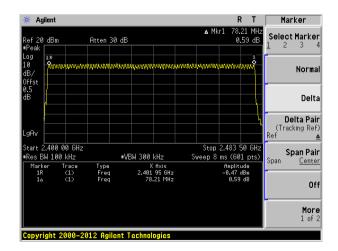
Mode	Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
	Lowest	1005	948	Pass
GFSK	Middle	1000	948	Pass
	Highest	1005	948	Pass
	Lowest	1000	949	Pass
π/4-DQPSK	Middle	1005	949	Pass
	Highest	1000	949	Pass
	Lowest	1000	935	Pass
8-DPSK	Middle	1000	935	Pass
	Highest	1000	935	Pass


Note: According to section 7.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	1423	948
π/4-DQPSK	1424	949
8-DPSK	1402	935



Test plot as follows: Modulation mode: GFSK Agilent R T Peak Search 1.005 MHz 0.07 dB ▲ Mkr1 lef 20 dB Atten 30 dB Next Peak Next Pk Right 1 R Next Pk Left Min Search Pk-Pk Search Mkr→CF More 1 of 2 Span 3 MHz Sweep 1 ms (601 pts) .402 500 GHz ≢VBW 300 kHz s BW 100 kHz Copyright 2000-2012 Agilent Technologies Lowest channel 🔆 Agilent R T Peak Search 1.000 MH: 0.01 dB ∆ Mkr1 Atten 30 dB Next Peak ef 20 dBm Next Pk Right 1 R ffs Next Pk Left Min Search Pk-Pk Search Mkr → CF More 1 of 2 enter 2.441 500 GHz es BW 100 kHz Span 3 MHz Sweep 1 ms (601 pts) ≢VBW 300 kHz Copyright 2000-2012 Agilent Technologies Middle channel R T Peak Search 🔆 Agilent 1.005 MH: -0.04 dB ▲ Mkr1 Next Peak Atten 30 dB Next Pk Right ffs Next Pk Left Min Search ۱Ĥ۱ Pk-Pk Search Mkr → CF 50 Span 3 MHz Sweep 1 ms (601 pts) More 1 of 2 2.479 500 GHz ≢VBW 300 kHz es BW 100 kHz pyright 2000–2012 Agilent Technologies C Highest channel



Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details Refer to section 5.2 for details	
Test mode:		
Test results:	Pass	

7.6 Hopping Channel Number

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79	15	Pass
π/4-DQPSK	79	15	Pass
8-DPSK	79	15	Pass

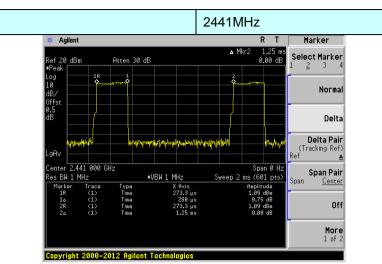
7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

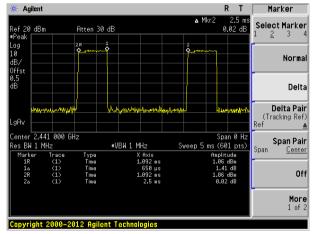
Measurement Data

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1/2-DH1/3-DH1	400.00	400	Pass
2441MHz	DH3/2-DH3/3-DH3	400.00	400	Pass
2441MHz	DH5/2-DH5/3-DH5	399.68	400	Pass

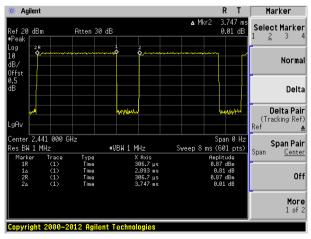
The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s


Test channel: 2441MHz as blow

DH1/2-DH1/3-DH1 time slot=1.25(ms)*(1600/ (2*79))*31.6=400ms DH3/2-DH3/3-DH3 time slot=2.5(ms)*(1600/ (4*79))*31.6=400ms DH5/2-DH5/3-DH5 time slot=3.747(ms)*(1600/ (6*79))*31.6=399.68ms



Test plot as follows:


