

RADIO TEST REPORT

Report No.:STS2107059W01

Issued for

Wuxi Wisen Innovation Co., Ltd.

Office D501, 530 Mansion, Taihu International Hi-tech Zone, Xinwu District, Wuxi, China

Product Name:	4-Channel Vibrating Wire Interface Node
Brand Name:	WiSenMeshWAN®
Model Name:	6A08
Series Model:	6A0X
FCC ID:	2AUZW-6A0X
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, all test data presented in this report is only applicable to presented test sample.

APPROVAL

TEST RESULT CERTIFICATION

Applicant's Name...... Wuxi Wisen Innovation Co., Ltd.

Address Office D501, 530 Mansion, Taihu International Hi-tech Zone, Xinwu

District, Wuxi, China

Manufacturer's Name: Wuxi Wisen Innovation Co., Ltd.

Address Office D501, 530 Mansion, Taihu International Hi-tech Zone, Xinwu

District, Wuxi, China

Product Description

Product Name: 4-Channel Vibrating Wire Interface Node

Brand Name: WiSenMeshWAN®

Model Name: 6A08

Series Model: 6A0X

Test Standards..... FCC Part15.247

Test Procedure ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test:

Date of receipt of test item 08 July 2021

Date (s) of performance of tests...... 08 July 2021 ~ 24 July 2021

Date of Issue...... 24 July 2021

Test Result.....: Pass

Testing Engineer :

(Chris Chen)

Technical Manager :

Authorized Signatory:

(Sean she)

11.00 12

(Vita Li)

A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China Tel: +86-755 3688 6288 Fax:+86-755 3688 6277 Http://www.stsapp.com E-mail: sts@stsapp.com

Table of Contents

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 TEST SOFTWARE AND POWER LEVEL	9
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	10
2.6 EQUIPMENTS LIST	11
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 TEST PROCEDURE	14
3.3 TEST SETUP	14
3.4 EUT OPERATING CONDITIONS	14
3.5 TEST RESULTS	15
4. RADIATED EMISSION MEASUREMENT	16
4.1 RADIATED EMISSION LIMITS	16
4.2 TEST PROCEDURE	18
4.3 TEST SETUP	19
4.4 EUT OPERATING CONDITIONS	19
4.5 FIELD STRENGTH CALCULATION	20
4.6 TEST RESULTS	21
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	28
5.1 LIMIT	28
5.2 TEST PROCEDURE	28
5.3 TEST SETUP	28
5.4 EUT OPERATION CONDITIONS	28
5.5 TEST RESULTS	29
6. POWER SPECTRAL DENSITY TEST	33
6.1 LIMIT	33
6.2 TEST PROCEDURE	33
6.3 TEST SETUP	33
6.4 EUT OPERATION CONDITIONS	33

Table of Contents

6.5 TEST RESULTS	34
7. BANDWIDTH TEST	36
7.1 LIMIT	36
7.2 TEST PROCEDURE	36
7.3 TEST SETUP	36
7.4 EUT OPERATION CONDITIONS	36
7.5 TEST RESULTS	37
8. OUTPUT POWER TEST	39
8.1 LIMIT	39
8.2 TEST PROCEDURE	39
8.3 TEST SETUP	39
8.4 EUT OPERATION CONDITIONS	39
8.5 TEST RESULTS	40
9. ANTENNA REQUIREMENT	41
9.1 STANDARD REQUIREMENT	41
9.2 EUT ANTENNA	41
10. EUT TEST PHOTO	42

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	24 July 2021	STS2107059W01	ALL	Initial Issue

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	N/A		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)(3)	Output Power	PASS		
15.209	Radiated Spurious Emission	PASS		
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.205	Restricted bands of operation	PASS		
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS		
15.203	Antenna Requirement	PASS		

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2013.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD

