

TEST REPORT

No.122N02450-WLAN 2.4GHz

for

Realme Chongqing Mobile Telecommunications Corp., Ltd.

Mobile Phone

Model Name: RMX3710

with

Hardware Version: 11

Software Version: ColorOS 13.0

FCC ID: 2AUYFRMX3710

Issued Date: 2022-12-19

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

©Copyright. All rights reserved by SAICT.

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I22N02450-WLAN 2.4GHz	Rev.0	1st edition	2022-12-19

Note: the latest revision of the test report supersedes all previous versions.

CONTENTS

CONT	ENTS	3
1. SI	UMMARY OF TEST REPORT	4
1.1.	TEST ITEMS	4
1.2.	TEST STANDARDS	4
1.3.	Test Result	4
1.4.	TESTING LOCATION	4
1.5.	Project data	4
1.6.	Signature	4
2. C	LIENT INFORMATION	5
2.1.	APPLICANT INFORMATION	5
2.2.	MANUFACTURER INFORMATION	5
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.2.	INTERNAL IDENTIFICATION OF EUT	6
3.3.	INTERNAL IDENTIFICATION OF AE	6
3.4.	GENERAL DESCRIPTION	7
4. R	EFERENCE DOCUMENTS	8
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	8
4.2.	REFERENCE DOCUMENTS FOR TESTING	8
5. T	EST RESULTS	9
5.1.	TESTING ENVIRONMENT	9
5.2.	TEST RESULTS	9
5.3.	STATEMENTS	9
6. T	EST EQUIPMENTS UTILIZED	10
7. L	ABORATORY ENVIRONMENT	11
8. M	IEASUREMENT UNCERTAINTY	12
ANNE	X A: DETAILED TEST RESULTS	13
TEST	T CONFIGURATION	13
A.0	ANTENNA REQUIREMENT	16
A.1	MAXIMUM OUTPUT POWER	17
A.2	PEAK POWER SPECTRAL DENSITY	18
A.3	6dB Bandwidth	25
A.4	BAND EDGES COMPLIANCE	35
A.5	CONDUCTED EMISSION	42
A.6	RADIATED EMISSION	53
۸ 7	AC DOWER LINE CONDUCTED EMISSION	75

1. Summary of Test Report

1.1. Test Items

Description Mobile Phone Model Name RMX3710

Applicant's name Realme Chongqing Mobile Telecommunications Corp., Ltd.

Manufacturer's Name Realme Chongqing Mobile Telecommunications Corp., Ltd.

1.2. <u>Test Standards</u>

FCC Part15-2021; ANSI C63.10-2013.

1.3. Test Result

Pass

Please refer to "5.2. Test Results"

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000

1.5. Project data

Testing Start Date: 2022-11-23
Testing End Date: 2022-12-13

1.6. Signature

Lin Zechuang

(Prepared this test report)

An Ran

No.122N02450-WLAN 2.4GHz

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

TTL

No.122N02450-WLAN 2.4GHz

2. Client Information

2.1. Applicant Information

Company Name: Realme Chongqing Mobile Telecommunications Corp., Ltd.

Address: No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing, China

Contact Person Yang LiangPing
E-Mail ylp@realme.net
Telephone: (86)13798864426

Fax: /

2.2. Manufacturer Information

Company Name: Realme Chongqing Mobile Telecommunications Corp., Ltd.

Address: No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing, China

Contact Person Yang LiangPing
E-Mail ylp@realme.net
Telephone: (86)13798864426

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description Mobile Phone Model Name RMX3710

RF Protocol IEEE 802.11b/g/n-HT20/n-HT40/VHT20/VHT40

Operating Frequency ISM 2412MHz~2462MHz

Type of Modulation DSSS/CCK/OFDM Antenna Type Integrated antenna

Antenna Gain -1.11dBi

Power Supply 3.87V DC by Battery FCC ID 2AUYFRMX3710

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version	Date of Receipt
UT07aa	863851060019793	11	ColorOS 13.0	2022-11-22
0107aa	863851060019785	11	C0101OS 13.0	2022-11-22
LITO1oo	863851060019934	11	ColorOS 13.0	2022-11-22
UT01aa	863851060019926	11	C010103 13.0	2022-11-22

^{*}EUT ID: is used to identify the test sample in the lab internally.

UT07aa is used for conduction test, UT01aa is used for radiation test and AC Power line Conducted Emission test.

3.3. Internal Identification of AE used during the test

AE No.	Description	AE ID'
AE1	Battery	/
AE2	Charger	/
AE3	USB Cable	1
AE4	Headset	/

AE1

Model BLP923

Manufacturer Chongqing Cosmx Battery Co., Ltd.

Capacity 4880mAh Nominal Voltage 3.87 V

AE2

Model VCB3HDUH

Manufacturer SHENZHEN HUNTKEY ELECTRIC CO., LTD.

Specification American Standard Charger

Page 6 of 77

AE3

Model DL150

Manufacturer /

3.4. General Description

The Equipment under Test (EUT) is a model of Mobile Phone with PIFA antenna and battery. It consists of normal options: Lithium Battery, Charger, USB Cable and Headset. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the client.

^{*}AE ID and AE Label: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part15	FCC CFR 47, Part 15, Subpart C:	2021
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902–928MHz,	
	2400–2483.5 MHz, and 5725–5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	

5. Test Results

5.1. Testing Environment

Normal Temperature: 15~35°C Relative Humidity: 20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Output Power	15.247 (b)	Р
2	Peak Power Spectral Density	15.247 (e)	Р
3	6dB Bandwidth	15.247 (a)	Р
4	Band Edges Compliance	15.247 (d)	Р
5	Conducted Emission	15.247 (d)	Р
6	Radiated Emission	15.247, 15.205, 15.209	Р
7	AC Power line Conducted	15.207	Р

See ANNEX A for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

Disclaimer:

A. After confirmation with the customer, the sample information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences arising therefrom shall be borne by the customer.

B. The samples in this report are provided by the customer, and the test results are only applicable to the samples received.

6. Test Equipments Utilized

Conducted test system

_	Conductod tool Cyclom					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2022-12-29	1 year
2	Power Sensor	U2021XA	MY55430013	Keysight	2022-12-29	1 year
3	Data Acquisition	U2531A	TW55443507	Keysight	/	/
4	RF Control Unit	JS0806-2	21C8060398	Tonscend	2023-05-08	1 year
5	Shielding Room	S81	CT000986-1344	ETS-Lindgren	2026-09-12	5 years

Radiated test system

Natiated test system					
Equipment	Model	Serial Number	Manufacturer	Calibration	Calibration Period
Test Receiver	ESR7	101676	Rohde & Schwarz	2023-11-23	1 year
BiLog Antenna	3142E	0224831	ETS-Lindgren	2024-05-27	3 years
Horn Antenna	3117	00066577	ETS-Lindgren	2025-04-17	3 years
Anechoic	EACT2 2.0	4005	ETC Linderson	2022 05 20	2
Chamber	ber FAC13-2.0 12	1285	E i S-Linagren	2023-05-29	2 years
Spectrum	E0)/40	404400	Dahda 0 Cahurana	0000 04 40	4
Analyzer	FSV40	101192	Ronde & Schwarz	2023-01-12	1 year
Loop Antenna	HLA6120	35779	TESEQ	2025-05-10	3 years
	orn Antenna QSH-SL-1 8-26-S-20 17013 Q-par		2222 24 22	_	
Horn Antenna		17013	Q-par	2023-01-06	3 years
Test Receiver	ESCI	100702	Rohde & Schwarz	2023-01-12	1 year
LISN	ENV216	102067	Rohde & Schwarz	2023-07-14	1 year
	Equipment Test Receiver BiLog Antenna Horn Antenna Anechoic Chamber Spectrum Analyzer Loop Antenna Horn Antenna Test Receiver	Equipment Model Test Receiver ESR7 BiLog Antenna 3142E Horn Antenna 3117 Anechoic Chamber FACT3-2.0 Spectrum Analyzer FSV40 Loop Antenna HLA6120 Horn Antenna QSH-SL-1 8-26-S-20 Test Receiver ESCI	Equipment Model Serial Number Test Receiver ESR7 101676 BiLog Antenna 3142E 0224831 Horn Antenna 3117 00066577 Anechoic Chamber FACT3-2.0 1285 Spectrum Analyzer FSV40 101192 Loop Antenna HLA6120 35779 Horn Antenna QSH-SL-1 8-26-S-20 17013 Test Receiver ESCI 100702	Equipment Model Serial Number Manufacturer Test Receiver ESR7 101676 Rohde & Schwarz BiLog Antenna 3142E 0224831 ETS-Lindgren Horn Antenna 3117 00066577 ETS-Lindgren Anechoic Chamber FACT3-2.0 1285 ETS-Lindgren Spectrum Analyzer FSV40 101192 Rohde & Schwarz Loop Antenna HLA6120 35779 TESEQ Horn Antenna QSH-SL-1 8-26-S-20 17013 Q-par Test Receiver ESCI 100702 Rohde & Schwarz	Equipment Model Serial Number Manufacturer Calibration Due date Test Receiver ESR7 101676 Rohde & Schwarz 2023-11-23 BiLog Antenna 3142E 0224831 ETS-Lindgren 2024-05-27 Horn Antenna 3117 00066577 ETS-Lindgren 2025-04-17 Anechoic Chamber FACT3-2.0 1285 ETS-Lindgren 2023-05-29 Spectrum Analyzer FSV40 101192 Rohde & Schwarz 2023-01-12 Loop Antenna HLA6120 35779 TESEQ 2025-05-10 Horn Antenna QSH-SL-1 8-26-S-20 17013 Q-par 2023-01-06 Test Receiver ESCI 100702 Rohde & Schwarz 2023-01-12

Test software

No.	Equipment	Manufacturer	Version
1	JS1120-3	Tonscend	3.2
2	EMC32	Rohde & Schwarz	10.50.40

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

7. Laboratory Environment

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω

Anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	<±4 dB, 3 m distance, from 30 to 1000 MHz
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

8. Measurement Uncertainty

Test Name	Uncertain	ity (<i>k</i> =2)
1. Maximum Peak Output Power	1.32	dB
Peak Power Spectral Density	1.32	dB
3. 6dB Bandwidth	4.56	(Hz
4. Band Edges Compliance	1.92	dB
	30MHz≤f<1GHz	1.41dB
5 Transmitter Spurious Emission Conducted	1GHz≤f<7GHz	1.92dB
Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB
	9kHz≤f<30MHz	1.79dB
6 Transmitter Springers Empireles Dedicted	30MHz≤f<1GHz	4.86dB
Transmitter Spurious Emission - Radiated	1GHz≤f<18GHz	4.82dB
	18GHz≤f≤40GHz	2.90dB
7. AC Power line Conducted Emission	150kHz≤f≤30MHz	2.62dB

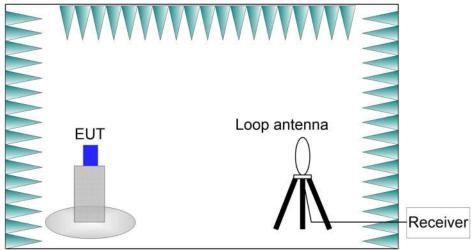
ANNEX A: Detailed Test Results

Test Configuration

The measurement is made according to ANSI C63.10.

