Test Report

Applicant: Habitat Technologies LLC.

Address of Applicant: 330 East 38th Street, Suite 530, New York 10016, United

States

Manufacturer/Factory: COMPUTIME ELECTRONICS (SHENZHEN) CO., LTD.

Address of Computime Technology Pk, Dan Zhu Tou Cun Buji, Longgang

Manufacturer/Factory: Region Shenzhen China

Equipment Under Test (EUT)

Product Name: PTAC Thermostat

Model No.: SAUPTT1, HTE-01

Trade Mark: Habitat

FCC ID: 2AUYL-HTE01

IC: 25666-HTE01

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

RSS-247 Issue 2: February 2017 RSS-Gen Issue 5: March 2019

Date of sample receipt: October 25, 2019

Date of Test: October 25-31, 2019

Date of report issued: October 31, 2019

Test Result : PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page 1 of 28

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	October 31, 2019	Original

Prepared By:	Tiger. Che	Date:	October 31, 2019
	Project Engineer		
Check By:	Reviewer	Date:	October 31, 2019

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES ⁻	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	
_			
5	GEN	ERAL INFORMATION	
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6 5.7	TEST FACILITY TEST LOCATION	
	5.7 5.8	ADDITIONAL INSTRUCTIONS	_
6		T INSTRUMENTS LIST	
O	IES	I INSTRUMENTS LIST	<i>1</i>
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED EMISSIONS	10
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH & 99% OCCUPY BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1		
	7.7 7.7.1	SPURIOUS EMISSION	
	7.7.1		
	7.7.2 7.8	FREQUENCY STABILITY	
8		T SETUP PHOTO	
a	FIIT	CONSTRUCTIONAL DETAILS	28

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	FCC part 15.203/15.247 (c) RSS-Gen Section 6.8	Pass
AC Power Line Conducted Emission	FCC part 15.207 RSS-Gen Section 8.8	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3) RSS-247 Section 5.4(d)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2) RSS-247 Section 5.2(a) & 6.7	Pass
Power Spectral Density	FCC part 15.247 (e) RSS-247 Section 5.2(b)	Pass
Band Edge	FCC part 15.247(d) RSS-247 Section 5.5	Pass
Spurious Emission	FCC part 15.205/15.209 RSS-Gen Section 3.3 & 8.9 & 8.10	Pass
Frequency stability	RSS-Gen Section 6.11& Section 8.11	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30MHz-200MHz	3.8039dB	(1)		
Radiated Emission	200MHz-1GHz	3.9679dB	(1)		
Radiated Emission	1GHz-18GHz	4.29dB	(1)		
Radiated Emission	18GHz-40GHz	3.30dB	(1)		
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)		
RF conducted power measurement 30M~26.5G 0.65dB					
Conducted Emission	30M~26.5G	2.8dB	(1)		
PSD measurement 30M~26.5G 1.31dB (1)					
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of	95%.		

5 General Information

5.1 General Description of EUT

Product Name:	PTAC Thermostat
Model No.:	SAUPTT1, HTE-01
Test Model No:	SAUPTT1
	identical in the same PCB layout, interior structure and electrical model name for commercial purpose.
Test sample(s) ID:	GTS201910000136-1
Sample(s) Status:	Engineer sample
Serial No.:	001E5E0902569768
Hardware Version:	SBR-001
Software Version:	SBR-001
Operation Frequency:	915MHz
Channel Numbers:	1
Modulation Type:	OQPSK
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi(Declare by applicant)
Power Supply:	AC 24V or DC 3V 2*1.5"AA"

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
Computime	AC/AC POWER SUPPLY	KJS-66	NA

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional instructions

Software (Used for test) from client

Special test software was pre-built-in by manufacturer, power set default, test software version V1.0

6 Test Instruments list

Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020
11	Coaxial Cable	GTS	N/A GTS212	June. 26 2019	June. 25 2020	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020

Cond	Conducted Emission						
Item Test Equipment		Test Equipment Manufacturer Model No.		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 26 2019	June. 25 2020	
4	Artificial Mains Network	SCHWARZBECK MESS	NSLK8127	GTS226	June. 26 2019	June. 25 2020	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 26 2019	June. 25 2020	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 26 2019	June. 25 2020	
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 26 2019	June. 25 2020	

RF C	RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020		

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020		
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

FCC Part 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

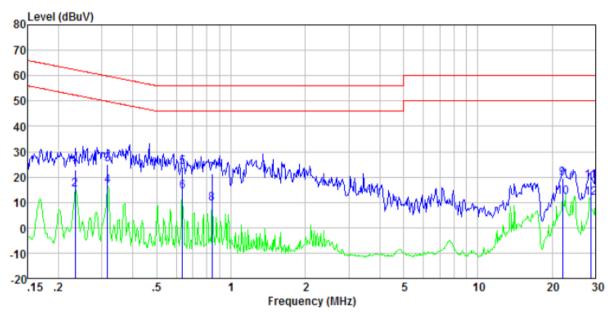
RSS-Gen 6.8

A transmitter can only be sold or operated with antennas with which it was approved.

