

Product : Video Encoder

Trade mark : Kiloview

Model/Type reference : P3, PMD-4G, PMD-5G,

PBM-7000

Serial Number : N/A

Report Number : EED32Q80470302

FCC ID : 2AUYX-P3

Date of Issue : Jun. 24, 2024

Test Standards : 47 CFR Part 15 Subpart E

Test result : PASS

Prepared for:

ChangSha Kiloview Electronics CO.,LTD.

B4-106/109, Jiahua Intelligence Valley Industrial Park, 877 Huijin Road,
Yuhua District, Changsha, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Zhenxia Wen

Zhenxia Wen

Zhenxia Wen

Approved by:

Approved by:

Aaron Ma

Check No.: 2429120424

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 2 of 58

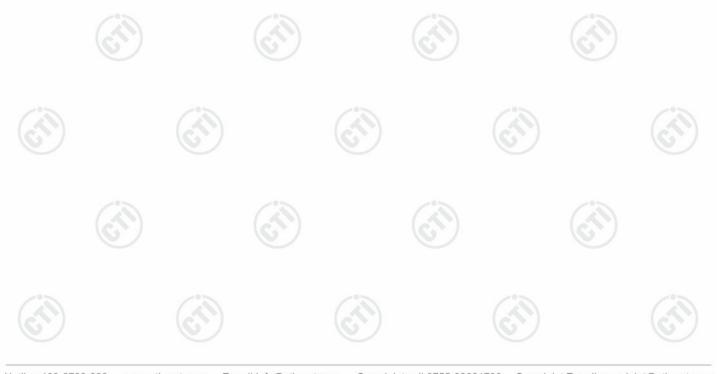
2 Content

1 COVER PAGE		 1
2 CONTENT		
3 VERSION		
4 TEST SUMMARY		 , <u>4</u>
5 GENERAL INFORMATION		 5
5.1 CLIENT INFORMATION	TOMER	
6 EQUIPMENT LIST		 9
7 RADIO TECHNICAL REQUIREMENTS SPECIF	CATION	 12
7.1 ANTENNA REQUIREMENT	IED BANDWIDTH	
8 APPENDIX 5G WIFI		
PHOTOGRAPHS OF TEST SETUP		
PHOTOGRAPHS OF EUT CONSTRUCTIONAL D	ETAILS	58

3 Version

Version No.	Date		Description	
00	Jun. 24, 2024	1	Original	-05
((42)		

4 Test Summary


Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS
99% Occupied bandwidth	(6,)	PASS
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS
Maximum Power Spectral Density	. A/ CER Part 15 Support E Section 15 407 (a)	
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS
7 7 7 3 3	/ / / / / / / / / / / / / / / / / / / /	/ // 1/1/

Remark:


Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model: P3, PMD-4G, PMD-5G, PBM-7000

Only the model P3 was tested. They have same electrical, PCB and layout, only the model name, P3 and PMD-4G、PMD-5G、PBM-7000 are different for marketing requirements.

5 General Information

5.1 Client Information

Applicant:	ChangSha Kiloview Electronics CO.,LTD.
Address of Applicant:	B4-106/109, Jiahua Intelligence Valley Industrial Park, 877 Huijin Road, Yuhua District, Changsha, China
Manufacturer:	ChangSha Kiloview Electronics CO.,LTD.
Address of Manufacturer:	B4-106/109, Jiahua Intelligence Valley Industrial Park, 877 Huijin Road, Yuhua District, Changsha, China
Factory :	ChangSha Kiloview Electronics CO.,LTD.
Address of Factory :	B4-106/109, Jiahua Intelligence Valley Industrial Park, 877 Huijin Road, Yuhua District, Changsha, China

5.2 General Description of EUT

Product Name:	Video Encode				
Model No.:	P3, PMD-4G,	PMD-5G, PBM-7000			
Test Model No.:	P3				
Trade mark:	Kiloview				
Product Type:	☐ Mobile	☐ Portable ☐ Fixed Location			
Type of Modulation:	IEEE 802.11n	: OFDM (BPSK, QPSK, 16QAM, 64QAM) (HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) c(VHT20/VHT40/VHT80): OFDM (BPSK, QPSK, 16QAM, QAM)			
Operating Frequency	U-NII-1 & U-NII-2A: 5180-5240MHz U-NII-3:5745-5825MHz				
Antenna Type:	PIFA Antenna				
Antenna Gain:	2.86dBi				
Power Supply:	Adapter: INPUT: 100-240V 50/60Hz 1.0A OUTPUT:12V/3A 30W				
	Battery	7.2V			
Test voltage:	DC 12V				
Sample Received Date:	Apr. 12, 2024				
Sample tested Date:	Apr. 22, 2024	to Jun. 14, 2024			

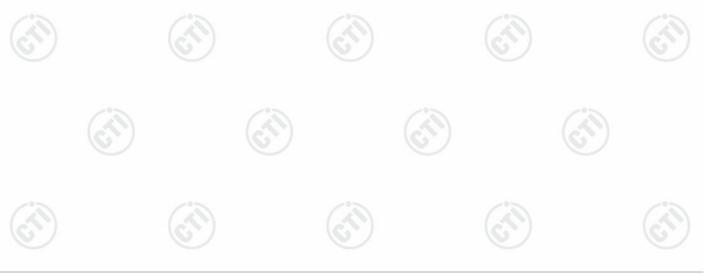
Page 6 of 58

Operation Frequency each of channel

802.11a/802.11n/802.11ac (20MHz) Frequency/Channel Operations:

	U-NII-1	·	U-NII-3
Channel	Channel Frequency(MHz)		Frequency(MHz)
36	5180	149	5745
40	5200	153	5765
44	5220	157	5785
48	5240	161	5805
- 6) .	165	5825

802.11n/802.11ac (40MHz) Frequency/Channel Operations:


	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
38	5190	151	5755
46	5230	159	5795

802.11ac(80MHz) Frequency/Channel Operations:

	U-NII-1		U-NII-3
Channel	Frequency(MHz)	Channel	Frequency(MHz)
42	5210	155	5775

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No.: EED32Q80470302 Page 7 of 58

5.3 Test Configuration

EUT Test Soπware Settings:						
/°>	Xshell 7	i.	(1)	100		
(5.62)	Default)	(85)	(37)		
set the low	est frequency, the midd	lle frequency and t	he highest frequency keep			
				ut with		
data rate	in lowest channel, an	d found the follow	list which it			
Mode			Data rate			
802.11a 6 Mbps						
	set the lowed JT. construction of the construction operation data rate in Mode	Xshell 7 Default Set the lowest frequency, the midd JT. construction and function in typical ng operation, which was shown in data rate in lowest channel, and	Xshell 7 Default Set the lowest frequency, the middle frequency and to our construction and function in typical operation. All the outgoing operation, which was shown in this test report and data rate in lowest channel, and found the follow Mode	Xshell 7 Default Set the lowest frequency, the middle frequency and the highest frequency keep of the construction and function in typical operation. All the test modes were carried on an operation, which was shown in this test report and defined as follows: data rate in lowest channel, and found the follow list which it Mode Data rate		

802.11a 6 Mbps 802.11n(HT20) MCS0 802.11n(HT40) MCS0 802.11ac(VHT20) MCS0 802.11ac(VHT40) MCS0 802.11ac(VHT80) MCS0

5.4 Test Environment

Operating Environment:						
Radiated Spurious Emissio	ns:					
Temperature:	22~25.0 °C	40				(41)
Humidity:	50~55 % RH	3		6.		(0.)
Atmospheric Pressure:	1010mbar					
Conducted Emissions:						
Temperature:	22~25.0 °C				(1)	
Humidity:	50~55 % RH		(67)		(6,2)	
Atmospheric Pressure:	1010mbar					
RF Conducted:						
SS	22~25.0 °C	-02		/°>		_°>
Humidity:	50~55 % RH	(1)		(3)		((1)
Atmospheric Pressure:	1010mbar					

Report No. : EED32Q80470302 Page 8 of 58

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Adapter	1	DSA-36PFN-	DSA-36PFN- FCC&CE	
		12FCA 120300		Electronics
(°)	(3)		2	Co.,Ltd.
Netbook	ASUSTek	1	FCC&CE	СТІ
Netbook	HP	HP ZHAN 66 PRO	FCC&CE	СТІ
		14 G4		

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
2		0.55dB (1GHz-18GHz)
	3 Radiated Spurious emission test	3.3dB (9kHz-30MHz)
		4.5dB (30MHz-1GHz)
3		4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction amingion	3.5dB (9kHz to 150kHz)
4	4 Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C

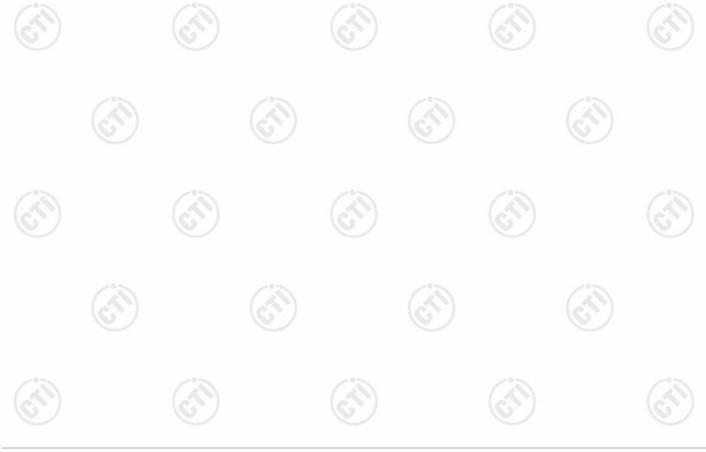
Report No.: EED32Q80470302 Page 9 of 58

6	Humidity test	3.8%		
7	DC power voltages	0.026%		

6 Equipment List

		RF te	st system			
Equipment	Manufacturer	facturer Model No. Serial Numbe		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication test set	R&S	CMW500	107929	06-28-2023	06-27-2024	
Signal R&S		SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024	
Spectrum Analyzer R&S		FSV40	101200	07-25-2023	07-24-2024	
RF control unit(power unit) MWRF-test		MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024	
High-low temperature test chamber High-low Dong Guang Qin Zhuo		LK-80GA	QZ20150611879	11-12-2023	12-10-2024	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0			
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025	

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial	Cal. date	Cal. Due date			
1.1.			Number	(mm-dd-yyyy)	(mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025			
Temperature/ Humidity	D (T11400	,	05-04-2023	05-03-2024			
Indicator	Defu	TH128	/	04-25-2024	04-24-2025			
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024			
Barometer	changchun	DYM3	1188					
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	(37)			