Add.: A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ,

Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 9K-30MHz	±2.84dB
4	All emissions, radiated 30M-1GHz	±4.39dB
5	All emissions, radiated 1G-6GHz	±5.10dB
6	All emissions, radiated>6G	±5.48dB
7	Conducted Emission (9KHz-150KHz)	±2.79dB
8	Conducted Emission (150KHz-30MHz)	±2.80dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	4-Channel Vibrating Wire Interface Node			
Trade Name	WiSenMeshWAN®			
Model Name	6A08			
Series Model	6A0X			
Model Difference	6A0X, Where X can be 0-F (Hexadecimal).			
	The EUT is a 4-Cha	nnel Vibrating Wire Interface Node		
Product Description	Operation Frequency:	902MHz-928MHz		
	Modulation Type:	FSK/LoRa		
	Number Of Channel:	Please refer to the Note 2.		
	Antenna Designation:	Please refer to the Note 3.		
	Antenna Gain (dBi) 0dBi			
Channel List	Please refer to the Note 2.			
Battery	Rated Voltage:3.6V Capacity: 19AH			
Hardware version number	V1.0			
Software version number	V1538			
Connecting I/O Port(s)	Please refer to the I	Note 1.		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.

Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)		
01	905	04	920		
02	910	05	925		
03	915				

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	WiSenMesh WAN®	6A08	External	N/A	0dBi	ANT

Note: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH01(905MHz)	FSK/LoRa
Mode 2	TX CH03(915MHz)	FSK/LoRa
Mode 3	TX CH05(925MHz)	FSK/LoRa

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the

operating channel as well as the output power level.

RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
Other SRD	902-928MHz	FSK/LoRa	0	Default	The EUT has signal transmission when it is powered on

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

	EUT			
		EUT	EUT	EUT

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	N/A	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11
Signal Analyzer	R&S	FSV 40-N	101823	2020.10.10	2021.10.09
Active loop Antenna	ZHINAN	ZN30900C	16035	2021.04.11	2022.04.10
Bilog Antenna	TESEQ	CBL6111D	34678	2020.10.12	2022.10.11
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2019.10.15	2021.10.14
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2020.10.12	2022.10.11
Pre-Amplifier (0.1M-3GHz)	EM	EM330	060665	2020.10.12	2021.10.11
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2020.10.12	2021.10.11
Pre-Amplifier (18G-40GHz)	SKET	LNPA-1840-50	SK2018101801	2020.10.10	2021.10.09
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A
Test SW	FARAD	E	Z-EMC(Ver.STS	LAB-03A1 RE)	

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2020.10.12	2021.10.11
LISN	R&S	ENV216	101242	2020.10.12	2021.10.11
LISN	EMCO	3810/2NM	23625	2020.10.12	2021.10.11
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
Test SW	FARAD	EZ-EMC(Ver.STSLAB-03A1 CE)			

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
	Keysight	U2021XA	MY55520005	2020.10.10	2021.10.09
Power Sensor			MY55520006	2020.10.10	2021.10.09
Fower Serisor			MY56120038	2020.10.10	2021.10.09
			MY56280002	2020.10.10	2021.10.09
Signal Analyzer	Agilent	N9020A	MY51110105	2021.03.04	2022.03.03
Temperature & Humidity	HH660	Mieo	N/A	2020.10.13	2021.10.12
MIMO Power measurement test Set	Keysight	U2021XA	MY55520005	2020.10.10	2021.10.09
Test SW FARAD		E	Z-EMC(Ver.STS	LAB-03A1 RE)	

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

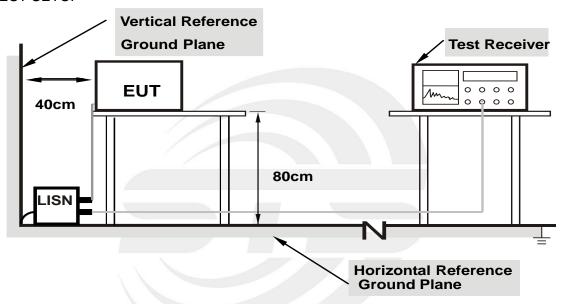
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

EDECHENCY (MH-)	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

Temperature:	N/A	Relative Humidity:	N/A
Test Voltage:	N/A	Phase:	L/N
Test Mode:	N/A		

Note: EUT is only power by battery, So it is not applicable for this test.