Test channel:

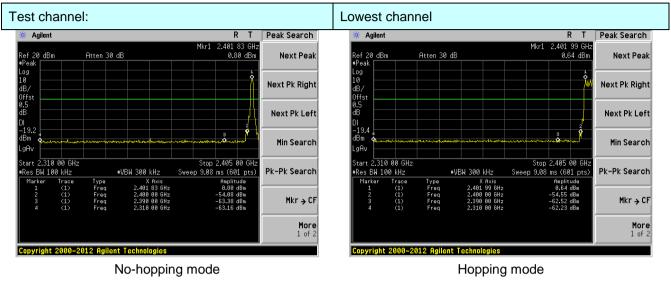
DH1/2-DH1/3-DH1

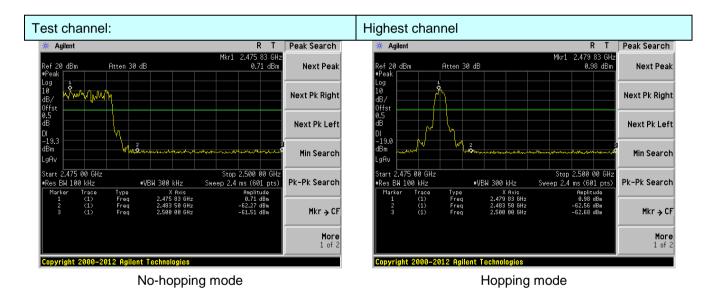
DH3/2-DH3/3-DH3

DH5/2-DH5/3-DH5

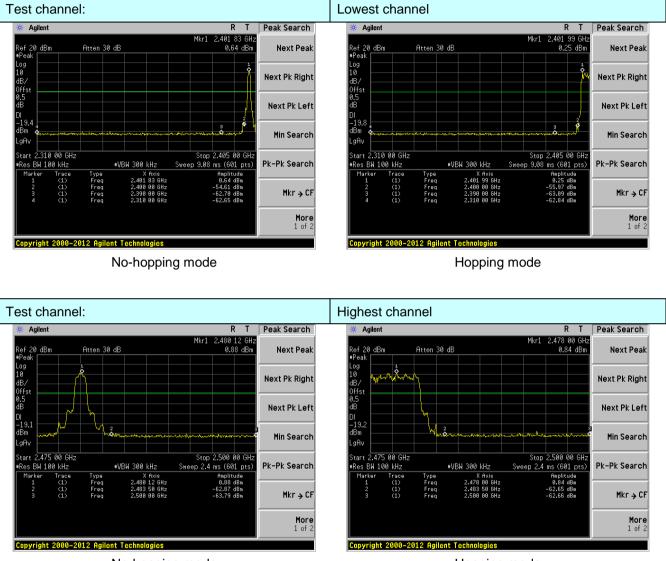
	Pseudorandom Freque			
	Test Requirement:	FCC Part15 C Section 15.247 (a)(1)/g/h requirement:		
		ms shall have hopping channel carrier frequencies separated by a minimum of 2 the hopping channel, whichever is greater.		
	 Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. 			
(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.				
EUT Pseudorandom Frequency Hopping Sequence				
	The pseudorandom sequence r added in a modulo-two addition begins with the first ONE of 9 co • Number of shift register stages	may be generated in a nine-stage shift register whose 5th and 9th stage outputs o stage. And the result is fed back to the input of the first stage. The sequence onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9		
	The pseudorandom sequence r added in a modulo-two addition begins with the first ONE of 9 cd	may be generated in a nine-stage shift register whose 5th and 9th stage outputs of stage. And the result is fed back to the input of the first stage. The sequence onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 guence: $2^9 - 1 = 511$ bits		
	The pseudorandom sequence r added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8	may be generated in a nine-stage shift register whose 5th and 9th stage outputs of stage. And the result is fed back to the input of the first stage. The sequence onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 guence: $2^9 - 1 = 511$ bits		
	The pseudorandom sequence is added in a modulo-two addition begins with the first ONE of 9 cd • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh	may be generated in a nine-stage shift register whose 5th and 9th stage outputs o stage. And the result is fed back to the input of the first stage. The sequence onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 guence: $2^9 - 1 = 511$ bits (non-inverted signal)		
	The pseudorandom sequence is added in a modulo-two addition begins with the first ONE of 9 cd • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh	ift Register for Generation of the PRBS sequence		
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Shi An example of Pseudorandom in	may be generated in a nine-stage shift register whose 5th and 9th stage outputs a stage. And the result is fed back to the input of the first stage. The sequence onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 guence: 2 ⁹ -1 = 511 bits (non-inverted signal) ift Register for Generation of the PRBS sequence Frequency Hopping Sequence as follow:		
	The pseudorandom sequence r added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh An example of Pseudorandom R 0 2 4 6	may be generated in a nine-stage shift register whose 5th and 9th stage outputs a stage. And the result is fed back to the input of the first stage. The sequence onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 guence: 2 ⁹ -1 = 511 bits (non-inverted signal) ift Register for Generation of the PRBS sequence Frequency Hopping Sequence as follow:		
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cd • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Sh An example of Pseudorandom in 0 2 4 6 Each frequency used equally or	may be generated in a nine-stage shift register whose 5th and 9th stage outputs a stage. And the result is fed back to the input of the first stage. The sequence onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 puence: 2 ⁹ -1 = 511 bits (non-inverted signal)		
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Shi An example of Pseudorandom in 0 2 4 6 Each frequency used equally of The system receivers have input	nay be generated in a nine-stage shift register whose 5th and 9th stage outputs o stage. And the result is fed back to the input of the first stage. The sequence onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 yuence: $2^9 \cdot 1 = 511$ bits (non-inverted signal)		
	The pseudorandom sequence in added in a modulo-two addition begins with the first ONE of 9 cc • Number of shift register stages • Length of pseudo-random seq • Longest sequence of zeros: 8 Linear Feedback Shift An example of Pseudorandom in 0 2 4 6 Each frequency used equally of The system receivers have input transmitters and shift frequencie	may be generated in a nine-stage shift register whose 5th and 9th stage outputs of stage. And the result is fed back to the input of the first stage. The sequence onsecutive ONEs; i.e. the shift register is initialized with nine ones. s: 9 guence: 2 ⁹ -1 = 511 bits (non-inverted signal)		