Page 10 of 58 Report No.: EED32Q80470302

(A)	2M Comi on	ochoje Chember (2)	Dedicted disturb		201
Equipment	Manufacturer	nechoic Chamber (2)- Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024
TRILOG Broadband schwarzbeck Antenna		VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Multi device Controller	maturo	NCD/070/10711112			(
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/16/2024	04/15/2025
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023 06/13/2024	06/19/2024 06/12/2025
Test software	Fara	EZ-EMC	EMEC-3A1-Pre		

Report No. : EED32Q80470302 Page 11 of 58

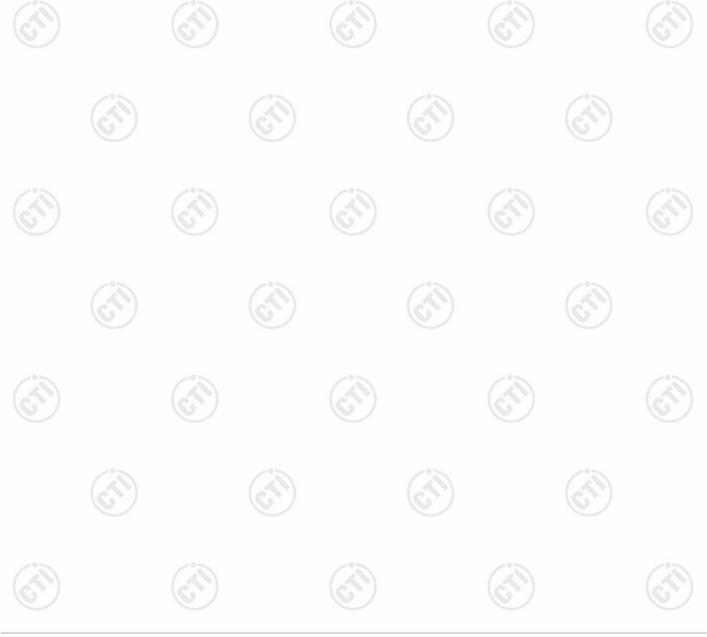
		(15)			(1)	
		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		6	
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-30-2021 04-28-2024	04-29-2024 04-27-2025	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-12-2024	04-11-2025	
Preamplifier	EMCI			03-08-2024	03-07-2025	
Preamplifier	JS Tonscend TAP-011858		AP21B806112	07-25-2023	07-24-2024	
Communication test set	R&S	R&S CMW500		12-14-2023	12-13-2024	
Temperature/	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(<u> </u>	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		(à	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(C)		
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	((S)	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		<u> </u>	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001		(3	
/	1627	(6,0)	<u> </u>	1607	16	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32Q80470302 Page 12 of 58

7 Radio Technical Requirements Specification

7.1 Antenna Requirement


Standard requirement:	47 CFR Part 15C Section 15.203
-----------------------	--------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:	Please see Internal photos
--------------	----------------------------

The antenna is PIFA antenna. The best case gain of the antenna is 2.86dBi.

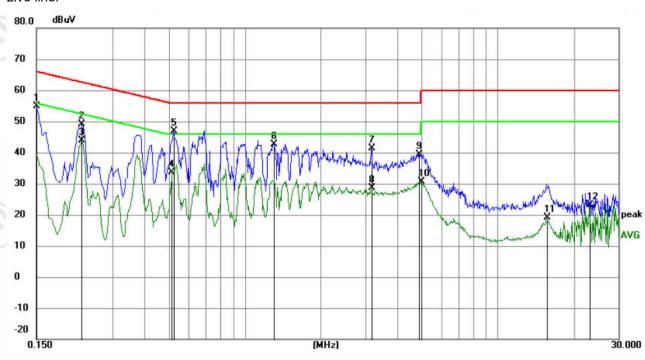
Report No. : EED32Q80470302 Page 13 of 58

7.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.	207							
Test Method:	ANSI C63.10: 2013								
Test Frequency Range:	150kHz to 30MHz								
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto								
Limit:	[Limit (dBuV)						
	Frequency range (MHz)	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarithr	n of the frequency.							
Test Setup:	Shielding Room								
	Test Receiver AC Mains LISN2 AC Mains								
	Ground Reference Plane								
Test Procedure:	impedance. The power connected to a second LIS plane in the same way a multiple socket outlet strip single LISN provided the r. 3) The tabletop EUT was play ground reference plane. A placed on the horizontal g. 4) The test was performed with the EUT shall be 0.4 m vertical ground reference reference plane. The LIST unit under test and bor mounted on top of the grothe closest points of the I and associated equipment.	to AC power source letwork) which provide cables of all other SN 2, which was bonders the LISN 1 for the was used to connect ating of the LISN was aced upon a non-metal and for floor-standing a round reference plane. The the was placed 0.8 m and the EUT. It was at least 0.8 m from the was a float the EUT.	e through a LISN 1 (Line is a 50Ω/50μH + 5Ω linear units of the EUT were ed to the ground reference is unit being measured. A multiple power cables to a not exceeded. Allic table 0.8m above the irrangement, the EUT was ference plane. The rear of and reference plane. The to the horizontal ground from the boundary of the ference plane for LISNs his distance was between All other units of the EUT m the LISN 2.						
	 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 								

Page 14 of 58 Report No.: EED32Q80470302

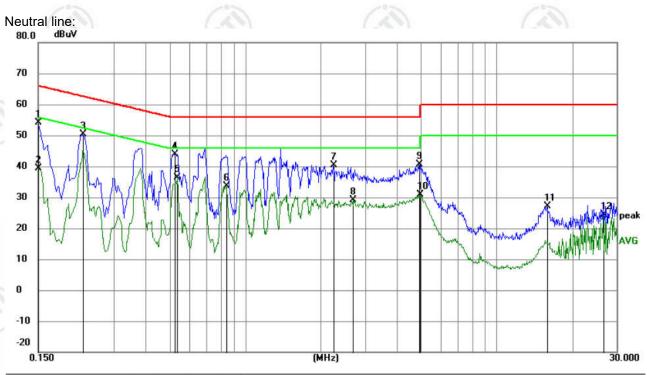
Test Mode:	All modes were tested, only the worst case was recorded in the report.
Test Results:	Pass



Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	44.98	9.87	54.85	66.00	-11.15	QP	
2		0.2265	39.41	9.82	49.23	62.58	-13.35	QP	
3	*	0.2265	33.98	9.82	43.80	52.58	-8.78	AVG	
4		0.5155	23.79	9.75	33.54	46.00	-12.46	AVG	
5		0.5235	37.10	9.74	46.84	56.00	-9.16	QP	
6		1.3020	32.99	9.74	42.73	56.00	-13.27	QP	
7		3.1695	31.70	9.79	41.49	56.00	-14.51	QP	
8		3.1740	18.78	9.79	28.57	46.00	-17.43	AVG	
9		4.8885	29.63	9.84	39.47	56.00	-16.53	QP	
10		4.9920	20.88	9.84	30.72	46.00	-15.28	AVG	
11		15.7065	9.17	9.88	19.05	50.00	-30.95	AVG	
12		23.1270	13.19	9.96	23.15	50.00	-26.85	AVG	


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	44.32	9.87	54.19	66.00	-11.81	QP	
2		0.1500	29.54	9.87	39.41	56.00	-16.59	AVG	
3		0.2265	40.60	9.82	50.42	62.58	-12.16	QP	
4		0.5235	34.19	9.74	43.93	56.00	-12.07	QP	
5	*	0.5370	26.75	9.71	36.46	46.00	-9.54	AVG	
6		0.8430	23.89	9.79	33.68	46.00	-12.32	AVG	
7		2.2380	30.70	9.76	40.46	56.00	-15.54	QP	
8		2.6880	19.30	9.77	29.07	46.00	-16.93	AVG	
9		4.9200	30.72	9.84	40.56	56.00	-15.44	QP	
10		4.9694	20.96	9.84	30.80	46.00	-15.20	AVG	
11		15.9090	17.25	9.88	27.13	60.00	-32.87	QP	
12		26.6100	14.44	9.87	24.31	50.00	-25.69	AVG	

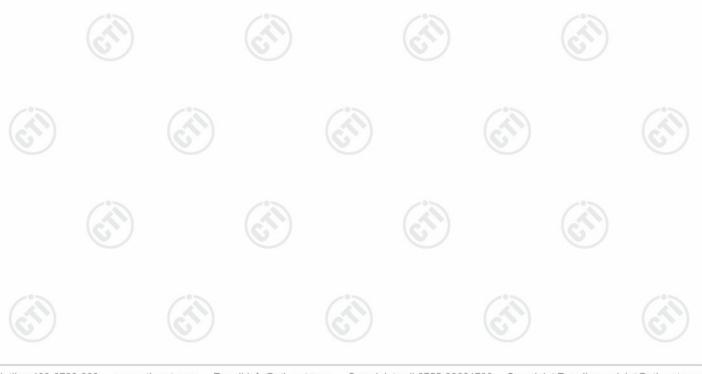
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 17 of 58 Report No. : EED32Q80470302

7.3 Maximum Conducted Output Power

	100						
Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E						
Test Setup:	6	40)		(chi			
	Control Computer Power ponts Power pont TEMPERATURE CAB	Attenuator	RF test - System Instrument				
Test Procedure:	(6)		nent Procedure of KDB78	(C,)			
	 The RF output of attenuator. The parmeasurement. Set to the maxing continuously. 	f EUT was conne th loss was comp num power setting	Rules v02r01 Section E, cted to the power meter ensated to the results for g and enable the EUT transver and record the results.	by RF cable and r each ansmit			
Limit:							
	Frequency band (MHz)	Limit	(6.)	6			
	5150-5250	≤1W(30dBm) fc	or master device				
	(*5)	≤250mW(24dBı	m) for client device				
	5250-5350	≤250mW(24dBı	m) for client device or 11	dBm+10logB*			
	5470-5725	≤250mW(24dBi	m) for client device or 11	dBm+10logB*			
	5725-5850	≤1W(30dBm)					
	Remark:	The maximum of measured over	e 26dB emission bandwi conducted output power any interval of continuou ntation calibrated in termage.	must be us transmission			
Test Mode:	Transmitting mode	with modulation					

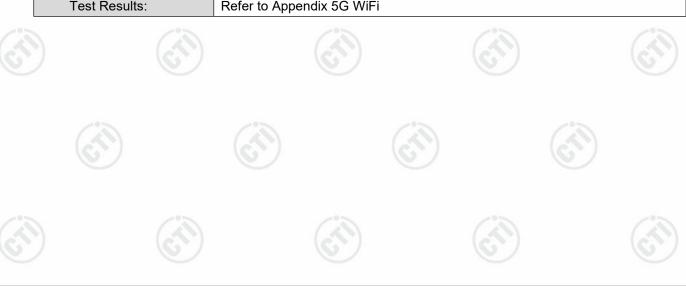


7.4 6dB Emisson Bandwidth

-10.7	
Test Requirement:	47 CFR Part 15C Section 15.407 (e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Test Setup:	RF test Congular Power Supply Table Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Limit:	≥ 500 kHz
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WiFi