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz) 3	
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP		
Start Frequency	30 MHz(Peak/QP)		
Stop Frequency	1000 MHz (Peak/QP)		
RB / VB (emission in restricted	120 KHz / 200 KHz		
band)	120 KHz / 300 KHz		

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)		
band)	1 MHz/1/T MHz(AVG)		

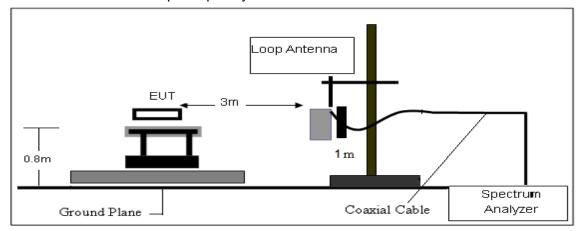
For Restricted band

Spectrum Parameter	Setting			
Detector	Peak/AV			
Start/Stan Fraguency	Lower Band Edge: 890 to 910 MHz			
Start/Stop Frequency	Upper Band Edge: 920 to 940 MHz			
DD /VD	1 MHz / 3 MHz(Peak)			
RB / VB	1 MHz/1/T MHz(AVG)			

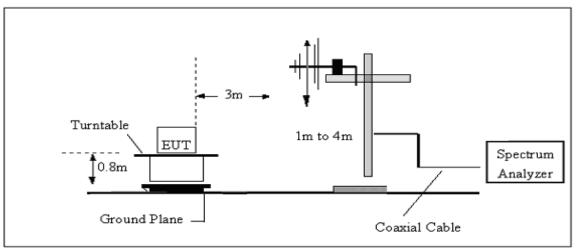
Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Page 18 of 42

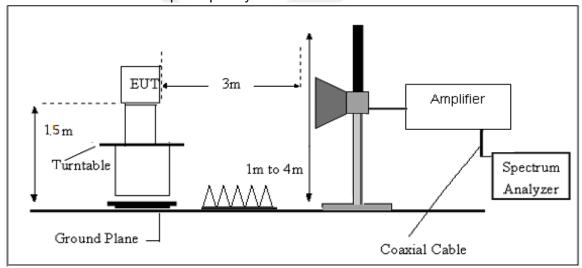
4.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

Temperature:	23.1(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.6V	Polarization:	
Test Mode:	TX Mode		

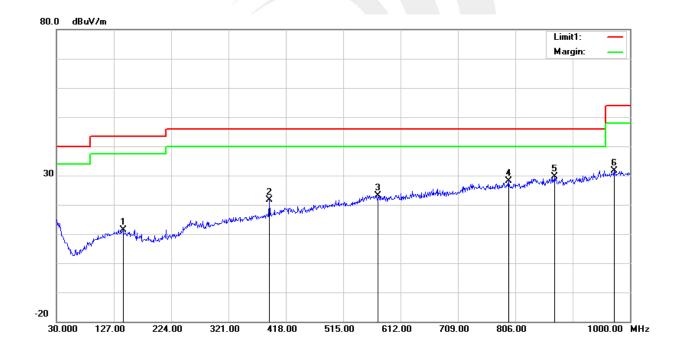
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

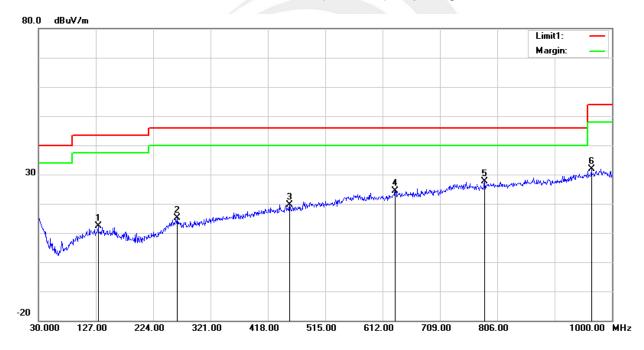

(30MHz -1000MHz)

Temperature:	23.1(C)	Relative Humidity:	60%RH			
Test Voltage:	DC 3.6V	Phase:	Horizontal			
Test Mode:	Mode 1/2/3 (Mode 3 worst mode)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	142.5200	29.66	-18.18	11.48	43.50	-32.02	QP
2	389.8700	33.15	-11.60	21.55	46.00	-24.45	QP
3	574.1700	28.91	-5.67	23.24	46.00	-22.76	QP
4	794.3600	30.25	-2.00	28.25	46.00	-17.75	QP
5	871.9600	30.29	-0.55	29.74	46.00	-16.26	QP
6	972.8400	29.53	2.19	31.72	54.00	-22.28	QP