1) Conducted Measurements

- 1. Connect the EUT to the test system correctly.
- 2. Set the EUT to the required work mode.
- 3. Set the EUT to the required channel.
- 4. Set the spectrum analyzer to start measurement.
- 5. Record the values.

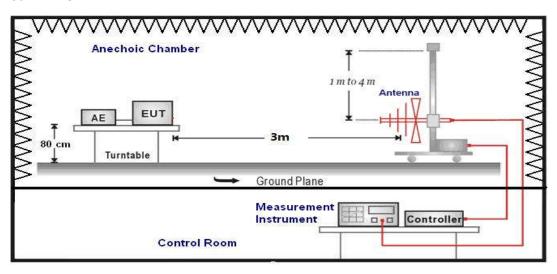


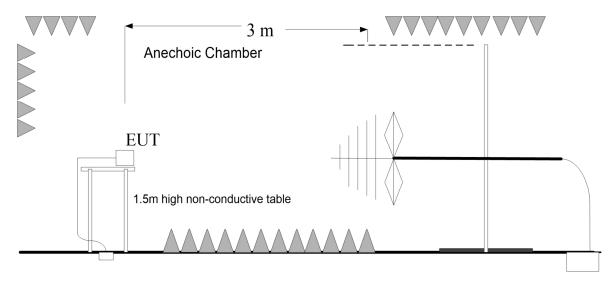
2) Radiated Measurements

Test setup:

9kHz-30MHz:

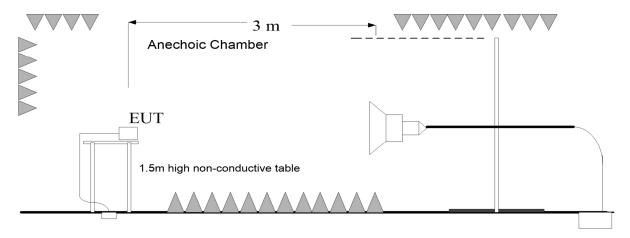
The EUT are measured in a anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.



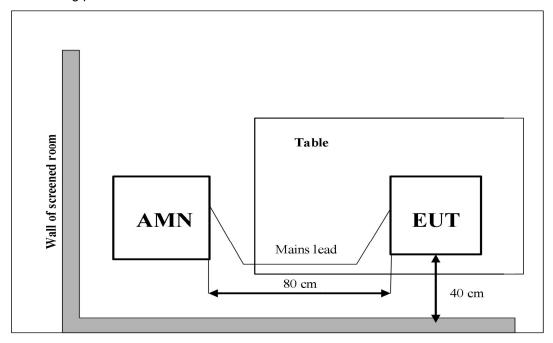

30MHz-26.5GHz:

The EUT are measured in a anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1.0 meter to 4.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.

30MHz-1GHz:



1GHz-3GHz:



3GHz-26.5GHz:

3) AC Power line Conducted Emission Measurement

For WLAN, the EUT is working under test mode. The EUT is commanded to operate at maximum transmitting power.

A.0 Antenna requirement

Measurement Limit:

Ctondord	Requirement				
Standard	Kequirement				
	An intentional radiator shall be designed to ensure that no antenna other than that				
	furnished by the responsible party shall be used with the device. The use of a				
	permanently attached antenna or of an antenna that uses a unique coupling to the				
	intentional radiator shall be considered sufficient to comply with the provisions of				
	this section. The manufacturer may design the unit so that a broken antenna can				
	be replaced by the user, but the use of a standard antenna jack or electrical				
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices				
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,				
	§15.219, or §15.221. Further, this requirement does not apply to intentional				
	radiators that must be professionally installed, such as perimeter protection				
	systems and some field disturbance sensors, or to other intentional radiators				
	which, in accordance with §15.31(d), must be measured at the installation site.				
	However, the installer shall be responsible for ensuring that the proper antenna is				
	employed so that the limits in this part are not exceeded.				

Conclusion: The Directional gains of antenna used for transmitting is -1.11dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Output Power

Measurement of method: See ANSI C63.10-2013-Clause 11.9.2.3.2.

Method AVGPM-G is a measurement using a gated RF average power meter.

Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)	< 30

Measurement Results:

Mode	RF output power (dBm)			
Iniodo	2412MHz (CH1)	2437MHz (CH6)	2462MHz (CH11)	
802.11b	18.03	18.06	17.96	
802.11g	16.95	17.02	16.97	
802.11n-HT20	16.69	16.94	16.63	
802.11-VHT20	16.74	16.89	16.61	
1	2422MHz (CH3)	2437MHz (CH6)	2452MHz (CH9)	
802.11n-HT40	17.14	17.23	17.21	
802.11-VHT40	17.12	17.19	17.10	

Note:

The data rate 1Mbps (11b mode), 6Mbps (11g mode), MCS0 (11n mode) and MCS0 (VHT mode) are selected as the Worst-Case. The following cases and test graphs are performed with this condition.

The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

Conclusion: PASS

A.2 Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-clause 11.10.2.

Measurement Limit:

Standard	Limit (dBm/10 kHz)
FCC CRF Part 15.247(e)	< 8

Measurement Results:

Mode	Frequency (MHz)	Test Results	Conclusion	
	2412(CH1)	Fig.1	0.38	Р
802.11b	2437(CH6)	Fig.2	-0.07	Р
	2462(CH11)	Fig.3	-0.33	Р
802.11g	2412(CH1)	Fig.4	-2.81	Р
	2437(CH6)	Fig.5	-3.26	Р
	2462(CH11)	Fig.6	-3.05	Р
802.11n-HT20	2412(CH1)	Fig.7	-3.73	Р
	2437(CH6)	Fig.8	-3.03	Р
	2462(CH11)	Fig.9	-4.39	Р
802.11-VHT20	2412(CH1)	Fig.10	-3.40	Р
	2437(CH6)	Fig.11	-3.88	Р
	2462(CH11)	Fig.12	-4.38	Р

Note: The mode of 20M OCB have the largest PSD.

See below for test graphs.

Conclusion: PASS

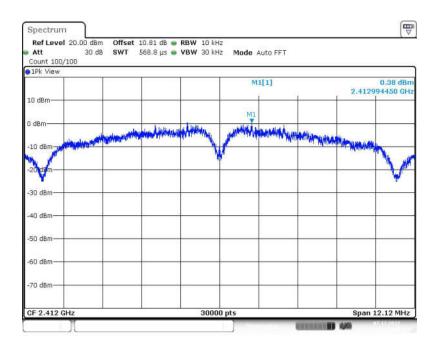


Fig.1 Power Spectral Density (802.11b, CH1)

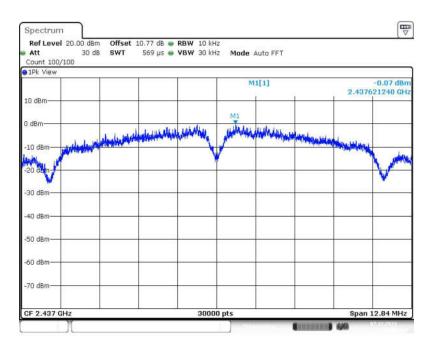


Fig.2 Power Spectral Density (802.11b, CH6)

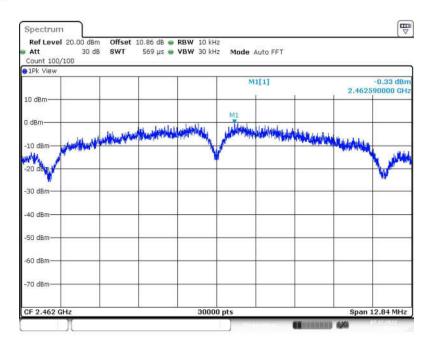


Fig.3 Power Spectral Density (802.11b, CH11)

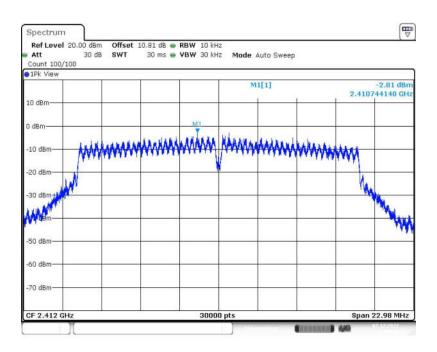


Fig.4 Power Spectral Density (802.11g, CH1)

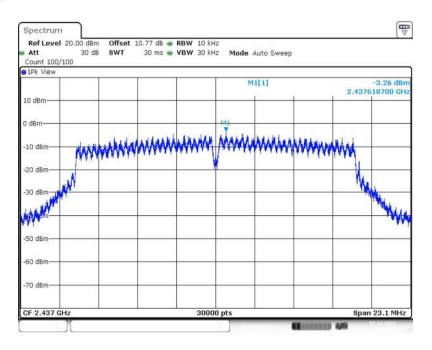


Fig.5 Power Spectral Density (802.11g, CH6)

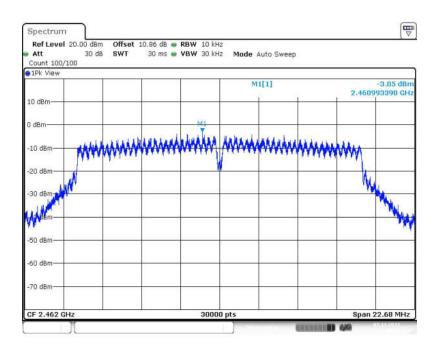


Fig.6 Power Spectral Density (802.11g, CH11)

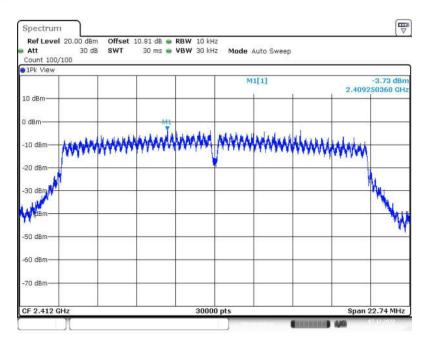


Fig.7 Power Spectral Density (802.11n-HT20, CH1)

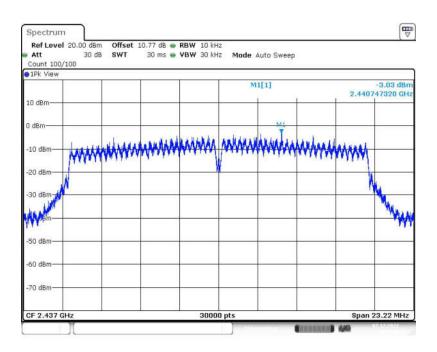


Fig.8 Power Spectral Density (802.11n-HT20, CH6)

