Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1201_Nov20 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.6 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.10 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.29 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.38 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.3 Ω - 2.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.2 dB | | ## General Antenna Parameters and Design | The second secon | | |--|----------| | Electrical Delay (one direction) | 1.031 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D750V3-1201_Nov20 Page 4 of 6 ## **DASY5 Validation Report for Head TSL** Date: 11.11.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1201 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91 \text{ S/m}$; $\varepsilon_r = 42.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7405; ConvF(10, 10, 10) @ 750 MHz; Calibrated: 29.06.2020 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.00 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.23 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.36 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 2.81 W/kg 0 dB = 2.81 W/kg = 4.49 dBW/kg Certificate No: D750V3-1201_Nov20 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: D750V3-1201_Nov20 Page 6 of 6 ## D750V3 Dipole impedance and return loss Validation | Meas. Results | Current Meas. | Previous Meas. | Max. Deviation | |-----------------|------------------|------------------|------------------| | Meas. Data | 2022.11.09 | 2021.11.10 | / | | Return Loss(dB) | -27.335 | -27.512 | -0.64% | | l mana da maa | 48.949 Ω + 2.490 | 51.895 Ω + 2.240 | -4.730Ω | | Impedance | jΩ | jΩ | (Imaginary part) | ## Return Loss for Head TSL ## Impedance for Head TSL ## F.4 835 MHz Dipole Client baluntek Certificate No: Z21-60168 ## CALIBRATION CERTIFICATE Object D835V2 - SN: 4d187 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 17, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed
laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | 1 23
17 27 | -Sep-20 (CTTL, No.J20X08336)
-Sep-20 (CTTL, No.J20X08336)
-Jan-21(SPEAG,No.EX3-3617 Jan21) | Sep-21
Sep-21
Jan-22 | |---------------|--|----------------------------| | 17 27 | | A | | | -Jan-21(SPEAG,No.EX3-3617 Jan21) | lan-22 | | 21 | | Jan-22 | | 7 08 | -Jan-21(CTTL-SPEAG,No.Z21-60003) | Jan-22 | | Ca | al Date(Calibrated by, Certificate No.) | Scheduled Calibration | | 71430 01 | -Feb-21 (CTTL, No.J21X00593) | Jan-22 | | 10673 14 | -Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | 71430 01 | | Calibrated by: Name Function Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 24, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60168 Page 1 of 6 Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60168 Page 2 of 6 Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.8 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.76 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.34 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60168 Page 3 of 6 ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.6Ω- 1.30jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 30.9dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.305 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | SPEAG | |-------| | | Certificate No: Z21-60168 Page 4 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn DASY5 Validation Report for Head TSL Date: 05.17.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d187 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.887$ S/m; $\epsilon_r = 41.77$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.73, 9.73, 9.73) @ 835 MHz; Calibrated: 2021-01-27 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) $\textbf{Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0:} \ \ \text{Measurement grid: } dx = 5mm,$ dy=5mm, dz=5mm Reference Value = 58.96 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.72 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.57 W/kg Smallest distance from peaks to all points 3 dB below = 19.8 mm Ratio of SAR at M2 to SAR at M1 = 64.9% Maximum value of SAR (measured) = 3.27 W/kg 0 dB = 3.27 W/kg = 5.15 dBW/kg Certificate No: Z21-60168 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: Z21-60168 Page 6 of 6 ## D835V2 Dipole impedance and return loss Validation | Meas. Results | Current Meas. | Previous Meas. | Max. Deviation | |-----------------|-------------------|------------------|------------------| | Meas. Data | 2023.05.15 | 2022.05.16 | / | | Return Loss(dB) | -29.596 | -32.412 | -8.69% | | l man a da maa | 50.906 Ω - 3.2194 | 50.497 Ω - 2.356 | -0.8634Ω | | Impedance | jΩ | jΩ | (Imaginary part) | ## Return Loss for Head TSL ## Impedance for Head TSL ## F.5 1750 MHz Dipole Client baluntek Certificate No: Z21-60169 ## **CALIBRATION CERTIFICATE** Object D1750V2 - SN: 1130 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 17, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | Power sensor NRP8S | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | ReferenceProbe EX3DV4 | SN 3846 | 26-Apr-21(CTTL-SPEAG,No.Z21-60084) | Apr-22 | | DAE4 | SN 777 | 08-Jan-21(CTTL-SPEAG,No.Z21-60003) | Jan-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | Name Calibrated by: Zhao Jii Function Signatur Reviewed by: Zhao Jing SAR Test Engineer SAR Test Engineer Approved by: Lin Hao Qi Dianyuan SAR Project Leader Issued: May 24, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60169 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a)
IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ## Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60169 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | **** | SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.1 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60169 Page 3 of 6 ## Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.1Ω- 1.68jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 35.5 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.128 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z21-60169 Page 4 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## **DASY5 Validation Report for Head TSL** Date: 05.17.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1130 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.376$ S/m; $\epsilon_r = 39.86$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(8.22, 8.22, 8.22) @ 1750 MHz; Calibrated: 2021-04-26 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ## System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.24 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 9.2 W/kg; SAR(10 g) = 4.79 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 52.3% Maximum value of SAR (measured) = 14.5 W/kg 0 dB = 14.5 W/kg = 11.61 dBW/kg Certificate No: Z21-60169 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: Z21-60169 Page 6 of 6 ## D1750V2 Dipole impedance and return loss Validation | Meas. Results | Current Meas. | Previous Meas. | Max. Deviation | |-----------------|------------------|--------------------|----------------| | Meas. Data | 2023.05.15 | 2022.05.16 | / | | Return Loss(dB) | -30.774 | -30.021 | 2.51% | | l mana da maa | 51.337Ω - 2.6099 | F1.00F0 2.004 iO | -0.628Ω | | Impedance | jΩ | 51.965Ω - 2.004 jΩ | (Real part) | ## Return Loss for Head TSL ## Impedance for Head TSL ## F.6 1900 MHz Dipole Client baluntek Certificate No: : Z21-60170 ## **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d193 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 20, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-------------|--|-----------------------| | Power Meter NRP2 | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | Power sensor NRP8S | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | ReferenceProbe EX3DV4 | SN 3846 | 26-Apr-21(CTTL-SPEAG,No.Z21-60084) | Apr-22 | | DAE4 | SN 777 | 08-Jan-21(CTTL-SPEAG,No.Z21-60003) | Jan-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzer E5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | Name | Function | Signature | | Calibrated by: | Zhao Jing | SAR Test Engineer | Ex a | | Reviewed by: | Lin Hao | SAR Test Engineer | # 3% | | Approved by: | Qi Dianyuan | SAR Project Leader | SOV | | | | Issued: May | 24, 2021 | Certificate No: Z21-60170 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ## Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to
position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60170 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.9 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | **** | ## SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.3 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60170 Page 3 of 6 ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.2Ω+ 4.15jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.9dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.109 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z21-60170 Page 4 of 6 ## DASY5 Validation Report for Head TSL Date: 05.20.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d193 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f=1900 MHz; $\sigma=1.385$ S/m; $\epsilon_r=40.9$; $\rho=1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(7.96, 7.96, 7.96) @ 1900 MHz; Calibrated: 2021-04-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.82 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 19.7 W/kg SAR(1 g) = 9.96 W/kg; SAR(10 g) = 5.05 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 50.5% Maximum value of SAR (measured) = 16.0 W/kg 0 dB = 16.0 W/kg = 12.04 dBW/kg Certificate No: Z21-60170 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: Z21-60170 Page 6 of 6 ## D1900V2 Dipole impedance and return loss Validation | Meas. Results | Current Meas. | Previous Meas. | Max. Deviation | |--------------------|---------------------|------------------|------------------| | Meas. Data | 2023.05.18 | 2022.05.19 | / | | Return Loss(dB) | -29.246 | -29.438 | -0.65% | | l ma m a d a m a a | F2 F22 O O F90 (O | 53.067 Ω + 1.639 | -2.228Ω | | Impedance | 53.522 Ω - 0.589 jΩ | jΩ | (Imaginary part) | ## Return Loss for Head TSL ## Impedance for Head TSL ## F.7 2450 MHz Dipole CALIBRATION