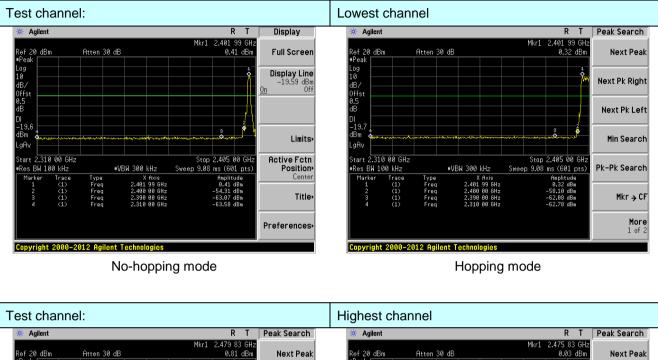
7.9 Band Edge


7.9.1 Conducted Emission Method


Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013		
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Test plot as follows:


GFSK Mode:


π /4-DQPSK Mode:

No-hopping mode

Hopping mode

Next Pk Right

Next Pk Left

Min Search

Mkr→CF

More 1 of 2

Pk-Pk Search

8-DPSK Mode:

aA

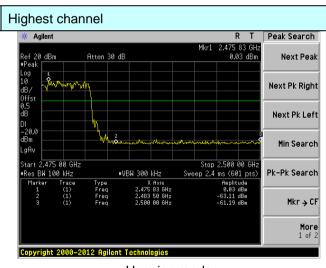
tart

2.475 00 GHz

rac (1) (1) (1)

BW 100 kHz

#VBW 300 kHz


X Axis 2.479 83 GHz 2.483 50 GHz 2.588 88 GHz

Type Freq Freq Freq

Copyright 2000–2012 Agilent Technologies

Stop 2.500 00 GHz Sweep 2.4 ms (601 pts)