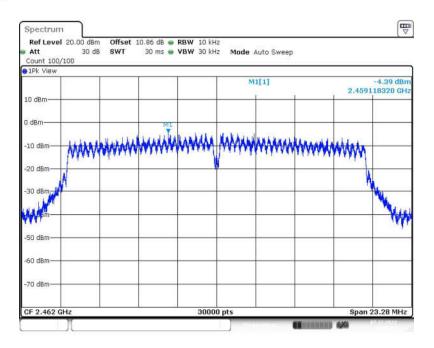


Fig.9 Power Spectral Density (802.11n-HT20, CH11)

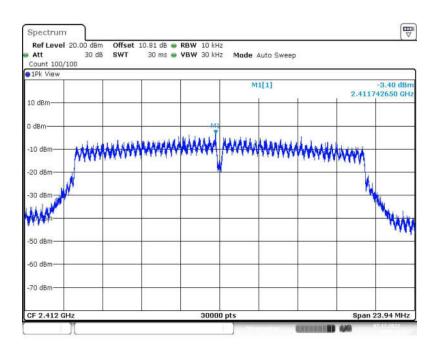


Fig.10 Power Spectral Density (802.11-VHT20, CH1)

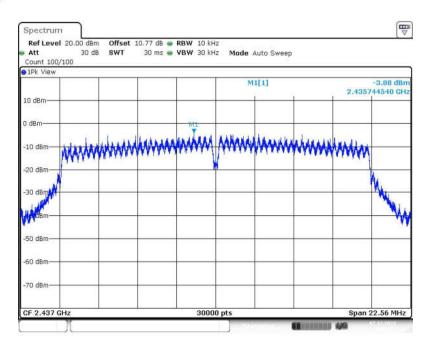


Fig.11 Power Spectral Density (802.11-VHT20, CH6)

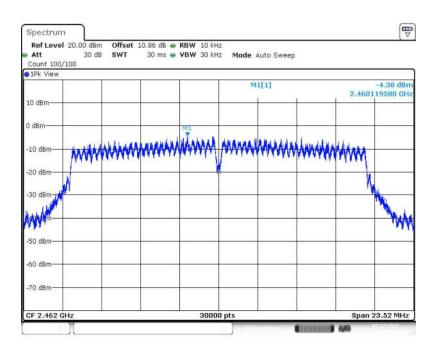


Fig.12 Power Spectral Density (802.11-VHT20, CH11)

A.3 6dB Bandwidth

Method of Measurement: See ANSI C63.10-clause 11.8.

Measurement Limit:

Standard	Limit (MHz)
FCC 47 CFR Part 15.247 (a)	≥ 0.5

Measurement Result:

Mode	Frequency (MHz)	Test Results (MHz)		Conclusion
	2412(CH1)	Fig.13	8.08	Р
802.11b	2437(CH6)	Fig.14	8.56	Р
	2462(CH11)	Fig.15	8.56	Р
	2412(CH1)	Fig.16	15.32	Р
802.11g	2437(CH6)	Fig.17	15.40	Р
	2462(CH11)	Fig.18	15.12	Р
	2412(CH1)	Fig.19	15.16	Р
802.11n-HT20	2437(CH6)	Fig.20	15.48	Р
	2462(CH11)	Fig.21	15.52	Р
	2422(CH3)	Fig.22	35.12	Р
802.11n-HT40	2437(CH6)	Fig.23	35.12	Р
	2452(CH9)	Fig.24	35.12	Р
	2412(CH1)	Fig.25	15.96	Р
802.11-VHT20	2437(CH6)	Fig.26	15.04	Р
	2462(CH11)	Fig.27	15.68	Р
	2422(CH3)	Fig.28	35.12	Р
802.11-VHT40	2437(CH6)	Fig.29	35.12	Р
	2452(CH9)	Fig.30	35.12	Р

See below for test graphs.

Conclusion: PASS

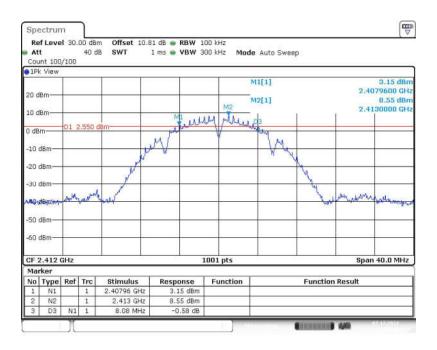


Fig.13 6dB Bandwidth (802.11b, CH1)

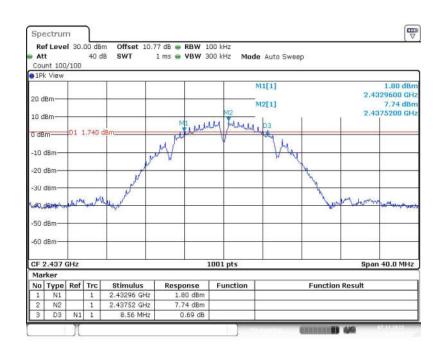


Fig.14 6dB Bandwidth (802.11b, CH6)

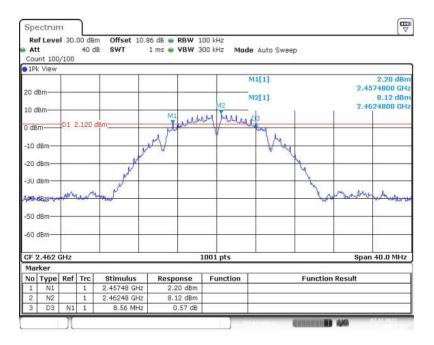


Fig.15 6dB Bandwidth (802.11b, CH11)

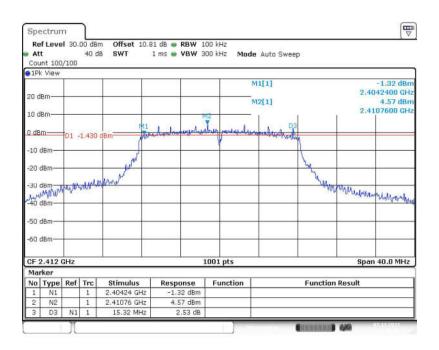


Fig.16 6dB Bandwidth (802.11g, CH1)

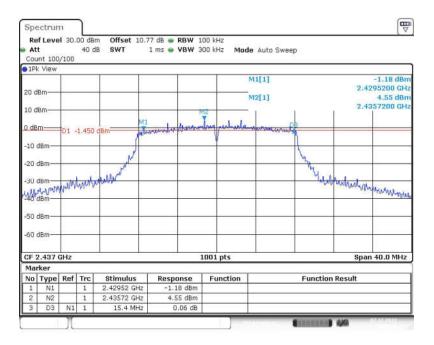


Fig.17 6dB Bandwidth (802.11g, CH6)

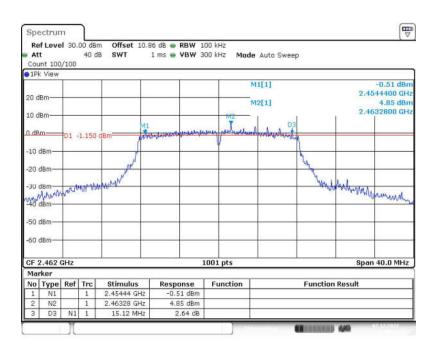


Fig.18 6dB Bandwidth (802.11g, CH11)

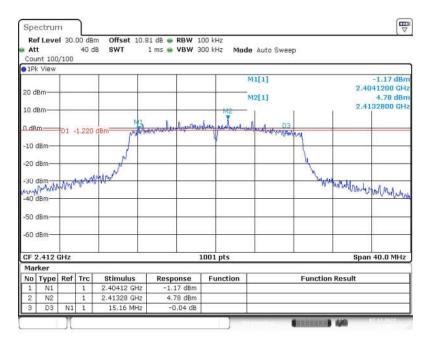


Fig.19 6dB Bandwidth (802.11n-HT20, CH1)

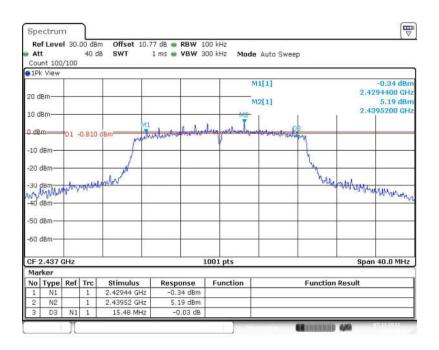


Fig.20 6dB Bandwidth (802.11n-HT20, CH6)

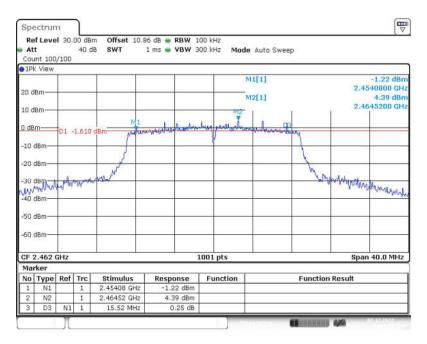


Fig.21 6dB Bandwidth (802.11n-HT20, CH11)

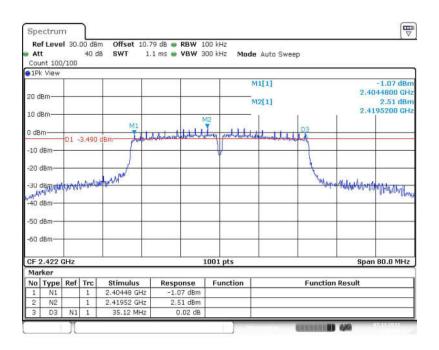


Fig.22 6dB Bandwidth (802.11n-HT40, CH3)

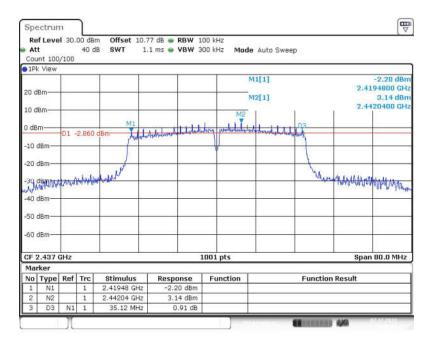


Fig.23 6dB Bandwidth (802.11n-HT40, CH6)

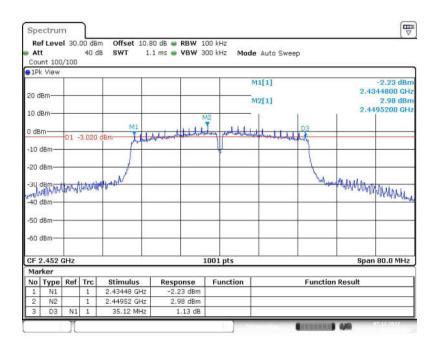


Fig.24 6dB Bandwidth (802.11n-HT40, CH9)