LABORATORY http://www.chinattl.cn E-mail: cttl@chinattl.com Client baluntek Certificate No: Z21-60171 ## **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 952 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 19, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | Power sensor NRP8S | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | ReferenceProbe EX3DV4 | SN 3846 | 26-Apr-21(CTTL-SPEAG,No.Z21-60084) | Apr-22 | | DAE4 | SN 777 | 08-Jan-21(CTTL-SPEAG,No.Z21-60003) | Jan-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | Name Calibrated by: Function Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 24, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60171 Page 1 of 8 Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60171 Page 2 of 8 In Collaboration with s p e a CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax: +86-10-62304633-2504
http://www.chinattl.cn # Measurement Conditions DASY system configuration, as | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | | | 7L | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.79 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | [eres | SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.0 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.00 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 18.7 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | Terror . | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 52.5 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.2 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60171 Page 3 of 8 ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.1Ω+ 2.20 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 27.0dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.0Ω+ 3.93 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 27.8dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.068 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | SPEAG | | |-------|--| | | | Certificate No: Z21-60171 Page 4 of 8 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2079 Fax; +86-10-62304633-2504 http://www.chinattl.en ## DASY5 Validation Report for Head TSL Date: 05.19.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 952 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f=2450 MHz; $\sigma=1.788$ S/m; $\epsilon_r=39.43$; $\rho=1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(7.45, 7.45, 7.45) @ 2450 MHz; Calibrated: 2021-04-26 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.4 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28/2 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 46.4% Maximum value of SAR (measured) = 22.5 W/kg 0 dB = 22.5 W/kg = 13.52 dBW/kg Certificate No: Z21-60171 Page 5 of 8 ## Impedance Measurement Plot for Head TSL Certificate No: Z21-60171 Page 6 of 8 ## DASY5 Validation Report for Body TSL Date: 05.19.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 952 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f=2450 MHz; $\sigma=1.96$ S/m; $\epsilon_r=52.15$; $\rho=1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(7.37, 7.37, 7.37) @ 2450 MHz; Calibrated: 2021-04-26 - · Sensor-Surface: I.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.3 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.06 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 49.7% Maximum value of SAR (measured) = 22.1 W/kg 0 dB = 22.1 W/kg = 13.44 dBW/kg Certificate No: Z21-60171 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Certificate No: Z21-60171 Page 8 of 8 ## D2450V2 Dipole impedance and return loss Validation | Meas. Results | Current Meas. | Previous Meas. | Max. Deviation | |--------------------------|--------------------|-----------------|------------------| | Meas. Data | 2023.05.17 | 2022.05.18 | / | | Return Loss(dB) | -26.656 | -26.401 | 0.97% | | Impedance 54.73 Ω -1.149 | F4 72 O 1 140 :O | 54.102 Ω +2.830 | -3.979Ω | | | 54./3 12-1.149 112 | jΩ | (Imaginary part) | ## Return Loss for Head TSL ## Impedance for Head TSL ## F.8 2600 MHz Dipole e CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Certificate No: Z21-60172 Client baluntek ## **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1095 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 19, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | 23-Sep-20 (CTTL, No.J20X08336)
23-Sep-20 (CTTL, No.J20X08336)
26-Apr-21(CTTL-SPEAG,No.Z21-60084)
08-Jan-21(CTTL-SPEAG,No.Z21-60003) | Sep-21
Sep-21
Apr-22
Jan-22 | |--
--| | 26-Apr-21(CTTL-SPEAG,No.Z21-60084) | Apr-22 | | | 100 March Ma | | 08-Jan-21(CTTL-SPEAG,No.Z21-60003) | Jan-22 | | | | | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | 1430 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | 0673 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | 1430 01-Feb-21 (CTTL, No.J21X00593) | Calibrated by: Name Zhao Jing Function SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: May 24, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z21-60172 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60172 Page 2 of 6 Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.7 ± 6 % | 1.95 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | Condition | .4 | | SAR measured | 250 mW input power | 6.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60172 Page 3 of 6 ### Appendix(Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.0Ω- 6.30jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.0dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.059 ns | |----------------------------------|--| | | The state of s | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z21-60172 Page 4 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com