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain



Temperature:	23.1(C)	Relative Humidity:	60%RH			
Test Voltage:	DC 3.6V	Phase:	Vertical			
Test Mode:	Mode 1/2/3 (Mode 3 worst mode)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	130.8800	30.60	-18.23	12.37	43.50	-31.13	QP
2	264.7400	29.77	-14.75	15.02	46.00	-30.98	QP
3	454.8600	29.29	-9.57	19.72	46.00	-26.28	QP
4	633.3400	29.46	-4.98	24.48	46.00	-21.52	QP
5	784.6600	29.78	-2.10	27.68	46.00	-18.32	QP
6	965.0800	30.03	1.89	31.92	54.00	-22.08	QP

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

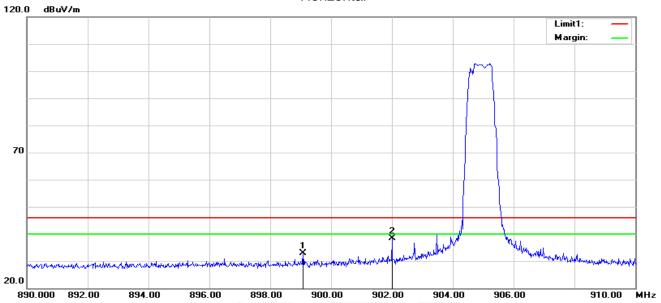
(1GHz-25GHz) Spurious emission Requirements

FSK/LoRa

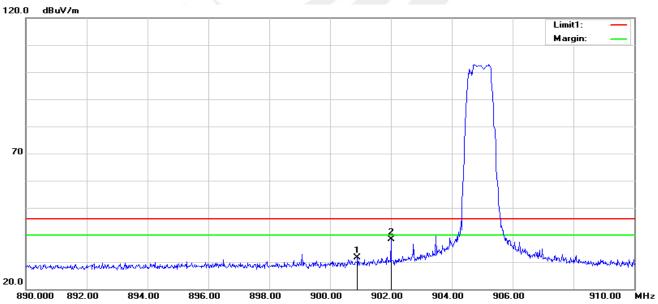
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Commone
				Low Cha	nnel (FSK/LoR	a /905 MHz)				
1230.01	61.00	44.70	6.70	28.20	-9.80	51.20	74.00	-22.80	PK	Vertical
1230.01	51.36	44.70	6.70	28.20	-9.80	41.56	54.00	-12.44	AV	Vertical
1230.04	62.16	44.70	6.70	28.20	-9.80	52.36	74.00	-21.64	PK	Horizontal
1230.04	50.07	44.70	6.70	28.20	-9.80	40.27	54.00	-13.73	AV	Horizontal
1810.20	58.89	44.20	9.04	31.60	-3.56	55.33	74.00	-18.67	PK	Vertical
1810.20	49.34	44.20	9.04	31.60	-3.56	45.78	54.00	-8.22	AV	Vertical
1810.12	59.04	44.20	9.04	31.60	-3.56	55.48	74.00	-18.52	PK	Horizontal
1810.12	49.65	44.20	9.04	31.60	-3.56	46.09	54.00	-7.91	AV	Horizontal
2019.41	48.95	44.20	9.86	32.00	-2.34	46.61	74.00	-27.39	PK	Vertical
2019.41	38.94	44.20	9.86	32.00	-2.34	36.60	54.00	-17.40	AV	Vertical
2019.34	47.13	44.20	9.86	32.00	-2.34	44.79	74.00	-29.21	PK	Horizontal
2019.34	38.40	44.20	9.86	32.00	-2.34	36.06	54.00	-17.94	AV	Horizontal
2714.94	53.63	43.50	11.40	35.50	3.40	57.03	74.00	-16.97	PK	Vertical
2714.94	44.81	43.50	11.40	35.50	3.40	48.21	54.00	-5.79	AV	Vertical
2714.97	54.70	43.50	11.40	35.50	3.40	58.10	74.00	-15.90	PK	Horizontal
2714.97	44.23	43.50	11.40	35.50	3.40	47.63	54.00	-6.37	AV	Horizontal
				Middle Ch	annel (FSK/Lo	Ra /915 MHz)				
1243.05	60.96	44.70	6.70	28.20	-9.80	51.16	74.00	-22.84	PK	Vertical
1243.05	50.13	44.70	6.70	28.20	-9.80	40.33	54.00	-13.67	AV	Vertical
1242.99	61.59	44.70	6.70	28.20	-9.80	51.79	74.00	-22.21	PK	Horizontal
1242.99	50.18	44.70	6.70	28.20	-9.80	40.38	54.00	-13.62	AV	Horizontal
1830.46	59.52	44.20	9.04	31.60	-3.56	55.96	74.00	-18.04	PK	Vertical
1830.14	49.35	44.20	9.04	31.60	-3.56	45.79	54.00	-8.21	AV	Vertical
1830.08	59.14	44.20	9.04	31.60	-3.56	55.58	74.00	-18.42	PK	Horizontal
1830.58	49.88	44.20	9.04	31.60	-3.56	46.32	54.00	-7.68	AV	Horizontal
2040.75	48.89	44.20	9.86	32.00	-2.34	46.55	74.00	-27.45	PK	Vertical
2040.75	39.34	44.20	9.86	32.00	-2.34	37.00	54.00	-17.00	AV	Vertical
2040.80	47.12	44.20	9.86	32.00	-2.34	44.78	74.00	-29.22	PK	Horizontal
2040.67	38.56	44.20	9.86	32.00	-2.34	36.22	54.00	-17.78	AV	Horizontal
2745.71	53.62	43.50	11.40	35.50	3.40	57.02	74.00	-16.98	PK	Vertical
2745.36	44.85	43.50	11.40	35.50	3.40	48.25	54.00	-5.75	AV	Vertical
2745.36	54.69	43.50	11.40	35.50	3.40	58.09	74.00	-15.91	PK	Horizontal
2745.63	43.64	43.50	11.40	35.50	3.40	47.04	54.00	-6.96	AV	Horizontal