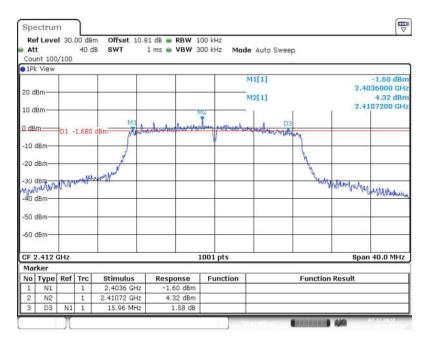


Fig.25 6dB Bandwidth (802.11-VHT20, CH1)

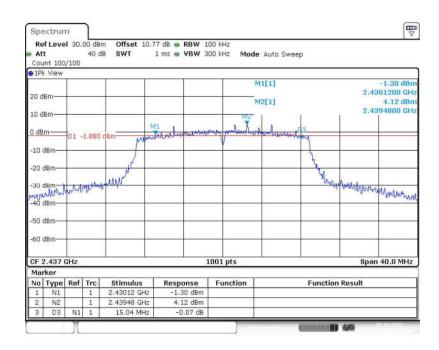


Fig.26 6dB Bandwidth (802.11-VHT20, CH6)

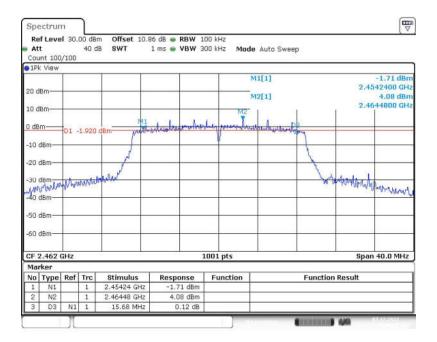


Fig.27 6dB Bandwidth (802.11-VHT20, CH11)

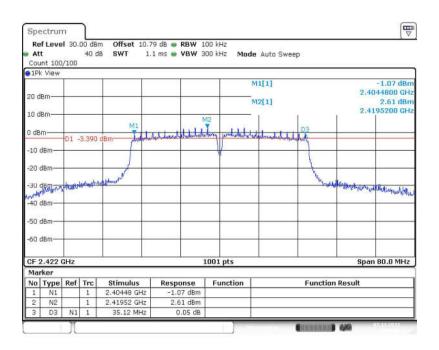


Fig.28 6dB Bandwidth (802.11-VHT40, CH3)

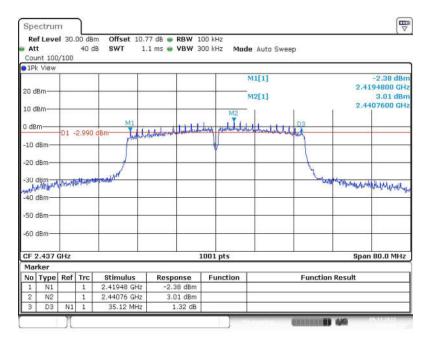


Fig.29 6dB Bandwidth (802.11-VHT40, CH6)

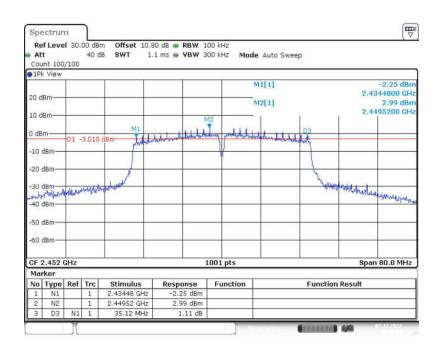


Fig.30 6dB Bandwidth (802.11-VHT40, CH9)

A.4 Band Edges Compliance

Method of Measurement: See ANSI C63.10-clause 11.13.3.

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 30

Measurement Result:

Mode	Frequency (MHz)	Test Res	Conclusion	
802.11b	2412(CH1)	Fig.31	44.22	Р
002.110	2462(CH11)	Fig.32	56.20	Р
902 11a	2412(CH1)	Fig.33	32.91	Р
802.11g	2462(CH11)	Fig.34	49.08	Р
902 445 UT20	2412(CH1)	Fig.35	33.43	Р
802.11n-HT20	2462(CH11)	Fig.36	46.92	Р
802.11n-HT40	2422(CH3)	Fig.37	31.56	Р
802.11N-H140	2452(CH9)	Fig.38	38.82	Р
802.11-VHT20	2412(CH1)	Fig.39	31.85	Р
	2462(CH11)	Fig.40	46.77	Р
802.11-VHT40	2422(CH3)	Fig.41	31.24	Р
002.11-70140	2452(CH9)	Fig.42	39.05	Р

See below for test graphs.

Conclusion: PASS

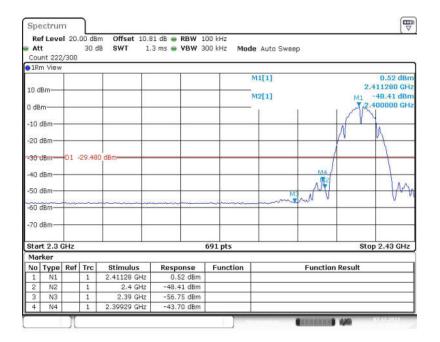


Fig.31 Band Edges (802.11b, CH1)

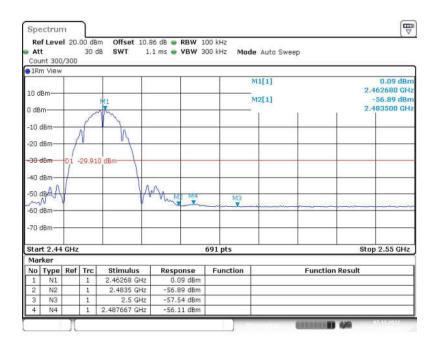


Fig.32 Band Edges (802.11b, CH11)

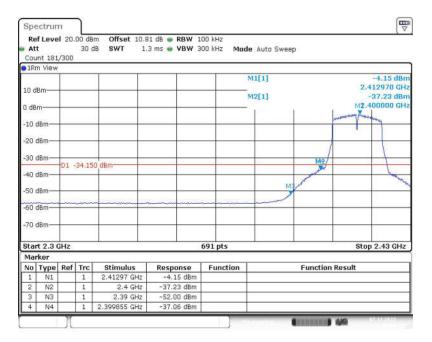


Fig.33 Band Edges (802.11g, CH1)

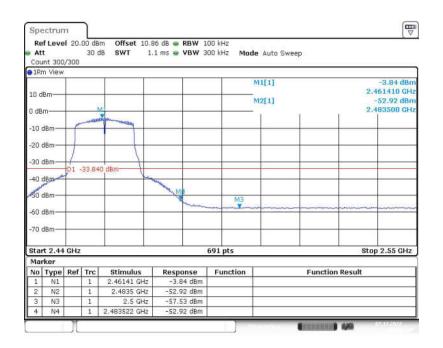


Fig.34 Band Edges (802.11g, CH11)

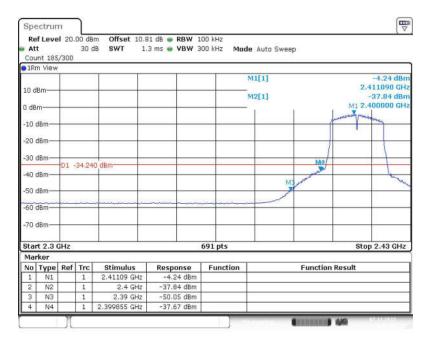


Fig.35 Band Edges (802.11n-HT20, CH1)

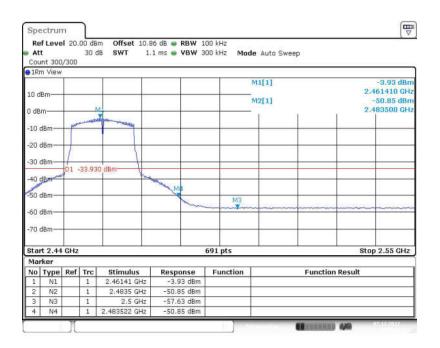


Fig.36 Band Edges (802.11n-HT20, CH11)

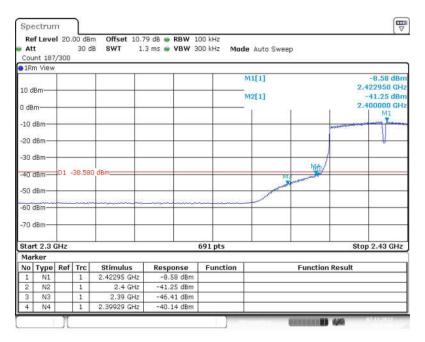


Fig.37 Band Edges (802.11n-HT40, CH3)

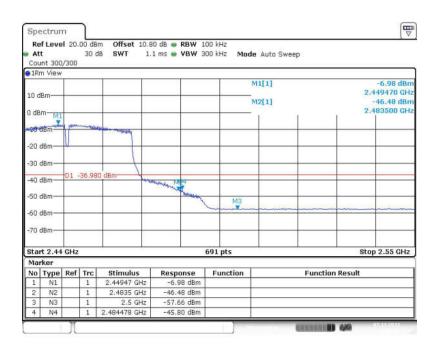


Fig.38 Band Edges (802.11n-HT40, CH9)

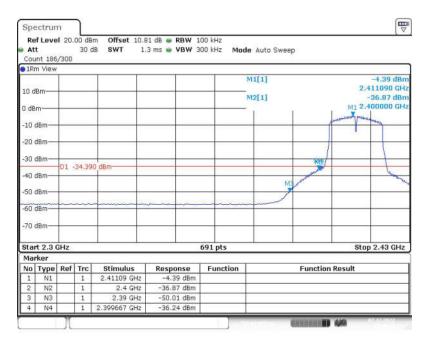


Fig.39 Band Edges (802.11-VHT20, CH1)

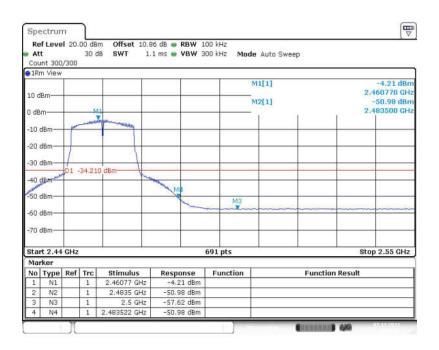


Fig.40 Band Edges (802.11-VHT20, CH11)

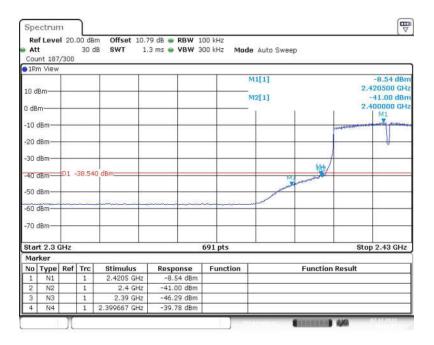


Fig.41 Band Edges (802.11-VHT40, CH3)

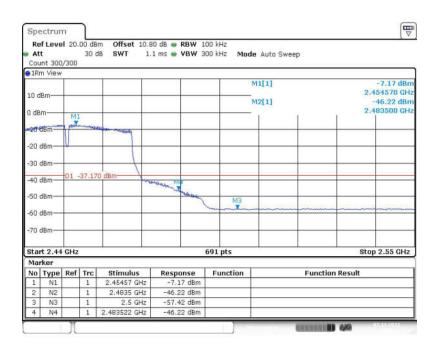


Fig.42 Band Edges (802.11-VHT40, CH9)

A.5 Conducted Emission

Method of Measurement: See ANSI C63.10-clause 11.11.