> dBm dBm

Hopping mode

7.9.2 Radiated Emission Me	ethod						
Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205				
Test Method:	ANSI C63.10:20	13					
Test Frequency Range:	All of the restric 2500MHz) data		tested, only	the worst	band's (2310MHz to		
Test site:	Measurement Di	stance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value		
Limit:	Frequency Limit (dBuV/m @3m) Rem						
	Above 1		54.0 74.0		Average Value Peak Value		
	Tum Table+ <150cm>	< 3n	n > Test Antenna < 1m 4m >	*			
Test Procedure:	 Receiver Preamplifier The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 						
	tower. 3. The antenna ground to dete	th was mounte height is varie ermine the ma d vertical polar	ed on the top d from one m aximum value	of a variabl neter to four e of the field	nce-receiving le-height antenna r meters above the l strength. Both are set to make the		
	 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified 						
	Bandwidth wit	h Maximum H	lold Mode.				
	limit specified	, then testing (e reported. Oth be re-tested o	could be stop nerwise the e one by one us	ped and the missions th sing peak, c			
Test Instruments:	Refer to section	6.0 for details					
Test mode:	Refer to section	5.2 for details					
Test results:	Pass						

7.9.2 Radiated Emission Method

Measurement Data

Test channe	est channel: Lowest channel								
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2310.00	40.12	27.59	5.38	30.18	42.91	74.00	-31.09	Horizontal	
2400.00	56.51	27.58	5.40	30.18	59.31	74.00	-14.69	Horizontal	
2310.00	40.40	27.59	5.38	30.18	43.19	74.00	-30.81	Vertical	
2400.00	58.25	27.58	5.40	30.18	61.05	74.00	-12.95	Vertical	
Average val	Average value:								
	Read	Antenna	Cable	Preamp			Over		
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit (dB)	Polarization	
	Level	Factor	Loss	Factor			Limit	Polarization Horizontal	
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)		
(MHz) 2310.00	Level (dBuV) 31.29	Factor (dB/m) 27.59	Loss (dB) 5.38	Factor (dB) 30.18	(dBuV/m) 34.08	(dBuV/m) 54.00	Limit (dB) -19.92	Horizontal	
(MHz) 2310.00 2400.00	Level (dBuV) 31.29 42.37	Factor (dB/m) 27.59 27.58	Loss (dB) 5.38 5.40	Factor (dB) 30.18 30.18	(dBuV/m) 34.08 45.17	(dBuV/m) 54.00 54.00	Limit (dB) -19.92 -8.84	Horizontal Horizontal	
(MHz) 2310.00 2400.00 2310.00	Level (dBuV) 31.29 42.37 31.04	Factor (dB/m) 27.59 27.58 27.59	Loss (dB) 5.38 5.40 5.38	Factor (dB) 30.18 30.18 30.18	(dBuV/m) 34.08 45.17 33.83	(dBuV/m) 54.00 54.00 54.00	Limit (dB) -19.92 -8.84 -20.17	Horizontal Horizontal Vertical	
(MHz) 2310.00 2400.00 2310.00	Level (dBuV) 31.29 42.37 31.04 43.75	Factor (dB/m) 27.59 27.58 27.59	Loss (dB) 5.38 5.40 5.38	Factor (dB) 30.18 30.18 30.18 30.18	(dBuV/m) 34.08 45.17 33.83	(dBuV/m) 54.00 54.00 54.00 54.00	Limit (dB) -19.92 -8.84 -20.17	Horizontal Horizontal Vertical	

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	41.89	27.53	5.47	29.93	44.96	74.00	-29.04	Horizontal
2500.00	41.59	27.55	5.49	29.93	44.70	74.00	-29.30	Horizontal
2483.50	42.28	27.53	5.47	29.93	45.35	74.00	-28.65	Vertical
2500.00	42.33	27.55	5.49	29.93	45.44	74.00	-28.56	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	34.09	27.53	5.47	29.93	37.16	54.00	-16.84	Horizontal
2500.00	32.48	27.55	5.49	29.93	35.59	54.00	-18.41	Horizontal
2483.50	35.07	27.53	5.47	29.93	38.14	54.00	-15.86	Vertical
2500.00	32.17	27.55	5.49	29.93	35.28	54.00	-18.72	Vertical