When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on measurement or on data from the antenna manufacturer. For transmitters of RF output power of 10 milliwatts or less, only the portion of the antenna gain that is in excess of 6 dBi (6 dB above isotropic gain) shall be added to the measured RF output power to demonstrate compliance with the radiated power limits specified in the applicable standard. For transmitters of output power greater than 10 milliwatts, the total antenna gain shall be added to the measured RF output power to demonstrate compliance to the specified radiated power

E.U.T Antenna:

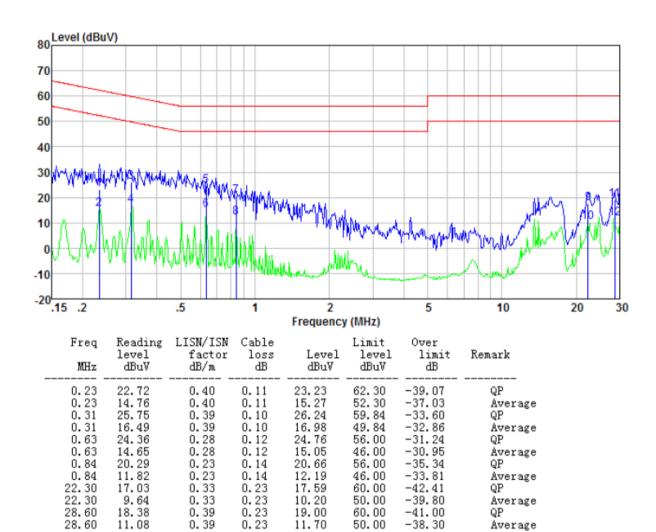
The antenna is PCB antenna, the best case gain of the antenna is 0dBi, reference to the appendix II for details.


7.2 Conducted Emissions

RSS-Gen Section 8.8 Test Method: ANSI C63.10:2013 and RSS-Gen Test Frequency Range: 150KHz to 30MHz Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN South Figure LISN Filter Ac power Remark EUT Equipment Under Test LISK Line Impedance Stabilization Network Test table height-06m Test procedure: 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance over the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs).	Test Requirement:	FCC Part15 C Section 15.207						
Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 50 * Decreases with the logarithm of the frequency. Reference Plane LISN Filter Receiver Test setup: Reference Plane LISN Filter Receiver Test table/Insulation plane Test procedure: 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance owith 500hm termination. (Please refer to the block diagram of the test setup and		RSS-Gen S	Section 8.8					
Class / Severity: Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 60 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN Filter Receiver Test setup: Reference Stabilization Network Test table/Insulation plane Test procedure: 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance of the measuring equipment. 2. The peripheral devices are also connected to the main power through line impedance of the measuring equipment. 2. The peripheral devices are also connected to the main power through line impedance of the measuring equipment. 2. The peripheral devices are also connected to the main power through line impedance of the measuring equipment. 2. The peripheral devices are also connected to the main power through line impedance of the measuring equipment. 2. The peripheral devices are also connected to the main power through line impedance of the measuring equipment. 3. The peripheral devices are also connected to the main power through line impedance of the measuring equipment. 3. The peripheral devices are also connected to the main power through line impedance of the measuring equipment. 3. The peripheral devices are also connected to the main power through line impedance with 500hm termination. (Please refer to the block diagram of the test setup and	Test Method:	ANSI C63.1	0:2013 and I	RSS-Gen				
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX EQUIPMENT LISN AUX EQUIPMENT LISN AUX EQUIPMENT LISN AUX EQUIPMENT LISN Filter AC power Receiver Test table/Insulation plane Remark: E U.T. Equipment Under Test LISN Line impedence Stabilization Network Test table height-0 dam Test procedure: 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and	Test Frequency Range:	150KHz to 30MHz						
Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 5-30 60 50 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment Under Test LISN Line impedence Stabilization Network Test table height-0.0m Test procedure: 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and	Class / Severity:	Class B						
Test setup: Comparison Com	Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto						
Test setup: Consider the first procedure: Consider the first procedure:	·	Гиоличан	Limit (dBuV)					
Test setup: Comparison of the frequency of the first setup: Comparison for the frequency of the first setup of the first s		Frequen	Quasi-peak Average					
Test setup: Reference Plane LISN AUX Equipment Under Test LISN Line impedance Stabilization Network Test table group in impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and								
* Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m Test procedure: 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and								
Test setup: Reference Plane LISN 40cm 80cm Filter AC power E.U.T. Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height-0.8m Test procedure: 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and				141 641		5	50	
Test procedure: 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the main power through LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and		* Decreases	s with the log	arithm of th	ne frequency.			
Test procedure: 1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through line impedance of the measuring equipment. 2. The peripheral devices are also connected to the main power through line impedance of the measuring equipment. 2. The peripheral devices are also connected to the main power through line impedance with 50ohm termination. (Please refer to the block diagram of the test setup and	Test setup:	Reference Plane						
line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power throug LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and	Test procedure:	AUX Equipmen Test table, Remark E.U.T. Equipment LISN: Line Impedi Test table height=	Insulation plane Under Test ence Stabilization Ne	80cm EMI Recei	Filter — AC p		through a	
LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and	l est procedure:	line impe 50ohm/5	edance stabili OuH coupling	zation netv j impedanc	vork (L.I.S.N.). e for the meas	This provide uring equipm	es a nent.	
		termination. (Please refer to the block diagram of the test setup and						
3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be chang according to ANSI C63.10:2009 on conducted measurement.		interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed						
Test Instruments: Refer to section 6.0 for details	Test Instruments:	Refer to section 6.0 for details						
Test mode: Refer to section 5.2 for details	Test mode:	Refer to section 5.2 for details						
Test environment: Temp.: 25 °C Humid.: 52% Press.: 1012m	Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test results: Pass	Test results:	Pass	ı		L	1	<u> </u>	

Measurement data Line:

Report No.: GTS201910000136-01



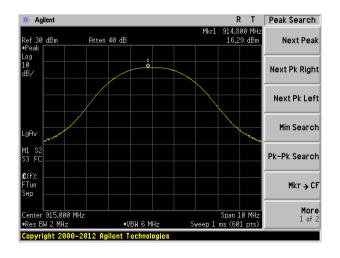
_	Freq MHz	Reading level dBuV	LISN/ISN factor dB/m	Cable loss dB	Level dBuV	Limit level dBuV	Over limit dB	Remark
	0.23	22.28	0.40	0.11	22.79	62.30	-39.51	QP
	0.23	14.46	0.40	0.11	14.97	52.30	-37.33	Average
	0.32	24.36	0.39	0.10	24.85	59.80	-34.95	QP
	0.32	16.04	0.39	0.10	16.53	49.80	-33.27	Average
	0.64	23.40	0.28	0.12	23.80	56.00	-32.20	QP
	0.64	13.74	0.28	0.12	14.14	46.00	-31.86	Average
	0.84	21.03	0.23	0.14	21.40	56.00	-34.60	QP
	0.84	9.00	0.23	0.14	9.37	46.00	-36.63	Average
	22.06	18.78	0.32	0.23	19.33	60.00	-40.67	QP
	22.06	11.45	0.32	0.23	12.00	50.00	-38.00	Average
	28.60	17.87	0.39	0.23	18.49	60.00	-41.51	QP
	28 60	11 28	0.30	0.23	11 90	50 00	-38 10	Amerage

Neutral:

Report No.: GTS201910000136-01

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.


7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3) RSS-247 Section 5.4(d)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02		
Limit:	30dBm (30dBm EIRP for IC limit)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

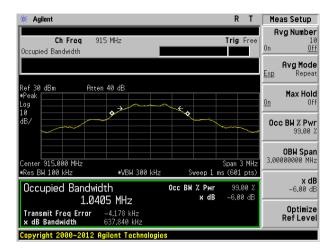
Test Frequency	Peak Output Power (dBm)	Limit(dBm)	Result
915MHz	16.29	30.00	Pass

Test plot as follows:

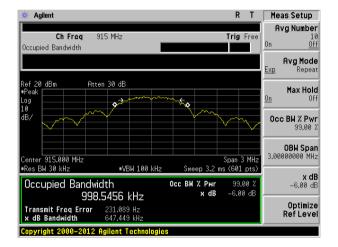
7.4 Channel Bandwidth & 99% Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
	RSS-Gen Section 6.6 & RSS-247 Section 5.2(a)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data


Test Frequency	-6dB Channel Bandwidth (MHz)	Limit(KHz)	Result
915MHz	0.638	>500	Pass

Test Frequency	99% Bandwidth (MHz)	Result
915MHz	0.999	Pass

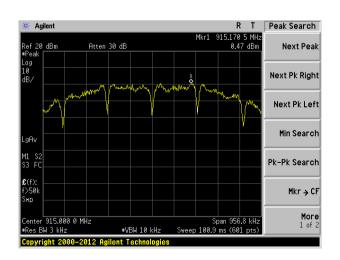


Test plot as follows:

FCC

IC

Report No.: GTS201910000136-01

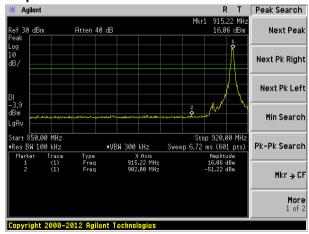

7.5 Power Spectral Density

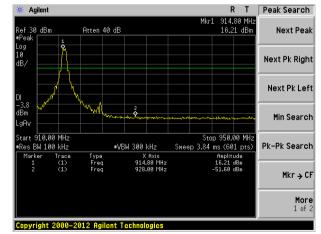
Test Requirement: FCC Part15 C Section 15.247 (e)					
	RSS-247 Section 5.2(b)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02				
Limit:	8dBm/3kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Measurement Data

Test Frequency	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
915MHz	0.47	8.00	Pass

Test plot as follows:




7.6 Band edges

7.6.1 Conducted Emission Method

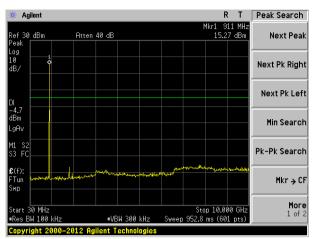
Test Requirement:	FCC Part15 C Section 15.247 (d)					
rest ivequirement.	` '					
	RSS-247 Section 5.5					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results: Pass						

Test plot as follows:

Lowest channel

Highest channel

7.7 Spurious Emission

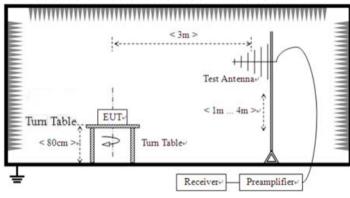

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
	RSS-247 Section 5.5					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

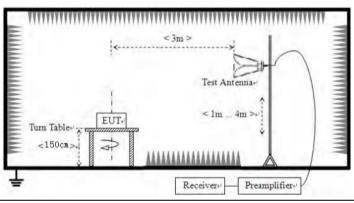
Test plot as follows:

Report No.: GTS201910000136-01

30MHz~10GHz



7.7.2 Radiated Emission Method


Test Requirement:	FCC Part15 C Section 15.209							
	Section 3.3 & RSS-Gen Section 8.9							
Test Method:	ANSI C63.10:2013 & RSS-Gen							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency		Detector	RB\	W VBW		Value	
	9KHz-150KHz	Qı	ıasi-peak	200H)Hz 600Hz		Quasi-peak	
	150KHz-30MHz	Qi	ıasi-peak	9KF	łz	30KHz	Quasi-peak	
	30MHz-1GHz	Qi	ıasi-peak	120K	Hz	300KHz	z Quasi-peak	
	Above 1GHz		Peak	1MF	lz	3MHz	Peak	
	Above 1GHz		Peak	1MF	lz	10Hz	Average	
Limit:	Frequency		Limit (u\	//m)	Va	lue	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)	Q	ĮΡ	300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP		30m	
	1.705MHz-30MHz		30		QP		30m	
	30MHz-88MHz		100		QP]	
	88MHz-216MHz		150		Q	P	3m	
	216MHz-960MH				QP			
	960MHz-1GHz		500		QP			
	Above 1GHz		500		Average			
			5000		Peak			
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MHz			
	Turn Table EUT- Im Capture Im Receiver-							

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

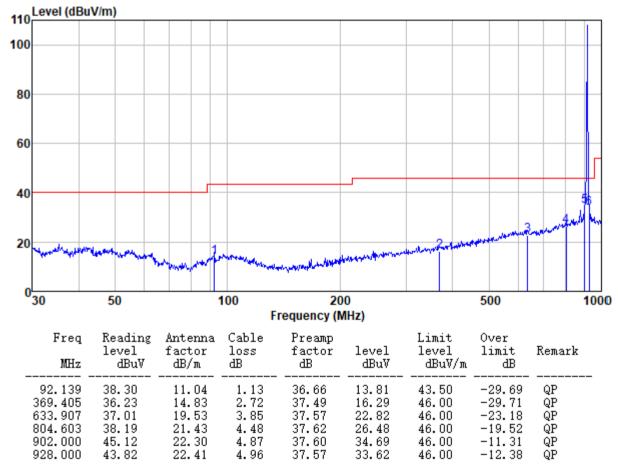
Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Instruments:	Refer to section 6.0 for details					
Test mode:	Test mode: Refer to section 5.2 for details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