Measurement Limit:

Standard Limit (dBm)		
ECC 47 CEP Port 15 247 (d)	30dBm below peak output power in 100kHz	
FCC 47 CFR Part 15.247 (d)	bandwidth	

Measurement Results:

Mode	Frequency (MHz)	Frequency Range	Test Results	Conclusion
	2412(CH1)	1GHz-26.5GHz	Fig.43	Р
802.11b	2437(CH6)	1GHz-26.5GHz	Fig.44	Р
	2462(CH11)	1GHz-26.5GHz	Fig.45	Р
	2412(CH1)	1GHz-26.5GHz	Fig.46	Р
802.11g	2437(CH6)	1GHz-26.5GHz	Fig.47	Р
	2462(CH11)	1GHz-26.5GHz	Fig.48	Р
	2412(CH1)	1GHz-26.5GHz	Fig.49	Р
802.11n-HT20	2437(CH6)	1GHz-26.5GHz	Fig.50	Р
	2462(CH11)	1GHz-26.5GHz	Fig.51	Р
	2422(CH3)	1GHz-26.5GHz	Fig.52	Р
802.11n-HT40	2437(CH6)	1GHz-26.5GHz	Fig.53	Р
	2452(CH9)	1GHz-26.5GHz	Fig.54	Р
	2412(CH1)	1GHz-26.5GHz	Fig.55	Р
802.11-VHT20	2437(CH6)	1GHz-26.5GHz	Fig.56	Р
	2462(CH11)	1GHz-26.5GHz	Fig.57	Р
	2422(CH3)	1GHz-26.5GHz	Fig.58	Р
802.11-VHT40	2437(CH6)	1GHz-26.5GHz	Fig.59	Р
	2452(CH9)	1GHz-26.5GHz	Fig.60	Р
/	All channels	30MHz -1GHz	Fig.61	Р

See below for test graphs.

Conclusion: PASS

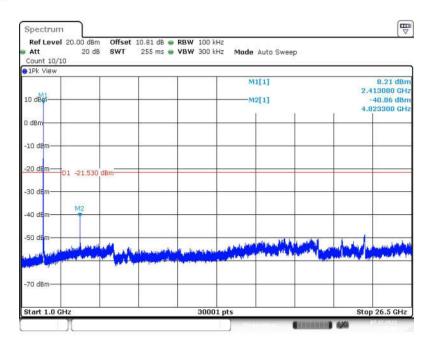


Fig.43 Conducted Spurious Emission (1GHz-26.5GHz, 802.11b, CH1)

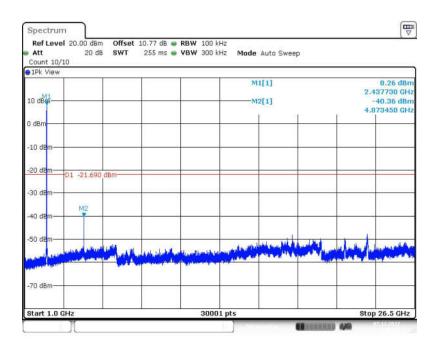


Fig.44 Conducted Spurious Emission (1GHz-26.5GHz, 802.11b, CH6)

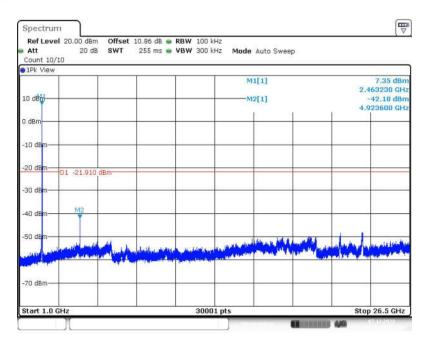


Fig.45 Conducted Spurious Emission (1GHz-26.5GHz, 802.11b, CH11)

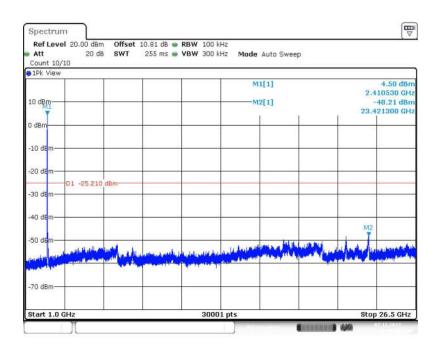


Fig.46 Conducted Spurious Emission (1GHz-26.5GHz, 802.11g, CH1)

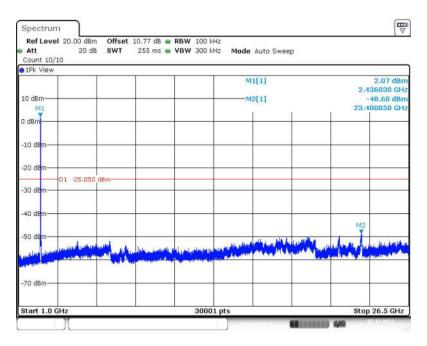


Fig.47 Conducted Spurious Emission (1GHz-26.5GHz, 802.11g, CH6)

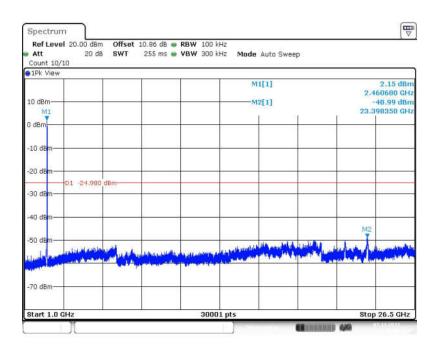


Fig.48 Conducted Spurious Emission (1GHz-26.5GHz, 802.11g, CH11)

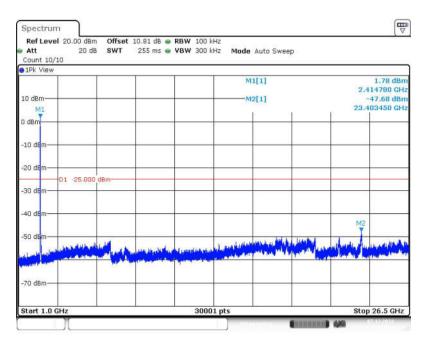


Fig.49 Conducted Spurious Emission (1GHz-26.5GHz, 802.11n-HT20, CH1)

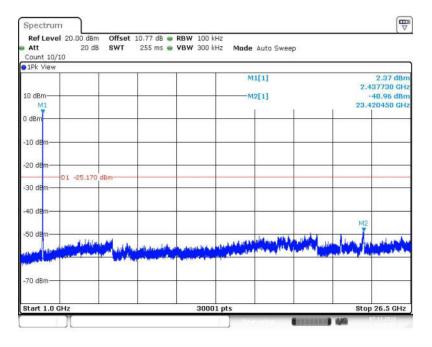


Fig.50 Conducted Spurious Emission (1GHz-26.5GHz, 802.11n-HT20, CH6)

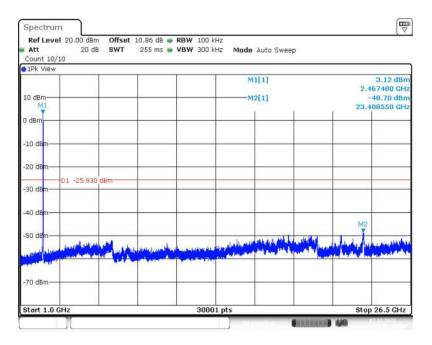


Fig.51 Conducted Spurious Emission (1GHz-26.5GHz, 802.11n-HT20, CH11)

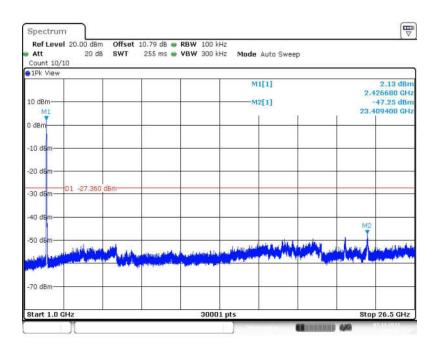


Fig.52 Conducted Spurious Emission (1GHz-26.5GHz, 802.11n-HT40, CH3)

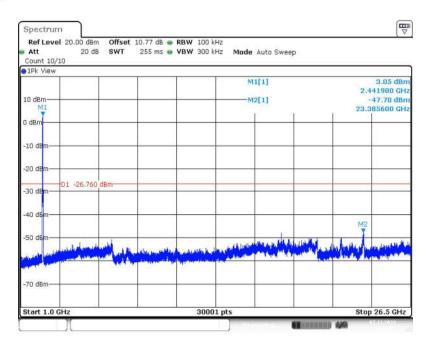


Fig.53 Conducted Spurious Emission (1GHz-26.5GHz, 802.11n-HT40, CH6)

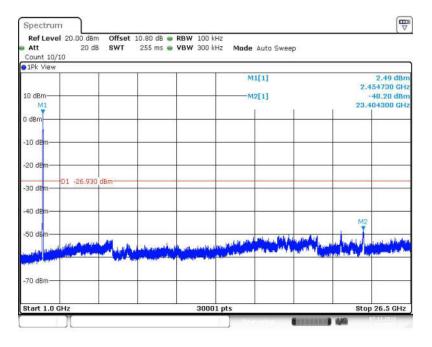


Fig.54 Conducted Spurious Emission (1GHz-26.5GHz, 802.11n-HT40, CH9)

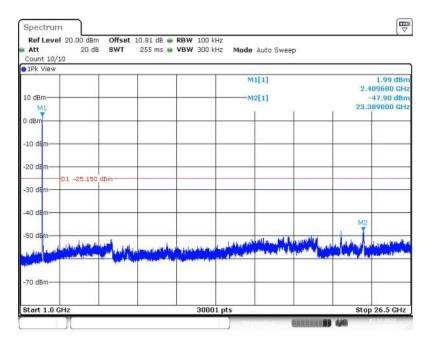


Fig.55 Conducted Spurious Emission (1GHz-26.5GHz, 802.11-VHT20, CH1)