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

4. During the test, pre-scan the GFSK, π/4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

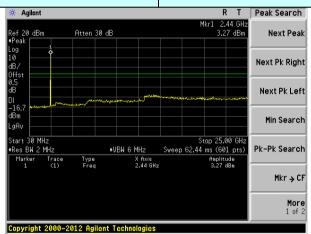
7.10 Spurious Emission

7.10.1 Conducted Emission Method

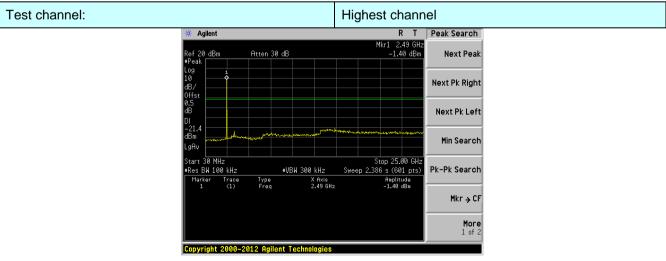
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Remark:

During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.

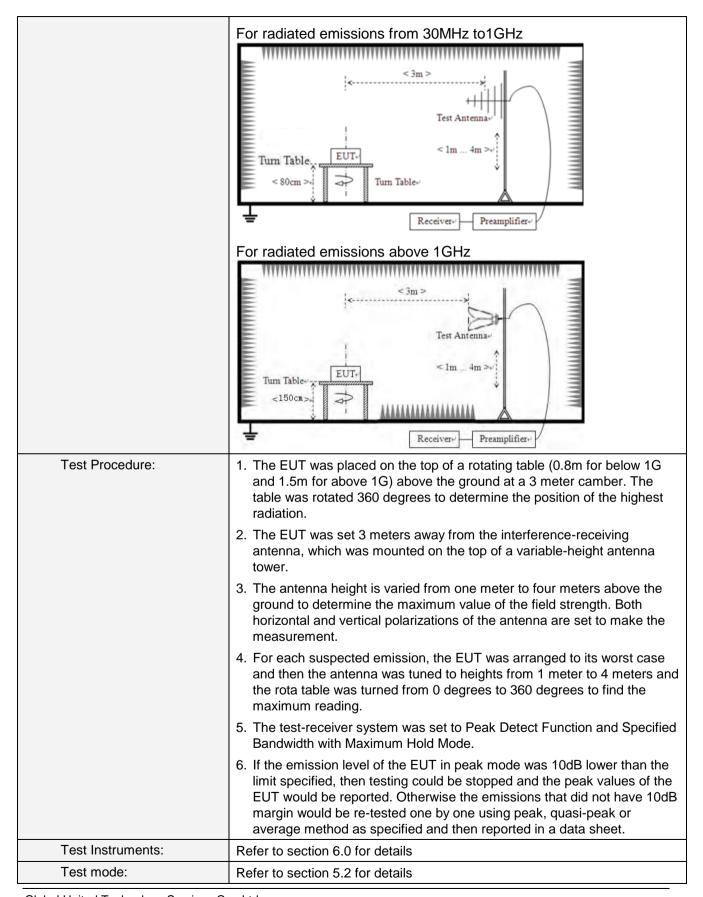


Test channel: Lowest channel R T Peak Search Agilent 2.40 GH 3.26 dBm Mkr1 Next Peak f 20 dB Atten 30 dB Next Pk Right Next Pk Left Min Search аĤ Start 30 MHz Stop 25.00 GH; Sweep 62.44 ms (601 pts) s BW 2 MHz #VBW 6 MHz Pk-Pk Search Marker Trace (1) Type Freq X Axis 2.40 GHz Amplitude 3.26 dBm Mkr → CF More 1 of 2 Copyright 2000-2012 Agilent Technologies


30MHz~25GHz

Middle channel

30MHz~25GHz



Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.10.2 Radiated Emission Method