7.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)						
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D						
Test Setup:							
	Control Composite Actenina Power Supply Actenina Power Table RF test System Instrument Table						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.						
Limit:	No restriction limits						
Test Mode:	Transmitting mode with modulation						
Test Results:	Refer to Appendix 5G WiFi						

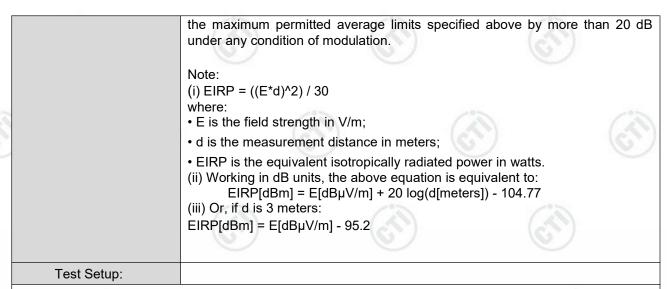


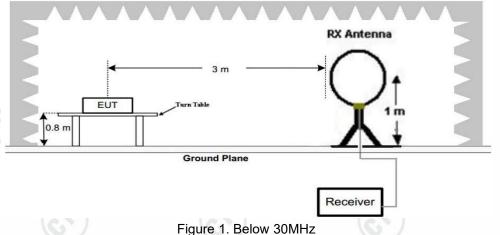
7.6 Maximum Power Spectral Density

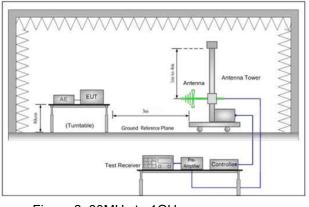
			1,70,7	/						
	Test Requirement:	47 CFR Part 15C S	Section 15.407 (a)						
	Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New	Rules v02r01 Section F					
1000	Test Setup:	~	•>	· ·	(cti)					
		Control Computer Power Supply Table	Attenuator	RF test System Instrument						
3		Remark: Offset=Cable loss+ attenuation factor.								
	Test Procedure:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweep	RBW = 510 kHz/1 MS. s to continue unti	MHz, VBW ≥ 3*R I the trace stabilize	•					
	Limit:)	(27)					
		Frequency band (MHz)	Limit							
		5150-5250	≤17dBm in 1Ml	dz for master devi	ce					
			≤11dBm in 1Ml	Hz for client device						
V		5250-5350	≤11dBm in 1Ml	Hz for client device	e (C)					
1		5470-5725	≤11dBm in 1Ml	Hz for client device						
		5725-5850	≤30dBm in 500	kHz						
		Remark:	The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test.							
	Test Mode:	Transmitting mode	with modulation							
	Test Results:	Refer to Appendix	Refer to Appendix 5G WiFi							
_										

7.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 (g)
Test Method:	ANSI C63.10: 2013
Test Setup:	
	Control Congular Power ports Actenuage Power port Attenuator Instrument Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 1.The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. 2. Turn the EUT on and couple its output to a spectrum analyzer. 3. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. 5. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G WiFi


Report No. : EED32Q80470302 Page 22 of 58


7.8 Radiated Emission


Test Requirement:	47 CFR Part 15C Sect	ion 1	15.209 and 1	5.407 (b)				
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance	e: 3n	n (Semi-Ane	choic Char	nber	r)		
Receiver Setup:	Frequency	2)	Detector	RBV	٧	VBW	Remark	
	0.009MHz-0.090MH	Peak	10kH	Ιz	30kHz	Peak		
	0.009MHz-0.090MH	Ηz	Average	10kH	łz	30kHz	Average	
	0.090MHz-0.110MH	Quasi-pea	ak 10kH	Ηz	30kHz	Quasi-peak		
	0.110MHz-0.490MH	Peak	10kH	Ιz	30kHz	Peak		
	0.110MHz-0.490MH	Ηz	Average	10kF	Ιz	30kHz	Average	
	0.490MHz -30MHz	Z	Quasi-pea	ak 10kH	Ηz	30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-pea	ak 100 k	Hz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MH	lz	3MHz	Peak		
	Above IGHZ	7	Peak	1MH	lz	10kHz	Average	
Limit:	Frequency		ld strength	Limit (dBuV/m)	R	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	ľ	100/F(kHz)	-		- (4	300	
	0.490MHz-1.705MHz		000/F(kHz)	-	- (6)		30	
	1.705MHz-30MHz		30	-		-	30	
	30MHz-88MHz		100	40.0	Quasi-peak		3	
	88MHz-216MHz	10	150	43.5	Qu	asi-peak	3	
	216MHz-960MHz	\mathcal{I}	200	46.0		asi-peak	3	
	960MHz-1GHz		500	54.0	54.0 Qu		3	
	Above 1GHz		500	54.0	A٠	verage	3	
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz to (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall labove or below the bard above or below the bard edge increasing linear the band edge, and folinearly to a level of 27	eration of the service of the servic	GHz band ng in the 5.2 shall not excepting in the 5.7 nited to a level of 15 5 MHz aborn/MHz at the	shall not 5-5.35 GH ceed an e.i 5.47-5.72 I shall no 25-5.85 Gl vel of -27 o sing linearly rom 25 Mi 5.6 dBm/M ve or belo band edg	z bai.r.p. 5 G t ex Hz b dBm y to Hz a Hz a W th e.	ceed an ind: All em of -27 dB iHz band: ceed an oand: n/MHz at 7 10 dBm/N above or b at 5 MHz a ne band e	e.i.r.p. of -27 hissions outside him/MHz. All emissions e.i.r.p. of -27 5 MHz or more him at 25 MHz helow the band habove or below him above or below him along the band him along the	
	Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed							

AE EUT

ARCHITECT Plane

Test Receiver

Test Receiver

Test Receiver

Figure 2. 30MHz to 1GHz

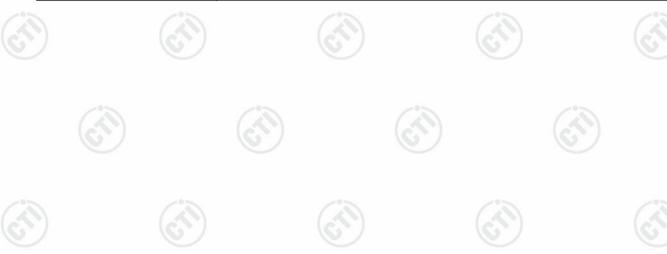
Test Procedure:

Figure 3. Above 1 GHz

a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
2) Above 1G: The EUT was placed on the top of a rotating table 1.5

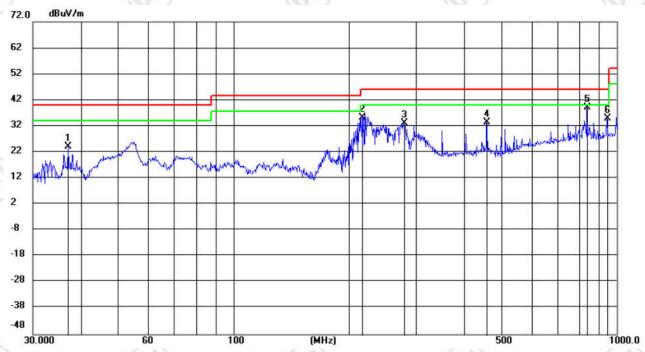
2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:



Report No.: EED32Q80470302 Page 24 of 58

	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization
	oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel and the highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass



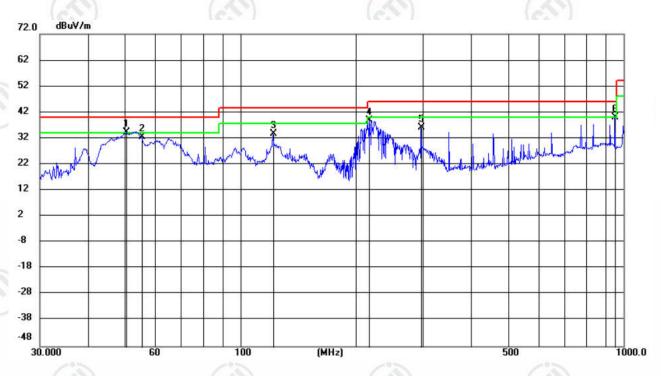
Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

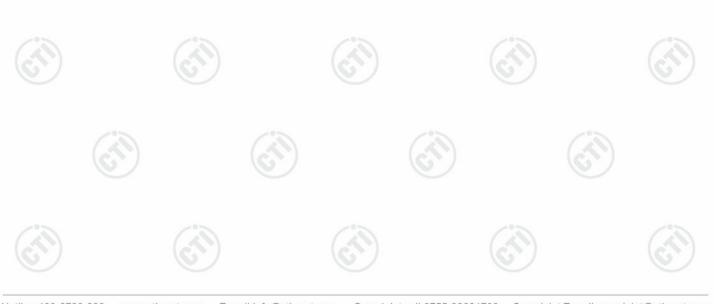
Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

Horizontal:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	37.1484	10.69	13.61	24.30	40.00	-15.70	QP	100	124	
	216.9345	21.84	13.38	35.22	46.00	-10.78	QP	200	24	
	278.2130	17.31	15.81	33.12	46.00	-12.88	QP	100	124	
	459.0339	13.61	19.99	33.60	46.00	-12.40	QP	100	254	
*	837.1244	12.64	26.41	39.05	46.00	-6.95	QP	100	175	
	945.1082	7.36	27.68	35.04	46.00	-10.96	QP	100	246	
		MHz 37.1484 216.9345 278.2130 459.0339 * 837.1244	Mk. Freq. Level MHz dBuV 37.1484 10.69 216.9345 21.84 278.2130 17.31 459.0339 13.61 * 837.1244 12.64	Mk. Freq. Level Factor MHz dBuV dB 37.1484 10.69 13.61 216.9345 21.84 13.38 278.2130 17.31 15.81 459.0339 13.61 19.99 * 837.1244 12.64 26.41	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 37.1484 10.69 13.61 24.30 216.9345 21.84 13.38 35.22 278.2130 17.31 15.81 33.12 459.0339 13.61 19.99 33.60 * 837.1244 12.64 26.41 39.05	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 37.1484 10.69 13.61 24.30 40.00 216.9345 21.84 13.38 35.22 46.00 278.2130 17.31 15.81 33.12 46.00 459.0339 13.61 19.99 33.60 46.00 * 837.1244 12.64 26.41 39.05 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 37.1484 10.69 13.61 24.30 40.00 -15.70 216.9345 21.84 13.38 35.22 46.00 -10.78 278.2130 17.31 15.81 33.12 46.00 -12.88 459.0339 13.61 19.99 33.60 46.00 -12.40 * 837.1244 12.64 26.41 39.05 46.00 -6.95	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB uV/m dB uV/m<	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 37.1484 10.69 13.61 24.30 40.00 -15.70 QP 100 216.9345 21.84 13.38 35.22 46.00 -10.78 QP 200 278.2130 17.31 15.81 33.12 46.00 -12.88 QP 100 459.0339 13.61 19.99 33.60 46.00 -12.40 QP 100 * 837.1244 12.64 26.41 39.05 46.00 -6.95 QP 100	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree 37.1484 10.69 13.61 24.30 40.00 -15.70 QP 100 124 216.9345 21.84 13.38 35.22 46.00 -10.78 QP 200 24 278.2130 17.31 15.81 33.12 46.00 -12.88 QP 100 124 459.0339 13.61 19.99 33.60 46.00 -12.40 QP 100 254 * 837.1244 12.64 26.41 39.05 46.00 -6.95 QP 100 175







Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	50.4795	20.25	14.13	34.38	40.00	-5.62	QP	100	352	
2		55.3078	18.73	13.69	32.42	40.00	-7.58	QP	100	224	
3		121.9326	22.17	11.47	33.64	43.50	-9.86	QP	200	74	
4		217.0870	25.34	13.38	38.72	46.00	-7.28	QP	100	138	
5		297.0156	19.53	16.55	36.08	46.00	-9.92	QP	100	98	
6	!	951.0925	12.30	27.72	40.02	46.00	-5.98	QP	200	113	

Report No.: EED32Q80470302 Page 27 of 58

Transmitter Emission above 1GHz

Remark: During the test, the Radiates Emission above 1G was performed in all modes, only the worst case ant1 and ant2 transmit simultaneously was recorded in the report.

MIMO:

141114										
Mode	:		802.11 n(HT2	0) Transmitti	ng	Channe	el:	5180MHz	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1250.275	7.73	39.97	47.70	68.20	20.50	PASS	Horizontal	PK	
2	2303.6304	10.41	36.88	47.29	68.20	20.91	PASS	Horizontal	PK	
3	3537.4037	13.61	36.27	49.88	68.20	18.32	PASS	Horizontal	PK	
4	7770.8135	-4.23	48.02	43.79	68.20	24.41	PASS	Horizontal	PK	
5	11057.102	0.26	46.11	46.37	68.20	21.83	PASS	Horizontal	PK	
6	14128.331	7.33	41.42	48.75	68.20	19.45	PASS	Horizontal	PK	
7	1250.275	7.73	42.67	50.40	68.20	17.80	PASS	Vertical	PK	
8	2769.527	11.80	37.32	49.12	68.20	19.08	PASS	Vertical	PK	
9	3454.8955	13.43	35.87	49.30	68.20	18.90	PASS	Vertical	PK	
10	7769.6635	-4.25	47.42	43.17	68.20	25.03	PASS	Vertical	PK	
11	11643.632	0.51	45.54	46.05	68.20	22.15	PASS	Vertical	PK	
12	13663.708	5.49	42.98	48.47	68.20	19.73	PASS	Vertical	PK	

Mode	:	3	802.11 n(HT2	0) Transmitti	ng	Channe	el:	5200MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1249.725	7.72	40.04	47.76	68.20	20.44	PASS	Horizontal	PK
2	2533.5534	11.68	37.56	49.24	68.20	18.96	PASS	Horizontal	PK
3	3953.7954	14.98	34.66	49.64	68.20	18.56	PASS	Horizontal	PK
4	7763.9132	-4.32	48.02	43.70	68.20	24.50	PASS	Horizontal	PK
5	10400.995	-1.58	49.06	47.48	68.20	20.72	PASS	Horizontal	PK
6	14141.557	7.27	41.26	48.53	68.20	19.67	PASS	Horizontal	PK
7	1250.275	7.73	42.80	50.53	68.20	17.67	PASS	Vertical	PK
8	2325.0825	10.48	36.93	47.41	68.20	20.79	PASS	Vertical	PK
9	3348.7349	13.35	36.20	49.55	68.20	18.65	PASS	Vertical	PK
10	7842.6921	-3.96	47.89	43.93	68.20	24.27	PASS	Vertical	PK
11	9169.8585	-3.69	47.93	44.24	68.20	23.96	PASS	Vertical	PK
12	14143.857	7.26	41.33	48.59	68.20	19.61	PASS	Vertical	PK

Page 28 of 58

п		1 2 3 1		1 2 0.1		1. 1	6.1	100	7 233		
	Mode	:	8	302.11 n(HT2	0) Transmitti	ng	Channe	el:	5240MHz		
	ОИ	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
0	1	1250.275	7.73	40.24	47.97	68.20	20.23	PASS	Horizontal	PK	
3	2	2062.7063	9.81	36.44	46.25	68.20	21.95	PASS	Horizontal	PK	
	3	3339.934	13.38	36.03	49.41	68.20	18.79	PASS	Horizontal	PK	
	4	7790.9395	-3.96	47.93	43.97	68.20	24.23	PASS	Horizontal	PK	
	5	10959.923	0.46	45.47	45.93	68.20	22.27	PASS	Horizontal	PK	
	6	13721.211	4.75	44.30	49.05	68.20	19.15	PASS	Horizontal	PK	
	7	1250.275	7.73	42.48	50.21	68.20	17.99	PASS	Vertical	PK	
	8	2181.5182	9.91	36.99	46.90	68.20	21.30	PASS	Vertical	PK	
	9	2817.9318	11.90	37.92	49.82	68.20	18.38	PASS	Vertical	PK	
۰	10	7764.4882	-4.31	48.39	44.08	68.20	24.12	PASS	Vertical	PK	
4	11	11004.775	0.52	45.60	46.12	68.20	22.08	PASS	Vertical	PK	
þ	12	13659.108	5.54	43.93	49.47	68.20	18.73	PASS	Vertical	PK	

Mode	:	80)2.11 n(HT4	0) Transmitti	ng	Channe	Channel:		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1250.275	7.73	40.52	48.25	68.20	19.95	PASS	Horizontal	PK
2	2131.4631	10.08	37.51	47.59	68.20	20.61	PASS	Horizontal	PK
3	3423.5424	13.25	36.19	49.44	68.20	18.76	PASS	Horizontal	PK
4	7786.9143	-4.02	47.91	43.89	68.20	24.31	PASS	Horizontal	PK
5	11015.700	0.47	44.83	45.30	68.20	22.90	PASS	Horizontal	PK
6	14188.709	7.04	41.35	48.39	68.20	19.81	PASS	Horizontal	PK
7	1250.275	7.73	43.80	51.53	68.20	16.67	PASS	Vertical	PK
8	2041.2541	9.60	37.22	46.82	68.20	21.38	PASS	Vertical	PK
9	3208.4708	13.05	36.44	49.49	68.20	18.71	PASS	Vertical	PK
10	7750.1125	-4.50	48.07	43.57	68.20	24.63	PASS	Vertical	PK
11	11058.252	0.25	46.09	46.34	68.20	21.86	PASS	Vertical	PK
12	13667.733	5.44	42.95	48.39	68.20	19.81	PASS	Vertical	PK

Page 29 of 58

	1 233		1 11 10		1.0	6.1		201	
Mod	le:	8	02.11 n(HT4	0) Transmitti	ng	Channe	el:	5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1249.725	7.72	40.05	47.77	68.20	20.43	PASS	Horizontal	PK
2	2194.7195	9.86	37.18	47.04	68.20	21.16	PASS	Horizontal	PK
3	3171.6172	12.83	37.38	50.21	68.20	17.99	PASS	Horizontal	PK
4	7844.9922	-3.96	47.68	43.72	68.20	24.48	PASS	Horizontal	PK
5	10987.524	0.51	45.10	45.61	68.20	22.59	PASS	Horizontal	PK
6	14144.432	7.25	41.41	48.66	68.20	19.54	PASS	Horizontal	PK
7	1124.8625	7.18	42.63	49.81	68.20	18.39	PASS	Vertical	PK
8	1375.1375	8.27	39.87	48.14	68.20	20.06	PASS	Vertical	PK
9	3194.7195	12.97	36.62	49.59	68.20	18.61	PASS	Vertical	PK
10	7849.5925	-3.98	47.23	43.25	68.20	24.95	PASS	Vertical	PK
11	10820.766	-0.32	45.34	45.02	68.20	23.18	PASS	Vertical	PK
12	14104.755	7.44	41.58	49.02	68.20	19.18	PASS	Vertical	PK

Mode	e:	8	302.11 ac(VH	T80) Transm	nitting	Channe	el:	5210MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1249.725	7.72	39.65	47.37	68.20	20.83	PASS	Horizontal	PK
2	2042.9043	9.62	36.67	46.29	68.20	21.91	PASS	Horizontal	PK
3	2825.0825	11.93	37.94	49.87	68.20	18.33	PASS	Horizontal	PK
4	7800.14	-3.84	47.63	43.79	68.20	24.41	PASS	Horizontal	PK
5	11014.550	0.47	44.78	45.25	68.20	22.95	PASS	Horizontal	PK
6	13675.783	5.34	43.14	48.48	68.20	19.72	PASS	Horizontal	PK
7	1250.275	7.73	43.22	50.95	68.20	17.25	PASS	Vertical	PK
8	2301.4301	10.40	37.18	47.58	68.20	20.62	PASS	Vertical	PK
9	3284.9285	13.47	35.95	49.42	68.20	18.78	PASS	Vertical	PK
10	8202.0851	-3.80	47.76	43.96	68.20	24.24	PASS	Vertical	PK
11	11000.75	0.54	45.17	45.71	68.20	22.49	PASS	Vertical	PK
12	13686.709	5.21	43.64	48.85	68.20	19.35	PASS	Vertical	PK

Page 30 of 58

	Mode	:	80	2.11 n(HT2	0) Transmitti	ng	Channe	el:	5745MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1250.275	7.92	39.98	47.90	68.20	20.30	PASS	Horizontal	PK
1	2	1650.7151	8.51	37.41	45.92	68.20	22.28	PASS	Horizontal	PK
Š	3	2597.3597	11.73	38.15	49.88	68.20	18.32	PASS	Horizontal	PK
	4	3554.4554	13.63	37.31	50.94	68.20	17.26	PASS	Horizontal	PK
ſ	5	7660.044	-5.82	54.64	48.82	68.20	19.38	PASS	Horizontal	PK
	6	11484.432	0.54	53.66	54.20	68.20	14.00	PASS	Horizontal	PK
	7	7660.8107	-5.80	52.08	46.28	54.00	7.72	PASS	Horizontal	AV
	8	11493.632	0.69	43.87	44.56	54.00	9.44	PASS	Horizontal	AV
	9	1124.8625	7.03	43.71	50.74	68.20	17.46	PASS	Vertical	PK
	10	1250.275	7.92	42.03	49.95	68.20	18.25	PASS	Vertical	PK
4	11	1964.2464	9.16	38.24	47.40	68.20	20.80	PASS	Vertical	PK
3	12	3905.9406	14.62	36.96	51.58	68.20	16.62	PASS	Vertical	PK
	13	7660.044	-5.82	53.81	47.99	68.20	20.21	PASS	Vertical	PK
	14	11488.265	0.60	52.62	53.22	68.20	14.98	PASS	Vertical	PK
	15	7660.8107	-5.80	50.55	44.75	54.00	9.25	PASS	Vertical	AV
	16	11489.032	0.62	42.79	43.41	54.00	10.59	PASS	Vertical	AV

Mod	ə:	80)2.11 n(HT2	0) Transmitti	ng	Channe	el:	5785MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1249.725	7.92	39.87	47.79	68.20	20.41	PASS	Horizontal	PK
2	1624.8625	8.63	38.14	46.77	68.20	21.43	PASS	Horizontal	PK
3	2698.5699	11.83	39.75	51.58	68.20	16.62	PASS	Horizontal	PK
4	3314.6315	13.26	38.80	52.06	68.20	16.14	PASS	Horizontal	PK
5	7713.7142	-5.00	56.18	51.18	68.20	17.02	PASS	Horizontal	PK
6	10859.557	0.00	47.11	47.11	68.20	21.09	PASS	Horizontal	PK
7	7713.7142	-5.00	51.54	46.54	54.00	7.46	PASS	Horizontal	AV
8	1250.275	7.92	42.67	50.59	68.20	17.61	PASS	Vertical	PK
9	1947.1947	9.09	37.98	47.07	68.20	21.13	PASS	Vertical	PK
10	2811.8812	12.04	38.73	50.77	68.20	17.43	PASS	Vertical	PK
11	3890.5391	14.57	36.13	50.70	68.20	17.50	PASS	Vertical	PK
12	7713.7142	-5.00	55.19	50.19	68.20	18.01	PASS	Vertical	PK
13	11569.538	0.77	46.10	46.87	68.20	21.33	PASS	Vertical	PK
14	7713.7142	-5.00	49.67	44.67	54.00	9.33	PASS	Vertical	AV

Page 31 of 58

						20.7		-0.7	
Mode	e:		802.11 n(HT2	0) Transmitti	ng	Channe	el:	5825MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1250.275	7.92	39.64	47.56	68.20	20.64	PASS	Horizontal	PK
2	2300.8801	10.78	37.60	48.38	68.20	19.82	PASS	Horizontal	PK
3	2693.0693	11.82	38.18	50.00	68.20	18.20	PASS	Horizontal	PK
4	7766.6178	-4.29	55.95	51.66	68.20	16.54	PASS	Horizontal	PK
5	10901.726	0.35	45.59	45.94	68.20	22.26	PASS	Horizontal	PK
6	14213.180	6.89	42.75	49.64	68.20	18.56	PASS	Horizontal	PK
7	7767.3845	-4.28	53.35	49.07	54.00	4.93	PASS	Horizontal	AV
8	1250.275	7.92	42.30	50.22	68.20	17.98	PASS	Vertical	PK
9	2426.8427	10.85	38.34	49.19	68.20	19.01	PASS	Vertical	PK
10	3827.8328	14.50	36.74	51.24	68.20	16.96	PASS	Vertical	PK
11	7766.6178	-4.29	53.35	49.06	68.20	19.14	PASS	Vertical	PK
12	11008.300	0.50	46.27	46.77	68.20	21.43	PASS	Vertical	PK
13	14213.947	6.88	42.44	49.32	68.20	18.88	PASS	Vertical	PK
14	7767.3845	-4.28	49.59	45.31	54.00	8.69	PASS	Vertical	AV

Mode	:	80)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5755MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1250.275	7.92	40.00	47.92	68.20	20.28	PASS	Horizontal	PK
2	2058.8559	9.52	39.06	48.58	68.20	19.62	PASS	Horizontal	PK
3	3073.7074	12.61	38.00	50.61	68.20	17.59	PASS	Horizontal	PK
4	7673.0782	-5.61	55.59	49.98	68.20	18.22	PASS	Horizontal	PK
5	12458.930	0.35	46.85	47.20	68.20	21.00	PASS	Horizontal	PK
6	14198.613	6.99	43.12	50.11	68.20	18.09	PASS	Horizontal	PK
7	7673.8449	-5.60	52.23	46.63	54.00	7.37	PASS	Horizontal	AV
8	1250.275	7.92	41.91	49.83	68.20	18.37	PASS	Vertical	PK
9	2219.4719	9.77	37.99	47.76	68.20	20.44	PASS	Vertical	PK
10	3251.3751	13.06	38.40	51.46	68.20	16.74	PASS	Vertical	PK
11	7673.0782	-5.61	54.69	49.08	68.20	19.12	PASS	Vertical	PK
12	10493.832	-0.46	46.58	46.12	68.20	22.08	PASS	Vertical	PK
13	14162.577	7.17	42.86	50.03	68.20	18.17	PASS	Vertical	PK
14	7673.8449	-5.60	50.56	44.96	54.00	9.04	PASS	Vertical	AV

Report No.: EED32Q80470302 Page 32 of 58

_				F 19.7			0.7		-0.7	
	Mode	:	80	2.11 n(HT4	0) Transmitti	ng	Channe	el:	5795MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
4	1	1250.275	7.92	40.42	48.34	68.20	19.86	PASS	Horizontal	PK
	2	2148.5149	9.59	37.95	47.54	68.20	20.66	PASS	Horizontal	PK
ď	3	3061.0561	12.63	38.38	51.01	68.20	17.19	PASS	Horizontal	PK
	4	7726.7484	-4.82	56.64	51.82	68.20	16.38	PASS	Horizontal	PK
	5	11163.944	-0.56	47.22	46.66	68.20	21.54	PASS	Horizontal	PK
	6	14172.544	7.13	42.28	49.41	68.20	18.79	PASS	Horizontal	PK
	7	7727.5152	-4.81	53.11	48.30	54.00	5.70	PASS	Horizontal	AV
	8	1250.275	7.92	42.50	50.42	68.20	17.78	PASS	Vertical	PK
	9	1375.1375	8.06	41.83	49.89	68.20	18.31	PASS	Vertical	PK
	10	2700.7701	11.83	39.01	50.84	68.20	17.36	PASS	Vertical	PK
1	11	7726.7484	-4.82	54.37	49.55	68.20	18.65	PASS	Vertical	PK
3	12	10080.572	-0.60	45.31	44.71	68.20	23.49	PASS	Vertical	PK
	13	13664.210	5.48	44.01	49.49	68.20	18.71	PASS	Vertical	PK
	14	7727.5152	-4.81	51.07	46.26	54.00	7.74	PASS	Vertical	AV

Mode):		802.11 ac(VH	T80) Transm	nitting	Channe	el:	5775MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1124.8625	7.03	40.08	47.11	68.20	21.09	PASS	Horizontal	PK
2	1498.3498	7.80	38.97	46.77	68.20	21.43	PASS	Horizontal	PK
3	2447.7448	10.95	37.72	48.67	68.20	19.53	PASS	Horizontal	PK
4	3214.5215	12.88	38.39	51.27	68.20	16.93	PASS	Horizontal	PK
5	7699.9133	-5.18	55.65	50.47	68.20	17.73	PASS	Horizontal	PK
6	14192.479	7.03	42.36	49.39	68.20	18.81	PASS	Horizontal	PK
7	7700.68	-5.17	53.75	48.58	54.00	5.42	PASS	Horizontal	AV
8	1124.8625	7.03	43.22	50.25	68.20	17.95	PASS	Vertical	PK
9	1375.1375	8.06	40.52	48.58	68.20	19.62	PASS	Vertical	PK
10	2337.1837	10.76	38.60	49.36	68.20	18.84	PASS	Vertical	PK
11	3984.5985	15.26	36.16	51.42	68.20	16.78	PASS	Vertical	PK
12	14276.051	6.42	43.59	50.01	68.20	18.19	PASS	Vertical	PK
13	7700.68	-5.17	51.70	46.53	54.00	7.47	PASS	Vertical	AV

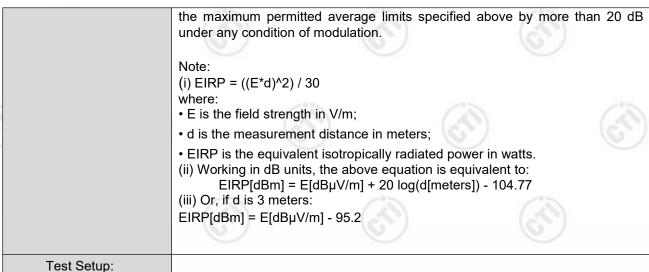
Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