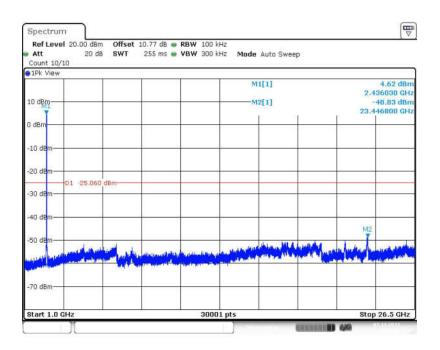


Fig.56 Conducted Spurious Emission (1GHz-26.5GHz, 802.11-VHT20, CH6)

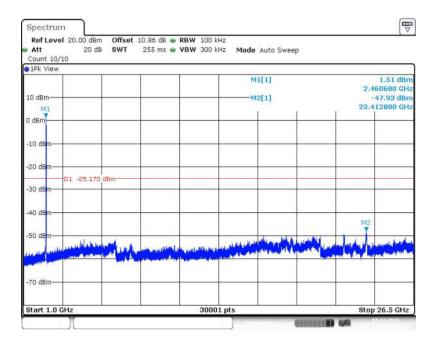


Fig.57 Conducted Spurious Emission (1GHz-26.5GHz, 802.11-VHT20, CH11)

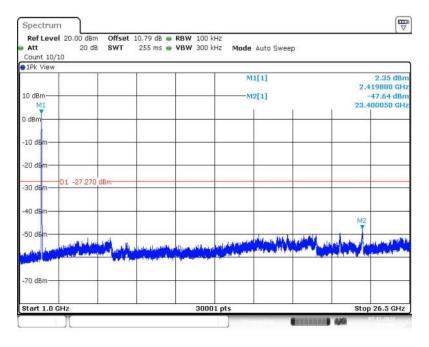


Fig.58 Conducted Spurious Emission (1GHz-26.5GHz, 802.11-VHT40, CH3)

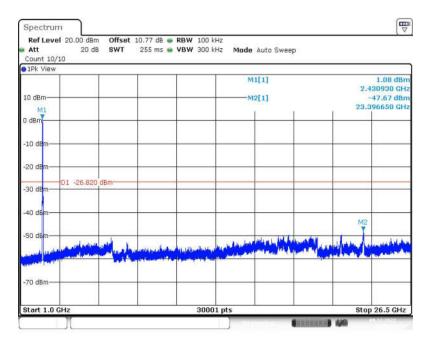


Fig.59 Conducted Spurious Emission (1GHz-26.5GHz, 802.11-VHT40, CH6)

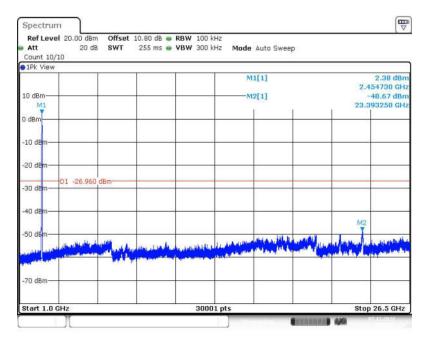


Fig.60 Conducted Spurious Emission (1GHz-26.5GHz, 802.11-VHT40, CH9)

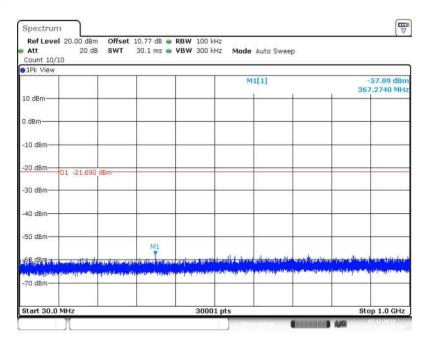


Fig.61 Conducted Spurious Emission (All Channels, 30MHz -1GHz)

A.6 Radiated Emission

Method of Measurement: See ANSI C63.10-clause 11.11&11.12.

Measurement Limit:

Standard	Limit (dBm)	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dBm below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength(μV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

•	ı				
Frequency of emission (MHz)	RBW/VBW				
30-1000	120kHz/300kHz	5			
1000-4000	1MHz/3MHz	15			
4000-18000	1MHz/3MHz	40			
18000-26500	1MHz/3MHz	20			

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic. The measurement results include the horizontal polarization and vertical polarization measurements. For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Y plane) were recorded in this report.

Measurement Results:

Mode	Frequency (MHz)	Frequency Range	Test Results	Conclusion
	2412(CH1)	1 GHz ~18 GHz	Fig.62	Р
	2437(CH6)	1 GHz ~18 GHz	Fig.63	Р
802.11b	2462(CH11)	1 GHz ~18 GHz	Fig.64	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.65	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.66	Р
	2412(CH1)	1 GHz ~18 GHz	Fig.67	Р
	2437(CH6)	1 GHz ~18 GHz	Fig.68	Р
802.11g	2462(CH11)	1 GHz ~18 GHz	Fig.69	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.70	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.71	Р
	2412(CH1)	1 GHz ~18 GHz	Fig.72	Р
000 44=	2437(CH6)	1 GHz ~18 GHz	Fig.73	Р
802.11n-	2462(CH11)	1 GHz ~18 GHz	Fig.74	Р
HT20	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.75	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.76	Р
	2422(CH3)	1 GHz ~18 GHz	Fig.77	Р
000 44=	2437(CH6)	1 GHz ~18 GHz	Fig.78	Р
802.11n- HT40	2452(CH9)	1 GHz ~18 GHz	Fig.79	Р
П140	Restricted Band (CH3)	2.38 GHz ~ 2.45 GHz	Fig.80	Р
	Restricted Band (CH9)	2.45 GHz ~ 2.5 GHz	Fig.81	Р
	2412(CH1)	1 GHz ~18 GHz	Fig.82	Р
000 44	2437(CH6)	1 GHz ~18 GHz	Fig.83	Р
802.11-	2462(CH11)	1 GHz ~18 GHz	Fig.84	Р
VHT20	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.85	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.86	Р
	2422(CH3)	1 GHz ~18 GHz	Fig.87	Р
000.44	2437(CH6)	1 GHz ~18 GHz	Fig.88	Р
802.11-	2452(CH9)	1 GHz ~18 GHz	Fig.89	Р
VHT40	Restricted Band (CH3)	2.38 GHz ~ 2.45 GHz	Fig.90	Р
	Restricted Band (CH9)	2.45 GHz ~ 2.5 GHz	Fig.91	Р
		9 kHz ~30 MHz	Fig.92	Р
1	All Channels	30 MHz ~1 GHz	Fig.93	Р
		18 GHz ~26.5 GHz	Fig.94	Р

Worst-Case Result: 802.11b CH6 (1-18GHz)

Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
4873.800000	54.41	74.00	19.59	V	3.7
5842.500000	47.62	74.00	26.38	Н	4.7
6881.142857	43.86	74.00	30.14	V	5.1
7636.285714	45.05	74.00	28.95	V	5.7
10449.857143	47.44	74.00	26.56	V	9.0
17172.000000	54.12	74.00	19.88	V	18.4

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
4873.800000	49.17	54.00	4.83	V	3.7
5842.500000	35.36	54.00	18.64	Н	4.7
6881.142857	31.40	54.00	22.60	V	5.1
7636.285714	32.62	54.00	21.38	V	5.7
10449.857143	35.11	54.00	18.89	V	9.0
17172.000000	42.34	54.00	11.66	V	18.4

802.11g CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Poi	(dB/m)
4872.300000	49.13	74.00	24.87	Н	3.7
6195.857143	44.91	74.00	29.09	Н	6.6
7184.142857	44.14	74.00	29.86	Н	5.3
8853.428572	44.85	74.00	29.15	V	6.5
10389.857143	47.04	74.00	26.96	V	9.0
17058.428571	54.94	74.00	19.06	V	18.5

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
4872.300000	36.74	54.00	17.26	Н	3.7
6195.857143	32.35	54.00	21.65	Н	6.6
7184.142857	31.50	54.00	22.50	Н	5.3
8853.428572	32.76	54.00	21.24	V	6.5
10389.857143	34.98	54.00	19.02	V	9.0
17058.428571	42.12	54.00	11.88	V	18.5

802.11n-HT20 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
4871.700000	48.72	74.00	25.28	Н	3.7
5942.700000	47.27	74.00	26.73	V	4.5
7946.571429	44.64	74.00	29.36	V	6.0
10421.142857	47.58	74.00	26.42	V	9.0
11562.000000	47.17	74.00	26.83	V	10.0
17613.000000	53.82	74.00	20.18	V	18.2

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
4871.700000	36.10	54.00	17.90	Н	3.7
5942.700000	35.19	54.00	18.81	V	4.5
7946.571429	32.29	54.00	21.71	V	6.0
10421.142857	34.95	54.00	19.06	V	9.0
11562.000000	35.25	54.00	18.75	V	10.0
17613.000000	42.03	54.00	11.97	V	18.2

802.11n-HT40 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
4880.700000	47.45	74.00	26.55	Н	3.7
5818.200000	47.80	74.00	26.20	Н	4.6
7462.714286	44.63	74.00	29.37	V	5.7
11177.571429	46.92	74.00	27.08	Н	9.7
12450.000000	48.67	74.00	25.33	Н	11.4
17287.285714	53.80	74.00	20.20	V	18.1

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
4880.700000	35.37	54.00	18.63	Н	3.7
5818.200000	35.64	54.00	18.36	Н	4.6
7462.714286	32.45	54.00	21.55	V	5.7
11177.571429	34.45	54.00	19.55	Н	9.7
12450.000000	36.04	54.00	17.96	Н	11.4
17287.285714	41.53	54.00	12.47	V	18.1

802.11-VHT20 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Del	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Pol	(dB/m)
4872.300000	49.03	74.00	24.97	Н	3.7
5929.800000	48.47	74.00	25.53	Н	4.6
7453.285714	45.09	74.00	28.91	Н	5.7
10434.857143	47.38	74.00	26.62	V	9.0
12387.000000	48.94	74.00	25.06	Н	11.3
14963.142857	49.80	74.00	24.20	V	12.9

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
4872.300000	36.20	54.00	17.80	Н	3.7
5929.800000	35.51	54.00	18.49	Н	4.6
7453.285714	32.30	54.00	21.70	Н	5.7
10434.857143	35.08	54.00	18.92	V	9.0
12387.000000	35.60	54.00	18.40	Н	11.3
14963.142857	37.82	54.00	16.18	V	12.9

802.11-VHT40 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	FOI	(dB/m)
4880.700000	47.45	74.00	26.55	Н	3.7
5818.200000	47.80	74.00	26.20	Н	4.6
7462.714286	44.63	74.00	29.37	V	5.7
11177.571429	46.92	74.00	27.08	Н	9.7
12450.000000	48.67	74.00	25.33	Н	11.4
17287.285714	53.80	74.00	20.20	V	18.1

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
4880.700000	35.37	54.00	18.63	Н	3.7
5818.200000	35.64	54.00	18.36	Н	4.6
7462.714286	32.45	54.00	21.55	V	5.7
11177.571429	34.45	54.00	19.55	Н	9.7
12450.000000	36.04	54.00	17.96	Н	11.4
17287.285714	41.53	54.00	12.47	V	18.1

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument. The measurement results are obtained as described below:

Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.