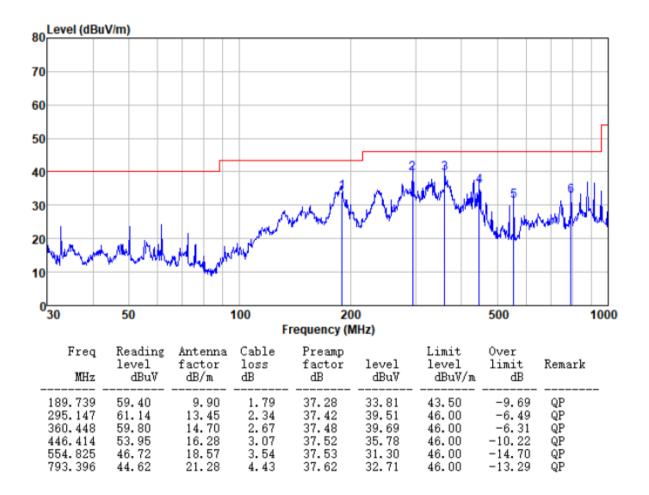
Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: (3m						
Receiver setup:	Frequency	۵	Detector RBV		W VBW		,	Value	
	9KHz-150KHz	Qı	uasi-peak	200	Hz	600H	z	Quasi-peak	
	150KHz-30MHz (uasi-peak	9KH	Ηz	30KH	z	Quasi-peak	
	30MHz-1GHz	Q	uasi-peak	120K	Ήz	300KH	lz	Quasi-peak	
	Above 1GHz		Peak	1Mł	Ηz	3MHz	z	Peak	
	Above 10112		Peak	1Mł	Ηz	10Hz		Average	
Limit:	Frequency		Limit (u∖	//m)	V	/alue	Ν	leasurement Distance	
	0.009MHz-0.490M	IHz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	IHz	24000/F(KHz)		QP	30m		
	1.705MHz-30MH	z	30		QP		30m		
	30MHz-88MHz		100		QP				
	88MHz-216MHz	2	150		QP				
	216MHz-960MH	Z	200		QP			3m	
	960MHz-1GHz		500		QP			311	
	Above 1GHz		500	Av		erage			
	710070 10112		5000		F	Peak			
Test setup:	For radiated emiss	sions	from 9kH	z to 30	эмн	z			
	Turn Table 80cm	The second se	< 3m > Test A um Table+	ntenna 1m Receive)		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

Measurement data:

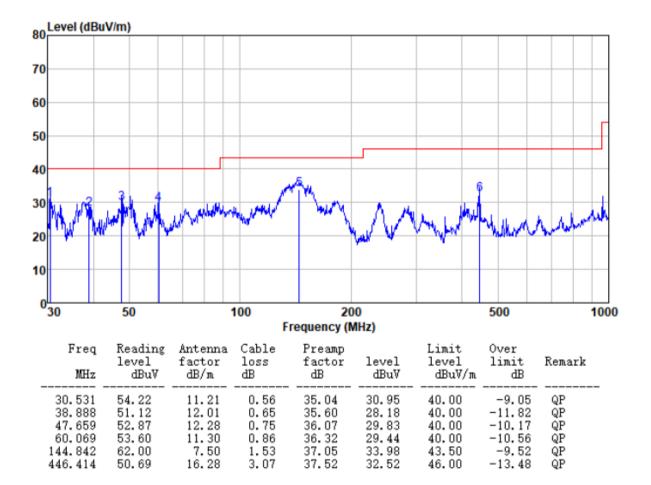
Remarks:

- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz


Pre-scan all test modes, found worst case at 8-DPSK 2441MHz, and so only show the test result of 8-DPSK 2441MHz

Horizontal:

Vertical:

-16.52

-16.29

-14.93

54.00

54.00

54.00

54.00

54.00

Horizontal

Horizontal

Horizontal

Horizontal

Horizontal

Above 1GHz

Test channel	:			Lowe	st channel			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	36.05	31.78	8.60	32.09	44.34	74.00	-29.66	Vertical
7206.00	31.00	36.15	11.65	32.00	46.80	74.00	-27.20	Vertical
9608.00	30.73	37.95	14.14	31.62	51.20	74.00	-22.80	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertical
4804.00	40.08	31.78	8.60	32.09	48.37	74.00	-25.63	Horizontal
7206.00	32.64	36.15	11.65	32.00	48.44	74.00	-25.56	Horizontal
9608.00	30.03	37.95	14.14	31.62	50.50	74.00	-23.50	Horizontal
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	25.10	31.78	8.60	32.09	33.39	54.00	-20.61	Vertical
7206.00	19.82	36.15	11.65	32.00	35.62	54.00	-18.38	Vertical
9608.00	18.98	37.95	14.14	31.62	39.45	54.00	-14.55	Vertical
12010.00	*					54.00		Vertical
14412.00	*					54.00		Vertical

32.09

32.00

31.62

37.48

37.71

39.07

14412.00 Remarks:

4804.00

7206.00

9608.00

12010.00

29.19

21.91

18.60

*

*

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

8.60

11.65

14.14

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

31.78

36.15

37.95

Test channel	:			Middl	e channel			
Peak value:				·				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	36.13	31.85	8.67	32.12	44.53	74.00	-29.47	Vertical
7323.00	31.05	36.37	11.72	31.89	47.25	74.00	-26.75	Vertical
9764.00	30.78	38.35	14.25	31.62	51.76	74.00	-22.24	Vertical
12205.00	*					74.00		Vertical
14646.00	*					74.00		Vertical
4882.00	40.18	31.85	8.67	32.12	48.58	74.00	-25.42	Horizontal
7323.00	32.70	36.37	11.72	31.89	48.90	74.00	-25.10	Horizontal
9764.00	30.09	38.35	14.25	31.62	51.07	74.00	-22.93	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*					74.00		Horizontal
Average valu	le:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	25.18	31.85	8.67	32.12	33.58	54.00	-20.42	Vertical
7323.00	19.88	36.37	11.72	31.89	36.08	54.00	-17.92	Vertical
9764.00	19.03	38.35	14.25	31.62	40.01	54.00	-13.99	Vertical
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertical
4882.00	29.27	31.85	8.67	32.12	37.67	54.00	-16.33	Horizontal
7323.00	21.97	36.37	11.72	31.89	38.17	54.00	-15.83	Horizontal
9764.00	18.66	38.35	14.25	31.62	39.64	54.00	-14.36	Horizontal
12205.00	*					54.00		Horizontal
14646.00	*					54.00		Horizontal

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

Test channel	:			Highe	est channel			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	35.96	31.93	8.73	32.16	44.46	74.00	-29.54	Vertical
7440.00	30.94	36.59	11.79	31.78	47.54	74.00	-26.46	Vertical
9920.00	30.67	38.81	14.38	31.88	51.98	74.00	-22.02	Vertical
12400.00	*					74.00		Vertical
14880.00	*					74.00		Vertical
4960.00	39.97	31.93	8.73	32.16	48.47	74.00	-25.53	Horizontal
7440.00	32.57	36.59	11.79	31.78	49.17	74.00	-24.83	Horizontal
9920.00	29.97	38.81	14.38	31.88	51.28	74.00	-22.72	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal
Average valu	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	25.07	31.93	8.73	32.16	33.57	54.00	-20.43	Vertical
7440.00	19.81	36.59	11.79	31.78	36.41	54.00	-17.59	Vertical
9920.00	18.96	38.81	14.38	31.88	40.27	54.00	-13.73	Vertical
12400.00	*					54.00		Vertical
14880.00	*					54.00		Vertical
4960.00	29.16	31.93	8.73	32.16	37.66	54.00	-16.34	Horizontal
7440.00	21.90	36.59	11.79	31.78	38.50	54.00	-15.50	Horizontal
9920.00	18.59	38.81	14.38	31.88	39.90	54.00	-14.10	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remarks:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. *"*", means this data is the too weak instrument of signal is unable to test.*

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. The test data shows only the worst case GFSK mode

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----