Report No.: EED32Q80470302 Page 33 of 58

7.9 Radiated Emission which fall in the restricted bands

Test Requiremen	t: 47 CFR Part 15C Sect	ion 1	5.209 and 1	5.407 (b)		160			
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance	e: 3m	n (Semi-Ane	choic Cha	mbe	r)			
Receiver Setup:	Frequency	10	Detector	RB\	Ν	VBW	Remark		
	0.009MHz-0.090MH	Ηz	Peak	10kH	Ηz	30kHz	Peak		
	0.009MHz-0.090MH	Ηz	Average	10kH	Ηz	30kHz	Average		
	0.090MHz-0.110MH	0.090MHz-0.110MHz			Ηz	30kHz	Quasi-peak		
	0.110MHz-0.490MH	0.110MHz-0.490MHz		10kH	Ηz	30kHz	Peak		
	0.110MHz-0.490MH	Ηz	Average	10kH	Ηz	30kHz	Average		
	0.490MHz -30MHz	0.490MHz -30MHz		ık 10kl	Ηz	30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-pea	ık 100 k	Hz	300kHz	Quasi-peak		
	401	Peak		1MH	łz	3MHz	Peak		
	Above 1GHz		Peak 1MHz		lz	10kHz	Average		
Limit:			1						
	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	F	Remark	Measurement distance (m)		
	0.009MHz-0.490MHz	24	00/F(kHz)	-	- (3		300		
	0.490MHz-1.705MHz	240	000/F(kHz)	-	- 6		30		
	1.705MHz-30MHz	Hz-30MHz		-		-	30		
	30MHz-88MHz		100	40.0	Qu	asi-peak	3		
	88MHz-216MHz	10	150	43.5	Qu	asi-peak	3		
	216MHz-960MHz	7	200	46.0	Qu	asi-peak	3		
	960MHz-1GHz	Hz-1GHz		54.0	Quasi-peak		3		
	Above 1GHz		500	54.0	Α	verage	3		
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters op of the 5.15-5.35 GHz to (3) For transmitters of outside of the 5.47-5 dBm/MHz. (4) For transmitters op (i) All emissions shall to above or below the bacter of the band edge, and for the band edge edge edge edge edge edge edge ed	erational eration operation of the line and eration of the line and eration on line oping	GHz band ng in the 5.2 shall not excepting in the 5.7 nited to a level of 15 5 MHz about 16 16 MHz at the 17 mits shown a CISPR	shall not 5-5.35 GH ceed an e. 5.47-5.72 I shall no 25-5.85 G rel of -27 sing linearl rom 25 M com 25 M com 25 de band edg in the quasi-per	t ex lz ba i.r.p. t5 G t ex tHz t dBm y to Hz a lHz a lHz a e.	ceed an and: All em of -27 dE GHz band: ceed an oand: n/MHz at 7 10 dBm/Mabove or bat 5 MHz ane band e	e.i.r.p. of -27 sissions outside m/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on except for the		
	emission limits in thes	frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed							

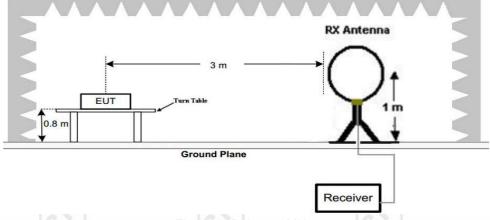
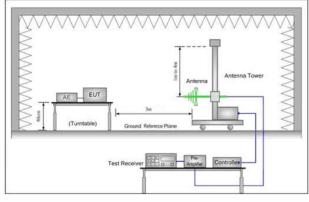



Figure 1. Below 30MHz

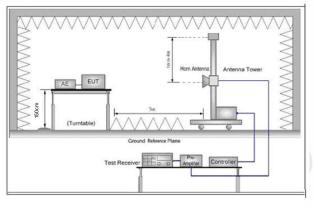


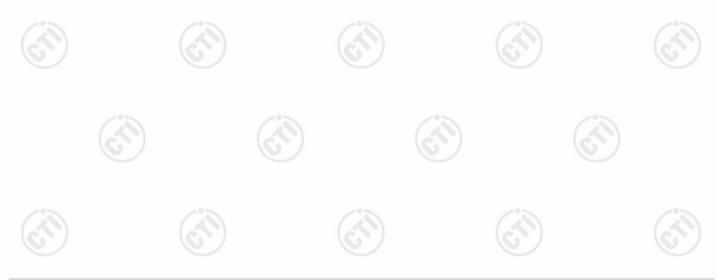
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure: 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

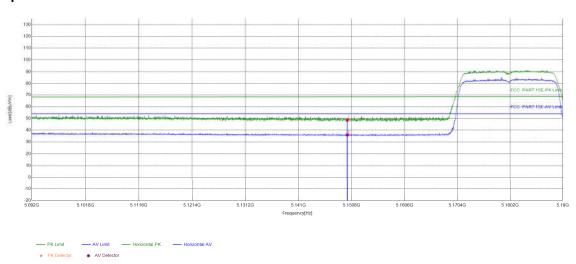
Note: For the radiated emission test above 1GHz:



Page 35 of 58 Report No.: EED32Q80470302

Test Results:	Pass
Test Mode:	Transmitting mode with modulation
	r. Repeat above procedures until all frequencies measured was complete.
	q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	p. Test the EUT in the lowest channel, the Highest channel
	o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Page 36 of 58


Test Data:

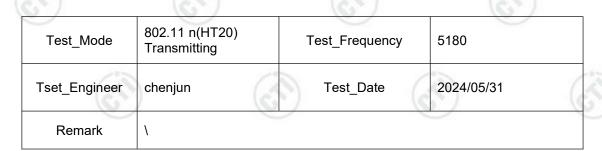
Only the worst case ant1 and ant2 transmit simultaneously was recorded in the report.

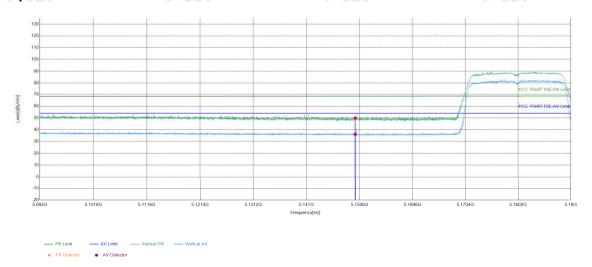
MIMO:

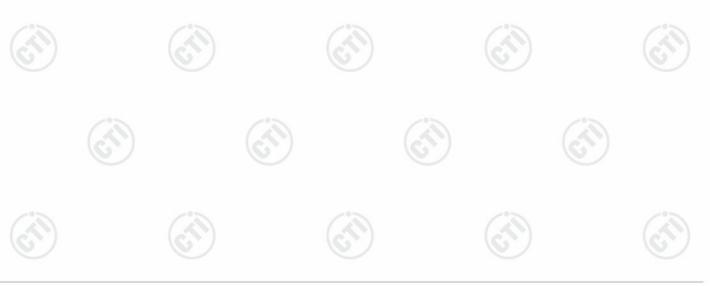
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1 (61)		

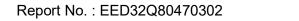
Test Graph

Suspecte	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	5150	17.42	31.11	48.53	68.38	19.85	PASS	Horizontal	PK				
2	5150	17.42	18.65	36.07	54.00	17.93	PASS	Horizontal	AV				

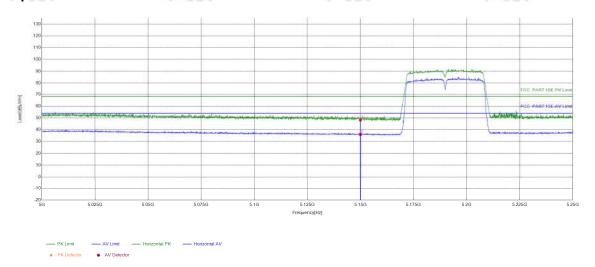


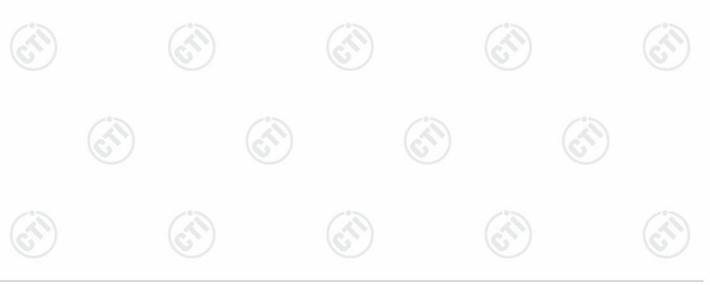






Suspect	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.42	32.63	50.05	68.38	18.33	PASS	Vertical	PK
2	5150	17.42	18.80	36.22	54.00	17.78	PASS	Vertical	AV

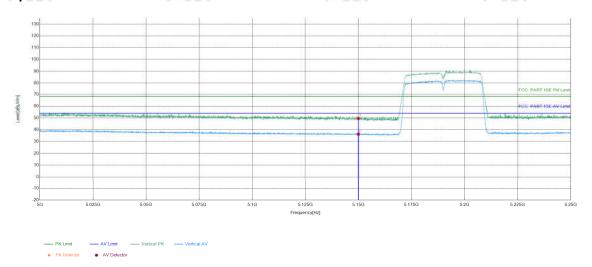

Page 37 of 58



_		
Page	38	of 58
ı auc	JU	01 00

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		

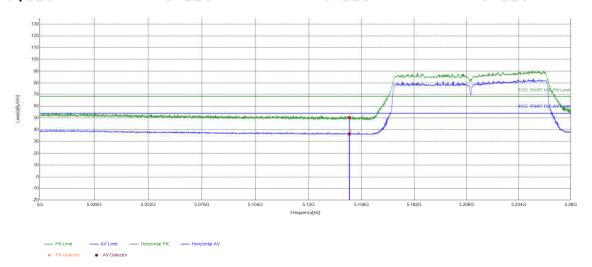
	Suspecte	d List								
1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5150	17.28	31.00	48.28	68.20	19.92	PASS	Horizontal	PK
	2	5150	17.28	18.77	36.05	54.00	17.95	PASS	Horizontal	AV

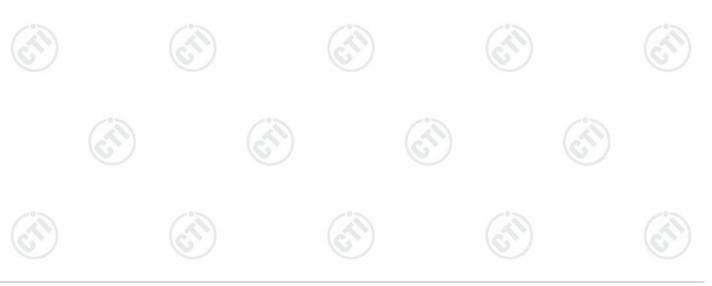


Report No.: EED32Q80470302

8
١

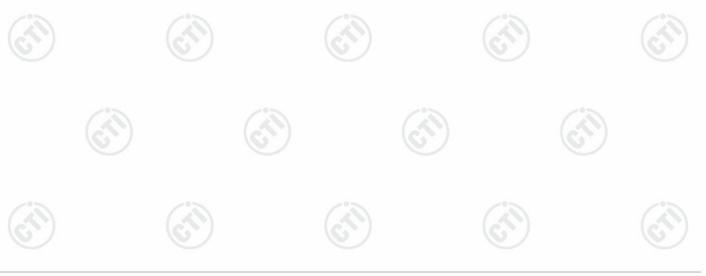

Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		


Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.28	32.33	49.61	68.20	18.59	PASS	Vertical	PK
2	5150	17.28	19.00	36.28	54.00	17.72	PASS	Vertical	AV



Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5210
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		