See below for test graphs.

Conclusion: PASS

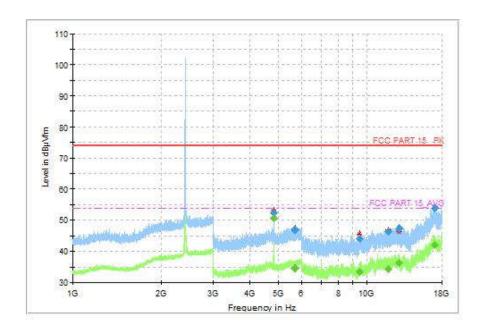


Fig.62 Radiated Spurious Emission (802.11b, CH1, 1GHz-18GHz)

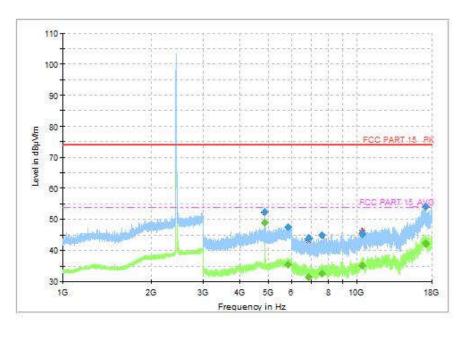


Fig.63 Radiated Spurious Emission (802.11b, CH6, 1GHz-18GHz)

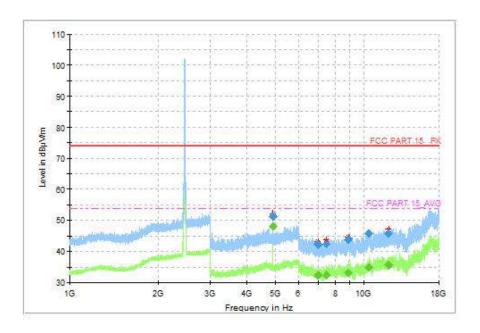


Fig.64 Radiated Spurious Emission (802.11b, CH11, 1GHz-18GHz)

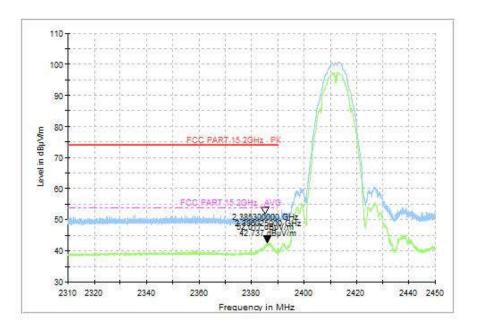


Fig.65 Radiated Restricted Band (802.11b, CH1, 2.38GHz~2.45GHz)

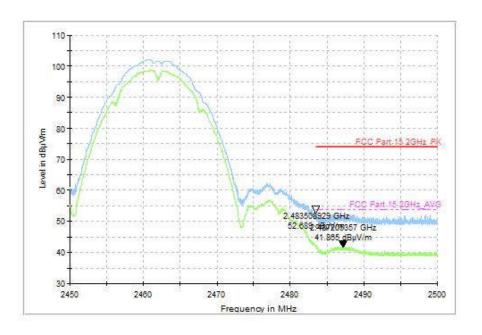


Fig.66 Radiated Restricted Band (802.11b, CH11, 2.45GHz~2.50GHz)

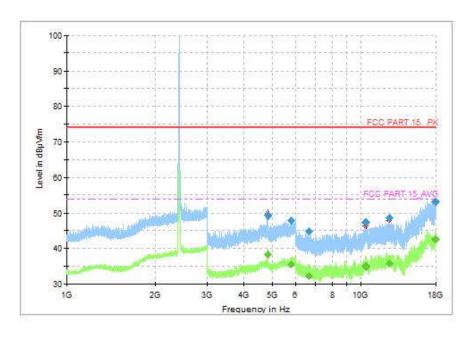


Fig.67 Radiated Spurious Emission (802.11g, CH1, 1GHz-18GHz)

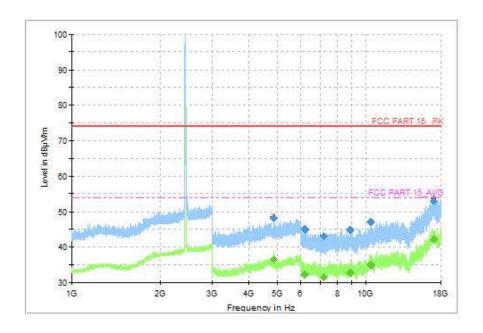


Fig.68 Radiated Spurious Emission (802.11g, CH6, 1GHz-18GHz)

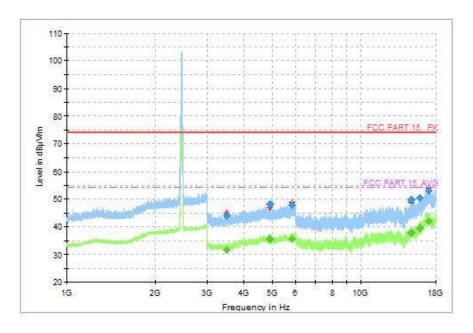


Fig.69 Radiated Spurious Emission (802.11g, CH11, 1GHz-18GHz)

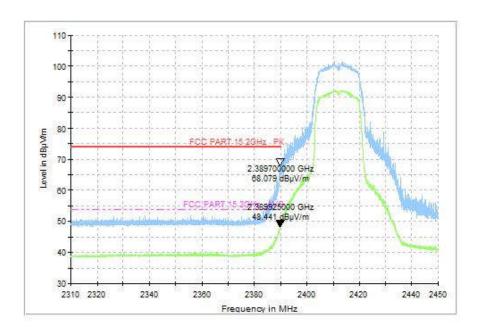


Fig.70 Radiated Restricted Band (802.11g, CH1, 2.38GHz~2.45GHz)

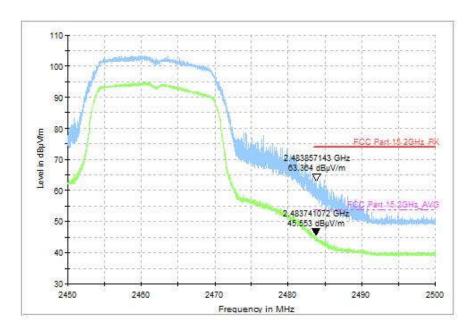


Fig.71 Radiated Restricted Band (802.11g, CH11, 2.45GHz~2.50GHz)

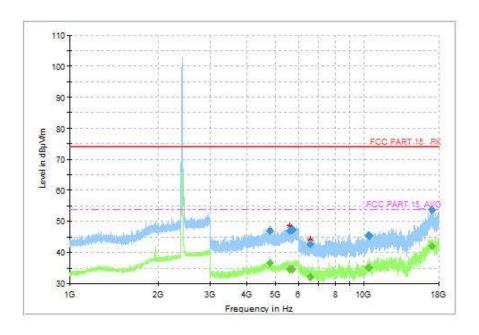


Fig.72 Radiated Spurious Emission (802.11n-HT20, CH1, 1GHz-18GHz)

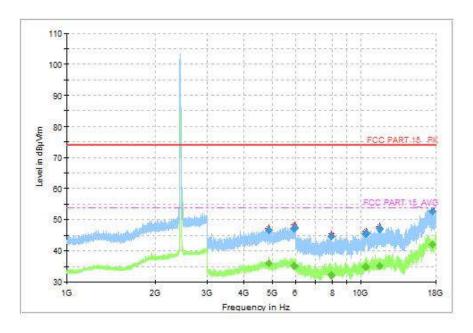


Fig.73 Radiated Spurious Emission (802.11n-HT20, CH6, 1GHz-18GHz)

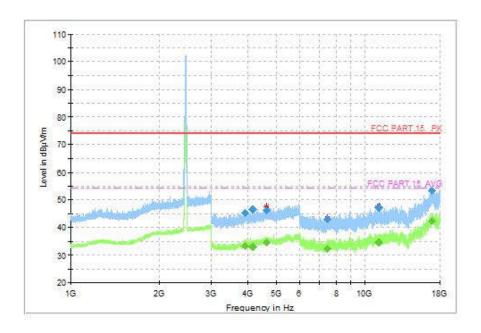


Fig.74 Radiated Spurious Emission (802.11n-HT20, CH11, 1GHz-18GHz)

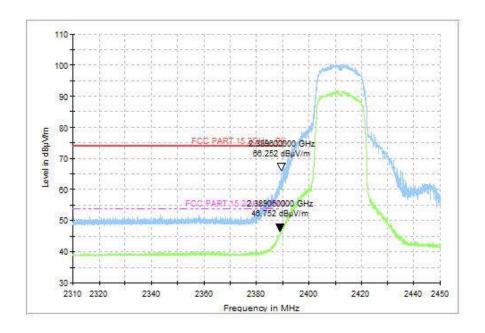


Fig.75 Radiated Restricted Band (802.11n-HT20, CH1, 2.38GHz~2.45GHz)

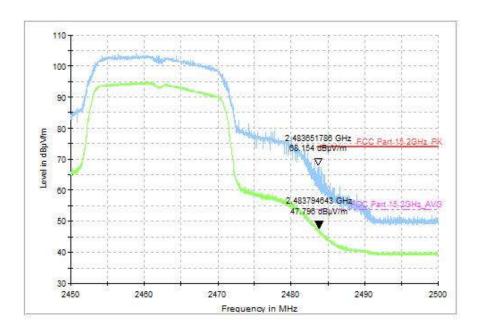


Fig.76 Radiated Spurious Emission (802.11n-HT20, CH11, 2.45GHz~2.50GHz)

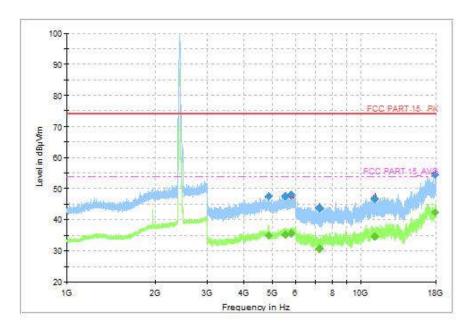


Fig.77 Radiated Spurious Emission (802.11n-HT40, CH3, 1GHz-18GHz)