				High Chann	el (FSK/LoR	a /925 MHz)				
1257.28	61.30	44.70	6.70	28.20	-9.80	51.50	74.00	-22.50	PK	Vertical
1257.28	50.84	44.70	6.70	28.20	-9.80	41.04	54.00	-12.96	AV	Vertical
1257.26	61.84	44.70	6.70	28.20	-9.80	52.04	74.00	-21.96	PK	Horizontal
1257.26	50.50	44.70	6.70	28.20	-9.80	40.70	54.00	-13.30	AV	Horizontal
1850.19	58.35	44.20	9.04	31.60	-3.56	54.79	74.00	-19.21	PK	Vertical
1850.28	49.77	44.20	9.04	31.60	-3.56	46.21	54.00	-7.79	AV	Vertical
1850.57	59.20	44.20	9.04	31.60	-3.56	55.64	74.00	-18.36	PK	Horizontal
1850.88	49.57	44.20	9.04	31.60	-3.56	46.01	54.00	-7.99	AV	Horizontal
2064.04	48.06	44.20	9.86	32.00	-2.34	45.72	74.00	-28.28	PK	Vertical
2064.04	39.87	44.20	9.86	32.00	-2.34	37.53	54.00	-16.47	AV	Vertical
2064.05	47.31	44.20	9.86	32.00	-2.34	44.97	74.00	-29.03	PK	Horizontal
2064.05	38.19	44.20	9.86	32.00	-2.34	35.85	54.00	-18.15	AV	Horizontal
2775.31	54.30	43.50	11.40	35.50	3.40	57.70	74.00	-16.30	PK	Vertical
2775.85	44.38	43.50	11.40	35.50	3.40	47.78	54.00	-6.22	AV	Vertical
2775.07	54.78	43.50	11.40	35.50	3.40	58.18	74.00	-15.82	PK	Horizontal
2775.10	43.53	43.50	11.40	35.50	3.40	46.93	54.00	-7.07	AV	Horizontal