http://www.chinattl.cn ### DASY5 Validation Report for Head TSL Date: 05.19.2021 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1095 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.953 S/m; ϵ_r = 38.72; ρ = 1000 kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(7.3, 7.3, 7.3) @ 2600 MHz; Calibrated: 2021-04-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.6 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.2 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 44.2% Maximum value of SAR (measured) = 25.0 W/kg 0 dB = 25.0 W/kg = 13.98 dBW/kg Certificate No: Z21-60172 Page 5 of 6 ### Impedance Measurement Plot for Head TSL Page 6 of 6 # D2600V2 Dipole impedance and return loss Validation | Meas. Results | Current Meas. | Previous Meas. | Max. Deviation | |-----------------|---------------------|------------------|------------------| | Meas. Data | 2023.05.17 | 2022.05.18 | / | | Return Loss(dB) | -23.004 | -21.995 | 4.59% | | l manadan sa | 40.000.0 4.315.0 | 50.184 Ω - 7.194 | 2.879Ω | | Impedance | 49.096 Ω - 4.315 jΩ | jΩ | (Imaginary part) | ### Return Loss for Head TSL ## Impedance for Head TSL ## F.9 5GHz Dipole Client baluntek Certificate No: Z21-60173 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1200 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 18, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |---------------------------------|-------------------|---|-----------------------| | Power Meter NRP2 | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | Power sensor NRP8S | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | ReferenceProbe EX3DV4 | SN 3846 | 26-Apr-21(CTTL-SPEAG,No.Z21-60084) | Apr-22 | | DAE4 | SN 777 | 08-Jan-21(CTTL-SPEAG,No.Z21-60003) | Jan-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzerE5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | Name | Function | Signature | | Calibrated by: | Zhao Jing | SAR Test Engineer | 爱 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | 26 | | | | Issued: May | 24, 2021 | | This calibration certificate sl | nall not be repro | duced except in full without written approval | of the laboratory. | Certificate No: Z21-60173 Page 1 of 14 Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60173 Page 2 of 14 Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.5 ± 6 % | 4.67 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | *** | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.80 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.8 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 24.2 % (k=2) | Certificate No: Z21-60173 Page 3 of 14 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn Tel: +86-10-62304633-2512 E-mail: ettl@chinattl.com Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 5.05 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.2 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 24.2 % (k=2) | Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | T ₁ | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.7 ± 6 % | 5.21 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | **** | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | 10. | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.75 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.2 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.7 W/kg ± 24.2 % (k=2) | Certificate No: Z21-60173 Page 4 of 14 ## Body TSL parameters at 5250 MHz | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | |
Measured Body TSL parameters | (22.0 ± 0.2) °C | 49.1 ± 6 % | 5.34 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | - | SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.33 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.4 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.05 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 W/kg ± 24.2 % (k=2) | Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | T. | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.4 ± 6 % | 5.82 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL at 5600 MHz | Condition | | |--------------------|---| | 100 mW input power | 7.72 W/kg | | normalized to 1W | 77.2 W/kg ± 24.4 % (k=2) | | Condition | | | 100 mW input power | 2.16 W/kg | | normalized to 1W | 21.6 W/kg ± 24.2 % (k=2) | | | 100 mW input power
normalized to 1W
Condition