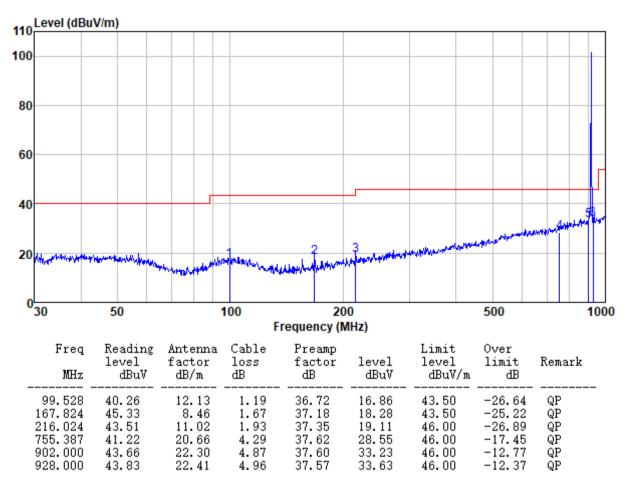
Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

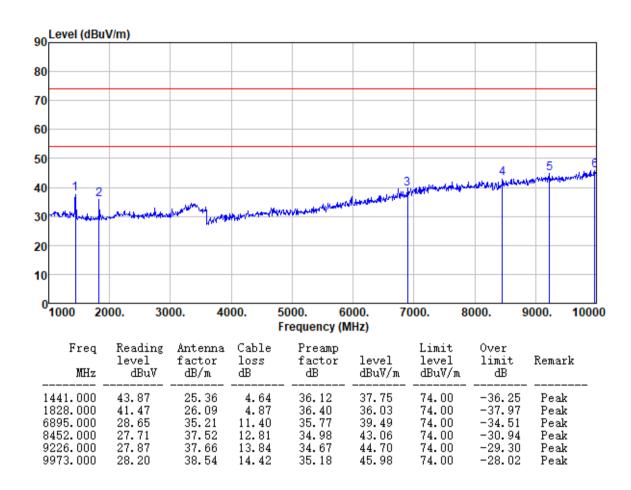
■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


■ Below 1GHz

Horizontal:

Vertical:



■ Above 1GHz

Report No.: GTS201910000136-01

Horizontal:

Vertical:

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

7.8 Frequency Stability

Test Requirement:	RSS-Gen Section 6.11& Section 8.	11			
Test Method:	ANSI C63.10: 2013 & RSS-Gen				
Limit:	Manufactures of devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.10 compliance to RSS-Gen requireme				
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector			
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

Report No.: GTS201910000136-01

casul cilicii	t data.					
		Frequenc	y stability vers	us Temp.		
		Pov	wer Supply: DC	3V		
	Operating	0 minute	2 minute	5 minute	10 minute	
Temp. Operating Frequency (MHz)		Measured	Measured	Measured	Measured	Pass
		Frequency	Frequency	Frequency	Frequency	/Fail
	(MHz)	(MHz)	(MHz)	(MHz)		
-30	915	915.004	915.003	915.009	915.007	Pass
-20	915	915.001	915.005	915.005	915.008	Pass
-10	915	915.002	915.001	915.007	915.007	Pass
0	915	915.009	915.002	915.005	915.007	Pass
10	915	915.006	915.009	915.001	915.001	Pass
20	915	915.001	915.009	915.000	915.006	Pass
30	915	915.008	915.001	915.007	915.001	Pass
40	915	915.006	915.005	916.000	915.007	Pass
50	915	915.003	915.004	915.008	915.005	Pass
		Frequency	y stability versu	us Voltage		
		Te	emperature: 25	°C		
Power Operating Supply Frequency (VDC) (MHz)	Onavatina	0 minute	2 minute	5 minute	10 minute	
	Measured	Measured	Measured	Measured	Pass	
	Frequency	Frequency	Frequency	Frequency	/Fail	
	(MHz)	(MHz)	(MHz)	(MHz)		
2.7	915	915.005	915.003	915.005	915.009	Pass
3	915	915.006	915.006	915.002	915.008	Pass
3.3	915	915.008	915.005	915.008	915.009	Pass

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----