Page 25 of 42

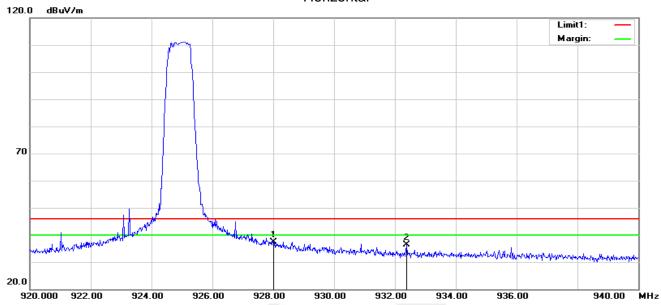

Note:

- 1) Factor = Antenna Factor + Cable Loss Pre-amplifier. Emission Level = Reading + Factor
- 2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

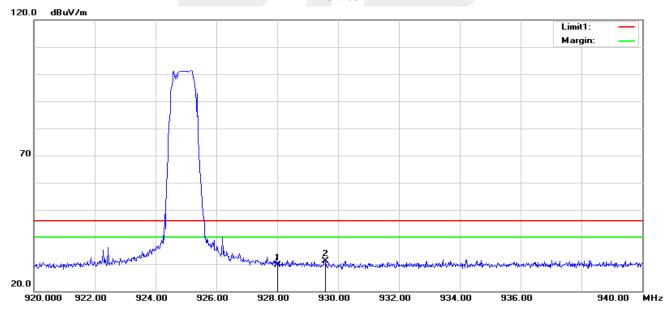

4.6 TEST RESULTS (Restricted Bands Requirements)

Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	899.0800	33.35	-0.47	32.88	46.00	-13.12	peak
2	902.0000	38.80	-0.40	38.40	46.00	-7.60	peak


Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	900.9000	31.98	-0.43	31.55	46.00	-14.45	peak
2	902.0000	38.80	-0.40	38.40	46.00	-7.60	peak



High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	928.0000	36.92	0.43	37.35	46.00	-8.65	peak
2	932.3800	35.74	0.74	36.48	46.00	-9.52	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	928.0000	29.15	0.43	29.58	46.00	-16.42	peak
2	929.5800	30.62	0.52	31.14	46.00	-14.86	peak

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

5.2 TEST PROCEDURE

Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	30 MHz to 10th carrier harmonic		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Band edge

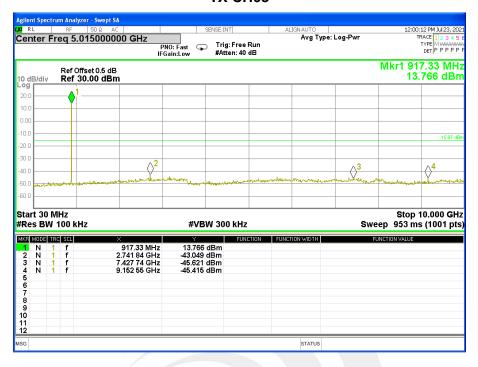
Spectrum Parameter	Setting		
Detector	Peak		
Stort/Stop Fragues av	Lower Band Edge: 850-910 MHz		
Start/Stop Frequency	Upper Band Edge: 920-1000 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

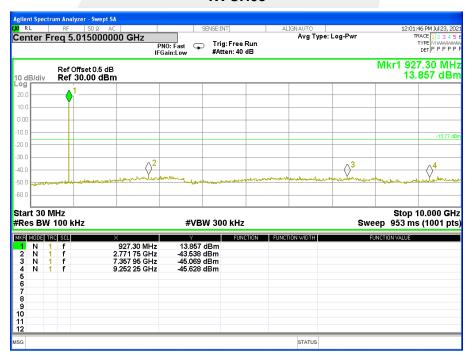
5.3 TEST SETUP

The EUT which is powered by the DC Power, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.


5.4 EUT OPERATION CONDITIONS

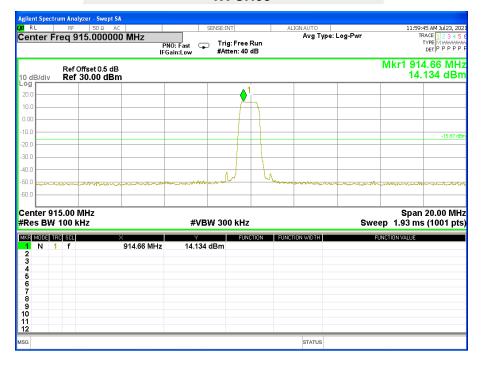
Please refer to section 3.4 of this report.