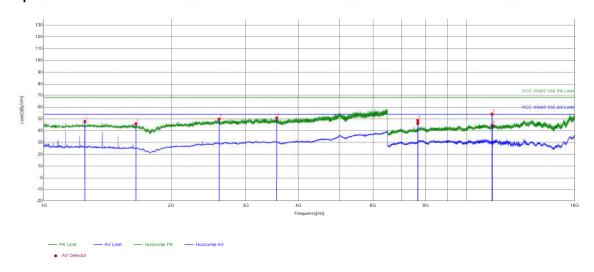
Suspec	ted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.28	33.12	50.40	68.20	17.80	PASS	Horizontal	PK
2	5150	17.28	19.11	36.39	54.00	17.61	PASS	Horizontal	AV



Page 41 of 58 Report No.: EED32Q80470302

Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5210
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		

Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5150	17.28	32.70	49.98	68.20	18.22	PASS	Vertical	PK
2	5150	17.28	19.06	36.34	54.00	17.66	PASS	Vertical	AV

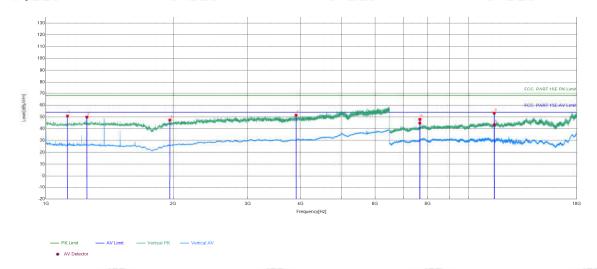


Report No. : EED32Q80470302

Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5745
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		

Test Graph

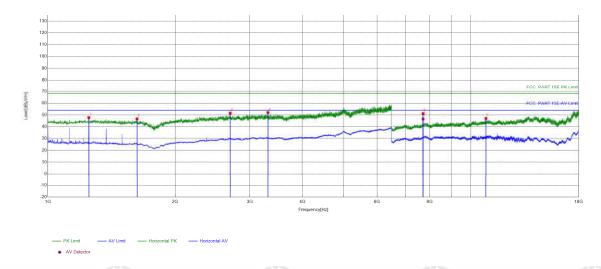
Sus	uspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1250.275	7.92	39.98	47.90	68.20	20.30	PASS	Horizontal	PK
2	1650.7151	8.51	37.41	45.92	68.20	22.28	PASS	Horizontal	PK
3	2597.3597	11.73	38.15	49.88	68.20	18.32	PASS	Horizontal	PK
4	3554.4554	13.63	37.31	50.94	68.20	17.26	PASS	Horizontal	PK
5	7660.044	-5.82	54.64	48.82	68.20	19.38	PASS	Horizontal	PK
6	11484.4323	0.54	53.66	54.20	68.20	14.00	PASS	Horizontal	PK
7	7660.8107	-5.80	52.08	46.28	54.00	7.72	PASS	Horizontal	AV
8	11493.6329	0.69	43.87	44.56	54.00	9.44	PASS	Horizontal	AV



Page 42 of 58

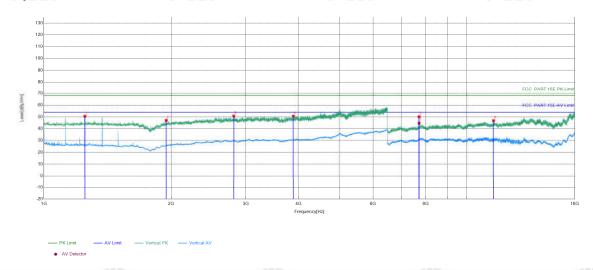
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5745
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		

Ы	Suspe	ected List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1124.8625	7.03	43.71	50.74	68.20	17.46	PASS	Vertical	PK
	2	1250.275	7.92	42.03	49.95	68.20	18.25	PASS	Vertical	PK
	3	1964.2464	9.16	38.24	47.40	68.20	20.80	PASS	Vertical	PK
	4	3905.9406	14.62	36.96	51.58	68.20	16.62	PASS	Vertical	PK
	5	7660.044	-5.82	53.81	47.99	68.20	20.21	PASS	Vertical	PK
	6	11488.2659	0.60	52.62	53.22	68.20	14.98	PASS	Vertical	PK
6	7	7660.8107	-5.80	50.55	44.75	54.00	9.25	PASS	Vertical	AV
	8	11489.0326	0.62	42.79	43.41	54.00	10.59	PASS	Vertical	AV



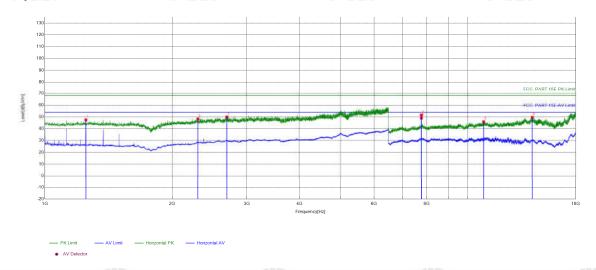
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5785
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		

Sus	pected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1249.725	7.92	39.87	47.79	68.20	20.41	PASS	Horizontal	PK
2	1624.8625	8.63	38.14	46.77	68.20	21.43	PASS	Horizontal	PK
3	2698.5699	11.83	39.75	51.58	68.20	16.62	PASS	Horizontal	PK
4	3314.6315	13.26	38.80	52.06	68.20	16.14	PASS	Horizontal	PK
5	7713.7142	-5.00	56.18	51.18	68.20	17.02	PASS	Horizontal	PK
6	10859.5573	0.00	47.11	47.11	68.20	21.09	PASS	Horizontal	PK
7	7713.7142	-5.00	51.54	46.54	54.00	7.46	PASS	Horizontal	AV



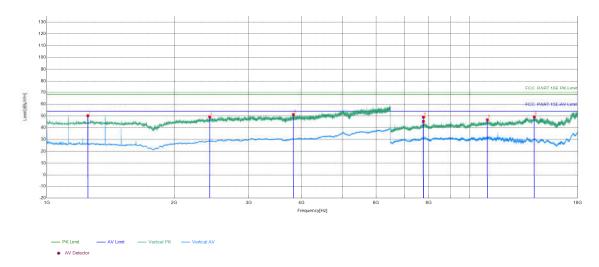
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5785
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		

Ы	Suspe	uspected List								
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1250.275	7.92	42.67	50.59	68.20	17.61	PASS	Vertical	PK
	2	1947.1947	9.09	37.98	47.07	68.20	21.13	PASS	Vertical	PK
	3	2811.8812	12.04	38.73	50.77	68.20	17.43	PASS	Vertical	PK
	4	3890.5391	14.57	36.13	50.70	68.20	17.50	PASS	Vertical	PK
	5	7713.7142	-5.00	55.19	50.19	68.20	18.01	PASS	Vertical	PK
3	6	11569.538	0.77	46.10	46.87	68.20	21.33	PASS	Vertical	PK
6	7	7713.7142	-5.00	49.67	44.67	54.00	9.33	PASS	Vertical	AV



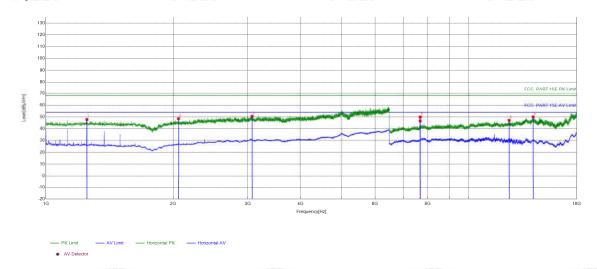
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5825
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		

Susp	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1250.275	7.92	39.64	47.56	68.20	20.64	PASS	Horizontal	PK
2	2300.8801	10.78	37.60	48.38	68.20	19.82	PASS	Horizontal	PK
3	2693.0693	11.82	38.18	50.00	68.20	18.20	PASS	Horizontal	PK
4	7766.6178	-4.29	55.95	51.66	68.20	16.54	PASS	Horizontal	PK
5	10901.7268	0.35	45.59	45.94	68.20	22.26	PASS	Horizontal	PK
6	14213.1809	6.89	42.75	49.64	68.20	18.56	PASS	Horizontal	PK
7	7767.3845	-4.28	53.35	49.07	54.00	4.93	PASS	Horizontal	AV
	NO 1 2 3 4 5 6	1 1250.275 2 2300.8801 3 2693.0693 4 7766.6178 5 10901.7268 6 14213.1809	NO Freq. [MHz] Factor [dB] 1 1250.275 7.92 2 2300.8801 10.78 3 2693.0693 11.82 4 7766.6178 -4.29 5 10901.7268 0.35 6 14213.1809 6.89	NO Freq. [MHz] Factor [dB] Reading [dBμV] 1 1250.275 7.92 39.64 2 2300.8801 10.78 37.60 3 2693.0693 11.82 38.18 4 7766.6178 -4.29 55.95 5 10901.7268 0.35 45.59 6 14213.1809 6.89 42.75	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] 1 1250.275 7.92 39.64 47.56 2 2300.8801 10.78 37.60 48.38 3 2693.0693 11.82 38.18 50.00 4 7766.6178 -4.29 55.95 51.66 5 10901.7268 0.35 45.59 45.94 6 14213.1809 6.89 42.75 49.64	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 1 1250.275 7.92 39.64 47.56 68.20 2 2300.8801 10.78 37.60 48.38 68.20 3 2693.0693 11.82 38.18 50.00 68.20 4 7766.6178 -4.29 55.95 51.66 68.20 5 10901.7268 0.35 45.59 45.94 68.20 6 14213.1809 6.89 42.75 49.64 68.20	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] 1 1250.275 7.92 39.64 47.56 68.20 20.64 2 2300.8801 10.78 37.60 48.38 68.20 19.82 3 2693.0693 11.82 38.18 50.00 68.20 18.20 4 7766.6178 -4.29 55.95 51.66 68.20 16.54 5 10901.7268 0.35 45.59 45.94 68.20 22.26 6 14213.1809 6.89 42.75 49.64 68.20 18.56	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result 1 1250.275 7.92 39.64 47.56 68.20 20.64 PASS 2 2300.8801 10.78 37.60 48.38 68.20 19.82 PASS 3 2693.0693 11.82 38.18 50.00 68.20 18.20 PASS 4 7766.6178 -4.29 55.95 51.66 68.20 16.54 PASS 5 10901.7268 0.35 45.59 45.94 68.20 22.26 PASS 6 14213.1809 6.89 42.75 49.64 68.20 18.56 PASS	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result Polarity 1 1250.275 7.92 39.64 47.56 68.20 20.64 PASS Horizontal 2 2300.8801 10.78 37.60 48.38 68.20 19.82 PASS Horizontal 3 2693.0693 11.82 38.18 50.00 68.20 18.20 PASS Horizontal 4 7766.6178 -4.29 55.95 51.66 68.20 16.54 PASS Horizontal 5 10901.7268 0.35 45.59 45.94 68.20 22.26 PASS Horizontal 6 14213.1809 6.89 42.75 49.64 68.20 18.56 PASS Horizontal