100 mW input power | Certificate No: Z21-60173 Page 5 of 14 # Body TSL parameters at 5750 MHz he following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.1 ± 6 % | 6.05 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | and a | SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.34 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.4 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.03 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.3 W/kg ± 24.2 % (k=2) | Certificate No: Z21-60173 Page 6 of 14 ## Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 45.1Ω + 1.25jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 25.5dB | | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $49.7\Omega + 7.81j\Omega$ | | |--------------------------------------|----------------------------|--| | Return Loss | - 22.1dB | | ## Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 45.9Ω + 4.85jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 23.5dB | | ## Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 43.9Ω + 2.08jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 23.3dB | | ## Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 50.3Ω + 8.89jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 21.1dB | | ## Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 46.6Ω + 5.63jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 23.3dB | | Certificate No: Z21-60173 Page 7 of 14 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.096 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z21-60173 Page 8 of 14 Date: 05.18.2021 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 4.668 S/m; ϵ_r = 35.48; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.045 S/m; ϵ_r = 34.88; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.208 S/m; ϵ_r = 34.67; ρ = 1000 kg/m³, Phantom section: Center Section ### DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(5.43, 5.43, 5.43) @ 5250 MHz; ConvF(4.69, 4.69, 4.69) @ 5600 MHz; ConvF(4.9, 4.9, 4.9) @ 5750 MHz; Calibrated: 2021-04-26 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.22 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 7.8 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.3% Maximum value of SAR (measured) = 18.9 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.18 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 35.5 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 62.9% Maximum value of SAR (measured) = 19.8 W/kg Certificate No: Z21-60173 Page 9 of 14 Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.06 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 34.6 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.18 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 62.1% Maximum value of SAR (measured) = 19.0 W/kg 0 dB = 19.0 W/kg = 12.79 dBW/kg Page 10 of 14 ## Impedance Measurement Plot for Head TSL Page 11 of 14 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.com http://www.chinattl.com **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1200 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Date: 05 18 2021 Medium parameters used: f = 5250 MHz; σ = 5.34 S/m; ϵ_r = 49.12; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.815 S/m; ϵ_r = 48.44; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.045 S/m; ϵ_r = 48.11; ρ = 1000 kg/m³. Phantom section: Right Section ### DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(4.95, 4.95, 4.95) @ 5250 MHz; ConvF(4.32, 4.32, 4.32) @ 5600 MHz; ConvF(4.38, 4.38, 4.38) @ 5750 MHz; Calibrated: 2021-04-26. - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2021-01-08 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 7.33 W/kg; SAR(10 g) = 2.05 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.3% Maximum value of SAR (measured) = 17.2 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.06 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 33.1 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.16 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.1% Maximum value of SAR (measured) = 18.8 W/kg Certificate No: Z21-60173 Page 12 of 14 Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.58 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 7.34 W/kg; SAR(10 g) = 2.03 W/kg Smallest distance from peaks to all points 3
dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 62% Maximum value of SAR (measured) = 18.1 W/kg 0 dB = 18.1 W/kg = 12.58 dBW/kg Page 13 of 14 # Impedance Measurement Plot for Body TSL Page 14 of 14 D5GHzV2 Dipole impedance and return loss Validation | Meas. Results | Current Meas. | Previous Meas. | Max. Deviation | |-----------------|-------------------|--------------------|------------------| | Meas. Data | 2023.05.16 | 2022.05.17 | / | | 5.25GHz | 27.020 | -29.961 | -7.15% | | Return Loss(dB) | -27.820 | -29.901 | -7.13% | | 5.25GHz | 49.06 Ω -0.322 jΩ | 48.925 Ω +1.802 | -2.124Ω | | Impedance | | jΩ | (Imaginary part) | | 5.6GHz | -21.574 | -25.244 | -14.54% | | Return Loss(dB) | | -23.244 | -14.54% | | 5.6GHz | 52.121Ω +3.482 jΩ | 47 1620 ±2 417 iO | 4.958Ω | | Impedance | | 47.163Ω +3.417 jΩ | (Real part) | | 5.75GHz | -27.547 | 27.204 | 0.00% | | Return Loss(dB) | | -27.284 | 0.96% | | 5.75GHz | 46.944Ω +4.023 jΩ | E0 6020 + 9 724 iO | -4.701Ω | | Impedance | | 50.693Ω +8.724 jΩ | (Imaginary part) | # Return Loss for Head TSL --END OF REPORT--