5.5 TEST RESULTS


Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	DC 3.6V	LIEST MUNCE.	TX Mode /CH01, CH03, CH05

TX CH03





For Band edge(it's also the reference level for conducted spurious emission)

TX CH01

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247,Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	902-928	PASS				

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: $100 \text{ kHz} \ge \text{RBW} \ge 3 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = power averaging (rms) or sample detector (when rms not available).
- 6. Sweep time = auto couple.
- 7. Trace mode = Employ trace averaging (rms) mode over a minimum of 100 traces.
- 8. Use the peak marker function to determine the maximum amplitude level.
- 9. If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.6V	LIEST MONDE.	TX Mode /CH01, CH03, CH05

Fraguenov	Power Density	Limit (dPm/2KHz)	Popult	
Frequency	(dBm/3kHz)	Limit (dBm/3KHz)	Result	
905 MHz	5.437	≤8	PASS	
915 MHz	7.069	≤8	PASS	
925 MHz	5.546	≤8	PASS	

TX CH03

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247,Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	902-928	PASS			

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS
Please refer to section 3.4 of this report.

7.5 TEST RESULTS

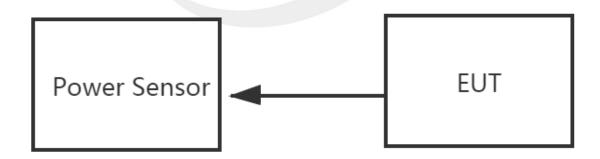
Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.6V	Test Mode:	TX Mode /CH01, CH03, CH05

Frequency	6dB Bandwidth (KHz)	Limit (KHz)	Result
905 MHz	850.900	≥500KHz	PASS
915 MHz	823.200	≥500KHz	PASS
925 MHz	817.800	≥500KHz	PASS

TX CH03

8. OUTPUT POWER TEST

8.1 LIMIT


FCC Part 15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Output Power	1 watt or 30dBm	902-928	PASS

8.2 TEST PROCEDURE

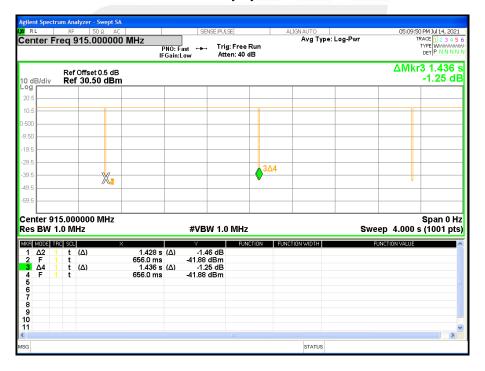
Method AVGSA-1 uses trace averaging with the EUT transmitting at full power throughout each sweep. The procedure for this method is as follows:

- a) Set span to at least 1.5 times the OBW.
- b) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- c) Set VBW \geq [3 x RBW].
- d) Number of points in sweep \geq [2 x span / RBW]. (This gives bin-to-bin spacing \leq RBW / 2, so that narrowband signals are not lost between frequency bins.)
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- g) If transmit duty cycle < 98%, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at the maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle \ge 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."
- h) Trace average at least 100 traces in power averaging (rms) mode.
- i) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.


8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.6V	LIEST MUCHE.	TX Mode /CH01, CH03, CH05

Test Channe	Frequency	Average Conducted Output Power	LIMIT
root onarino	(MHz) (dBm)		dBm
CH1	905	13.88	30
CH3	915	13.93	30
CH5	925	13.96	30

Note: Our power sensor test AVG power has no duty cycle display. The power sensor measures AVG power is Burst power. The software has considered the factor of the duty cycle factor, so it is unnecessary to add it again.

Duty cycle

Ton	Тр	Duty cycle(%)	Duty factor(dB)
1.428	1.436	99.44%	0.02

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is External Antenna. It comply with the standard requirement.

10. EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *