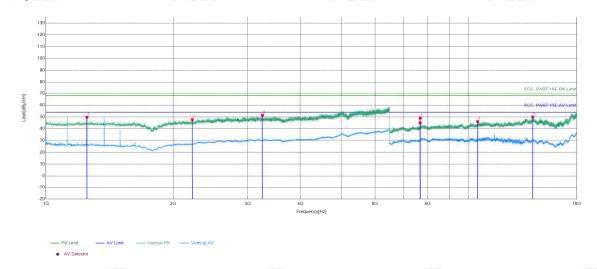
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5825
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		

6	Susp	ected List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1250.275	7.92	42.30	50.22	68.20	17.98	PASS	Vertical	PK
	2	2426.8427	10.85	38.34	49.19	68.20	19.01	PASS	Vertical	PK
	3	3827.8328	14.50	36.74	51.24	68.20	16.96	PASS	Vertical	PK
	4	7766.6178	-4.29	53.35	49.06	68.20	19.14	PASS	Vertical	PK
	5	11008.3006	0.50	46.27	46.77	68.20	21.43	PASS	Vertical	PK
3	6	14213.9476	6.88	42.44	49.32	68.20	18.88	PASS	Vertical	PK
6	7	7767.3845	-4.28	49.59	45.31	54.00	8.69	PASS	Vertical	AV



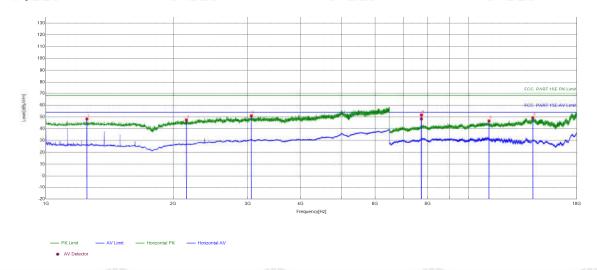
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5755
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	\		

6	Suspe	ected List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	1250.275	7.92	40.00	47.92	68.20	20.28	PASS	Horizontal	PK
	2	2058.8559	9.52	39.06	48.58	68.20	19.62	PASS	Horizontal	PK
	3	3073.7074	12.61	38.00	50.61	68.20	17.59	PASS	Horizontal	PK
	4	7673.0782	-5.61	55.59	49.98	68.20	18.22	PASS	Horizontal	PK
	5	12458.9306	0.35	46.85	47.20	68.20	21.00	PASS	Horizontal	PK
3	6	14198.6132	6.99	43.12	50.11	68.20	18.09	PASS	Horizontal	PK
6	7	7673.8449	-5.60	52.23	46.63	54.00	7.37	PASS	Horizontal	AV



Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5755
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	\		

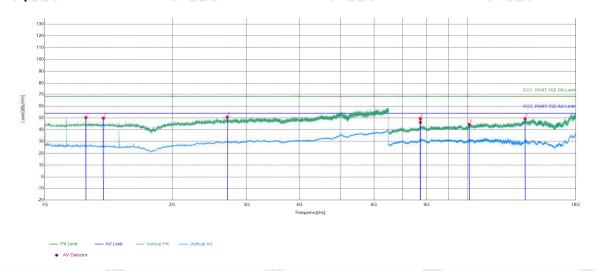
Ы	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	1250.275	7.92	41.91	49.83	68.20	18.37	PASS	Vertical	PK
	2	2219.4719	9.77	37.99	47.76	68.20	20.44	PASS	Vertical	PK
	3	3251.3751	13.06	38.40	51.46	68.20	16.74	PASS	Vertical	PK
	4	7673.0782	-5.61	54.69	49.08	68.20	19.12	PASS	Vertical	PK
	5	10493.8329	-0.46	46.58	46.12	68.20	22.08	PASS	Vertical	PK
3	6	14162.5775	7.17	42.86	50.03	68.20	18.17	PASS	Vertical	PK
6	7	7673.8449	-5.60	50.56	44.96	54.00	9.04	PASS	Vertical	AV



Page 50 of 58 Report No.: EED32Q80470302

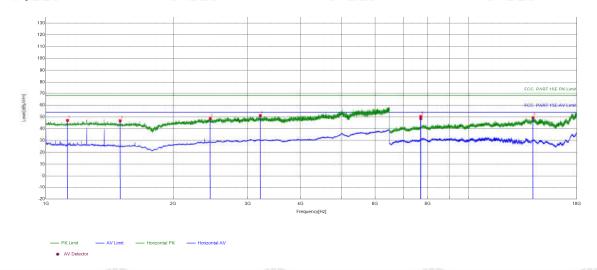
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5795
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	\		

6	Suspe	cted List								
_	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	1250.275	7.92	40.42	48.34	68.20	19.86	PASS	Horizontal	PK
	2	2148.5149	9.59	37.95	47.54	68.20	20.66	PASS	Horizontal	PK
	3	3061.0561	12.63	38.38	51.01	68.20	17.19	PASS	Horizontal	PK
	4	7726.7484	-4.82	56.64	51.82	68.20	16.38	PASS	Horizontal	PK
	5	11163.9443	-0.56	47.22	46.66	68.20	21.54	PASS	Horizontal	PK
ò	6	14172.5448	7.13	42.28	49.41	68.20	18.79	PASS	Horizontal	PK
	7	7727.5152	-4.81	53.11	48.30	54.00	5.70	PASS	Horizontal	AV



Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5795
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	\		

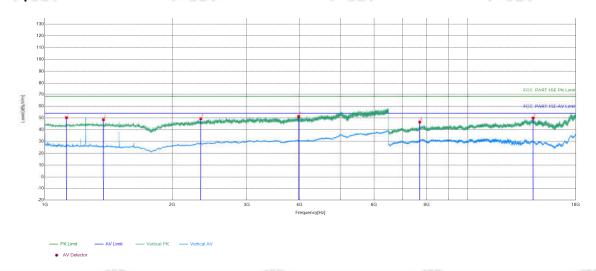
Factor				Suspected List								
	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark					
7.92	42.50	50.42	68.20	17.78	PASS	Vertical	PK					
375 8.06	41.83	49.89	68.20	18.31	PASS	Vertical	PK					
701 11.83	39.01	50.84	68.20	17.36	PASS	Vertical	PK					
484 -4.82	54.37	49.55	68.20	18.65	PASS	Vertical	PK					
572 -0.60	45.31	44.71	68.20	23.49	PASS	Vertical	PK					
2109 5.48	44.01	49.49	68.20	18.71	PASS	Vertical	PK					
152 -4.81	51.07	46.26	54.00	7.74	PASS	Vertical	AV					
	[dB] 275 7.92 375 8.06 701 11.83 484 -4.82 572 -0.60 2109 5.48	I. [dB] Reading [dBμV] 275 7.92 42.50 375 8.06 41.83 701 11.83 39.01 484 -4.82 54.37 572 -0.60 45.31 2109 5.48 44.01	I. [dB] Reading [dBμV] Level [dBμV/m] 275 7.92 42.50 50.42 375 8.06 41.83 49.89 701 11.83 39.01 50.84 484 -4.82 54.37 49.55 572 -0.60 45.31 44.71 2109 5.48 44.01 49.49	[dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 275 7.92 42.50 50.42 68.20 375 8.06 41.83 49.89 68.20 701 11.83 39.01 50.84 68.20 484 -4.82 54.37 49.55 68.20 572 -0.60 45.31 44.71 68.20 2109 5.48 44.01 49.49 68.20	[dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] 275 7.92 42.50 50.42 68.20 17.78 375 8.06 41.83 49.89 68.20 18.31 701 11.83 39.01 50.84 68.20 17.36 484 -4.82 54.37 49.55 68.20 18.65 572 -0.60 45.31 44.71 68.20 23.49 2109 5.48 44.01 49.49 68.20 18.71	[dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result 275 7.92 42.50 50.42 68.20 17.78 PASS 375 8.06 41.83 49.89 68.20 18.31 PASS 701 11.83 39.01 50.84 68.20 17.36 PASS 484 -4.82 54.37 49.55 68.20 18.65 PASS 572 -0.60 45.31 44.71 68.20 23.49 PASS 2109 5.48 44.01 49.49 68.20 18.71 PASS	[dB] Reading Level Limit Margin Result Polarity 7.5 7.92 42.50 50.42 68.20 17.78 PASS Vertical 375 8.06 41.83 49.89 68.20 18.31 PASS Vertical 701 11.83 39.01 50.84 68.20 17.36 PASS Vertical 484 -4.82 54.37 49.55 68.20 18.65 PASS Vertical 572 -0.60 45.31 44.71 68.20 23.49 PASS Vertical 2109 5.48 44.01 49.49 68.20 18.71 PASS Vertical 701 701 702 703 7					



Page 52 of 58 Report No.: EED32Q80470302

Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5775
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	\		

Suspected List										
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	1124.8625	7.03	40.08	47.11	68.20	21.09	PASS	Horizontal	PK
	2	1498.3498	7.80	38.97	46.77	68.20	21.43	PASS	Horizontal	PK
	3	2447.7448	10.95	37.72	48.67	68.20	19.53	PASS	Horizontal	PK
	4	3214.5215	12.88	38.39	51.27	68.20	16.93	PASS	Horizontal	PK
	5	7699.9133	-5.18	55.65	50.47	68.20	17.73	PASS	Horizontal	PK
3	6	14192.4795	7.03	42.36	49.39	68.20	18.81	PASS	Horizontal	PK
6	7	7700.68	-5.17	53.75	48.58	54.00	5.42	PASS	Horizontal	AV



Report No.: EED32Q80470302 Page 53 of 58

2			
Test_Mode	802.11 ac(VHT80) Transmitting	Test_Frequency	5775
Tset_Engineer	chenjun	Test_Date	2024/05/31
Remark	1		

Test Graph

Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1124.8625	7.03	43.22	50.25	68.20	17.95	PASS	Vertical	PK
2	1375.1375	8.06	40.52	48.58	68.20	19.62	PASS	Vertical	PK
3	2337.1837	10.76	38.60	49.36	68.20	18.84	PASS	Vertical	PK
4	3984.5985	15.26	36.16	51.42	68.20	16.78	PASS	Vertical	PK
5	14276.0517	6.42	43.59	50.01	68.20	18.19	PASS	Vertical	PK
6	7700.68	-5.17	51.70	46.53	54.00	7.47	PASS	Vertical	AV

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32Q80470302

Page 54 of 58

8 Appendix 5G WiFi

Refer to Appendix: 5G WiFi of EED32Q80470302

Page 58 of 58

Report No.: EED32Q80470302

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32Q80470301 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