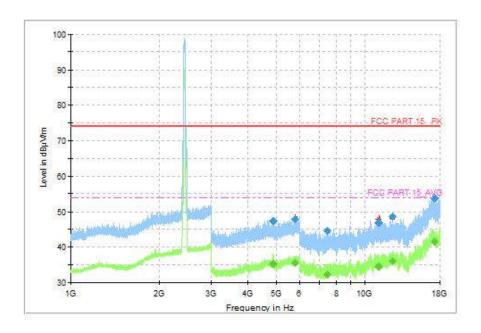


Fig.78 Radiated Spurious Emission (802.11n-HT40, CH6, 1GHz-18GHz)

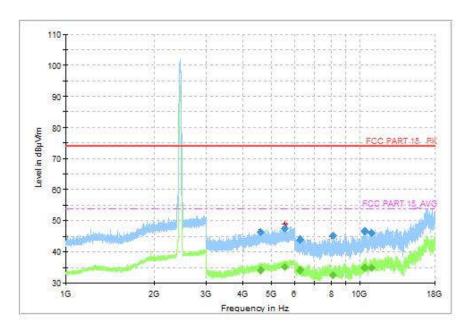


Fig.79 Radiated Spurious Emission (802.11n-HT40, CH9, 1GHz-18GHz)

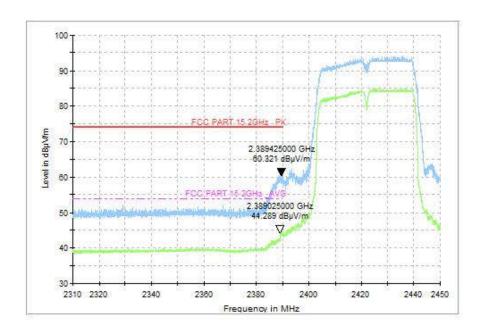


Fig.80 Radiated Restricted Band (802.11n-HT40, CH3, 2.38GHz~2.45GHz)

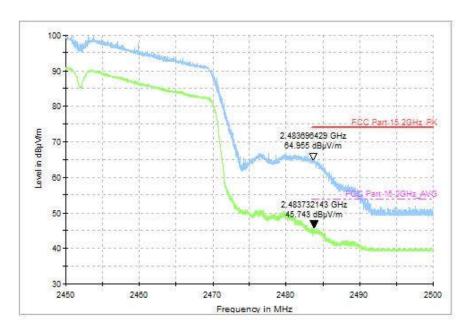


Fig.81 Radiated Spurious Emission (802.11n-HT40, CH9, 2.45GHz~2.50GHz)

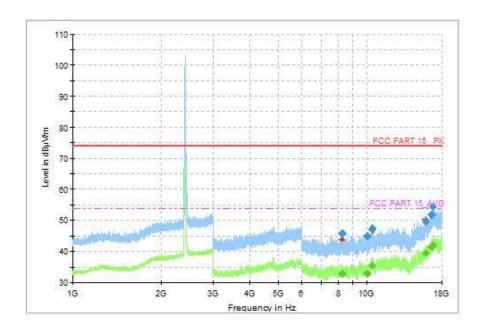


Fig.82 Radiated Spurious Emission (802.11-VHT20, CH1, 1GHz-18GHz)

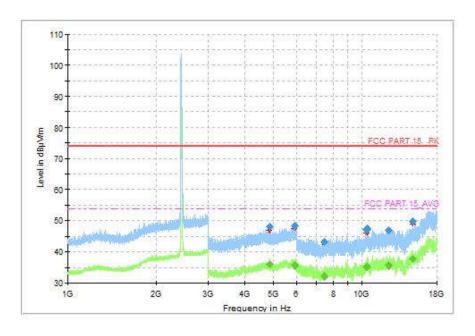


Fig.83 Radiated Spurious Emission (802.11-VHT20, CH6, 1GHz-18GHz)

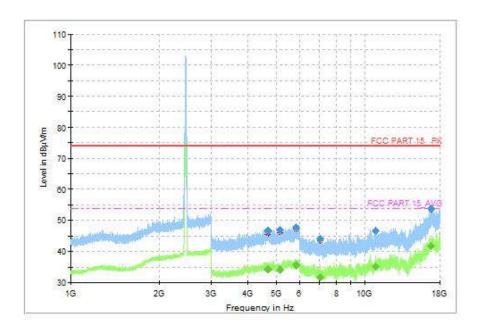


Fig.84 Radiated Spurious Emission (802.11-VHT20, CH11, 1GHz-18GHz)

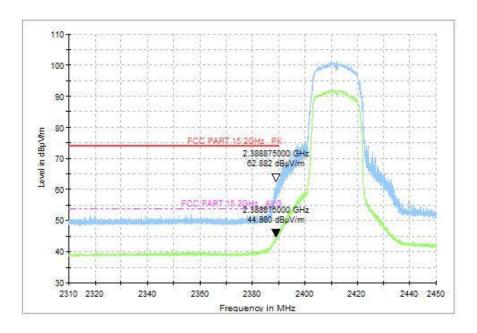


Fig.85 Radiated Restricted Band (802.11-VHT20, CH1, 2.38GHz~2.45GHz)

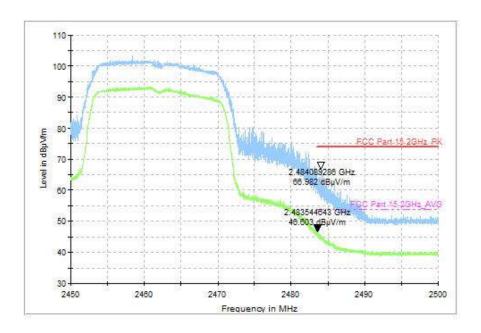


Fig.86 Radiated Spurious Emission (802.11-VHT20, CH11, 2.45GHz~2.50GHz)

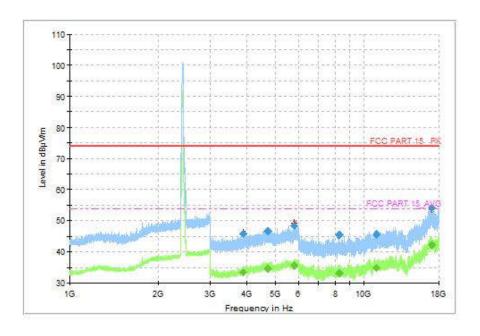


Fig.87 Radiated Spurious Emission (802.11-VHT40, CH3, 1GHz-18GHz)

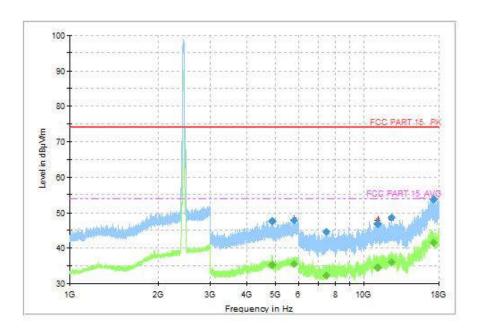


Fig.88 Radiated Spurious Emission (802.11-VHT40, CH6, 1 GHz-18 GHz)

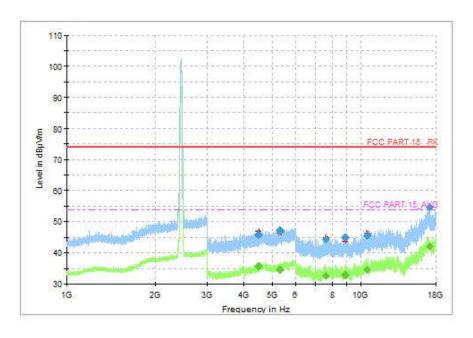


Fig.89 Radiated Spurious Emission (802.11-VHT40, CH9, 1GHz-18GHz)

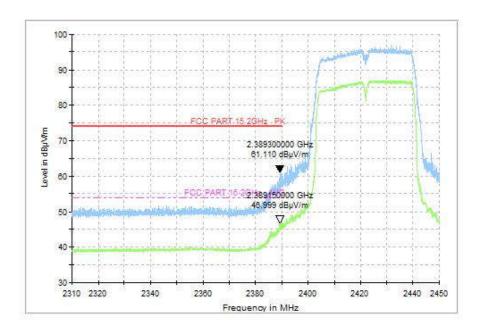


Fig.90 Radiated Restricted Band (802.11-VHT40, CH3, 2.38GHz~2.45GHz)

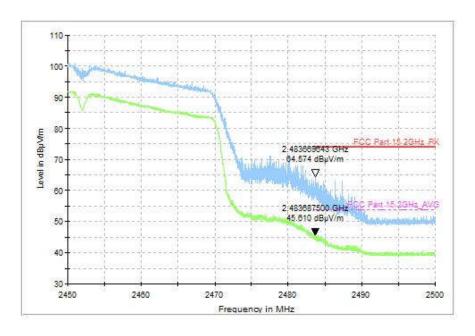


Fig.91 Radiated Spurious Emission (802.11-VHT40, CH9, 2.45GHz~2.50GHz)

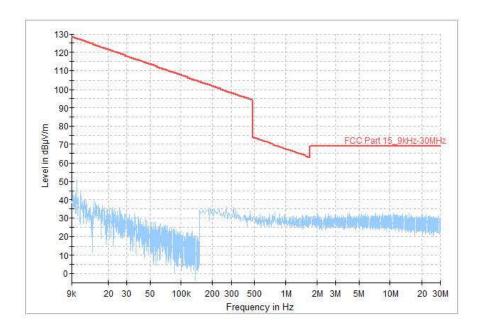


Fig.92 Radiated Spurious Emission (All channel, 9kHz~30MHz)

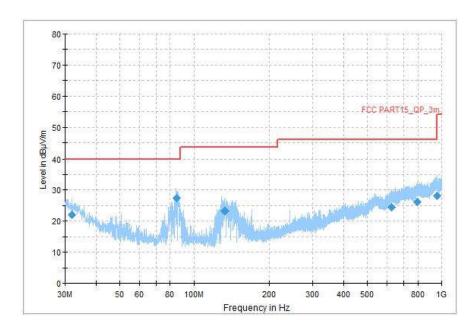


Fig.93 Radiated Spurious Emission (All channel, 30MHz~1GHz)

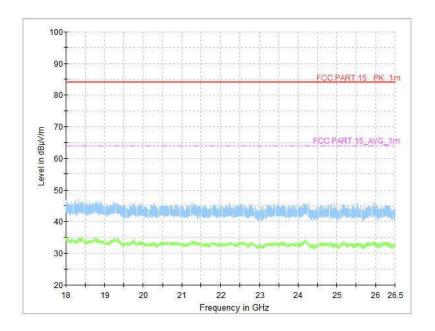


Fig.94 Radiated Spurious Emission (All channel, 18GHz~26.5GHz)

A.7 AC Power line Conducted Emission

Method of Measurement: See ANSI C63.10-clause 6.2.

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

WLAN 2.4GHz - AE2, AE3

Frequency range	Quasi-peak	Average-peak	Result (dBμV)		Conclusion
(MHz)	Limit (dBμV)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	66 to 56	56 to 46			
0.5 to 5	56	46	Fig.95	Fig.96	Р
5 to 30	60	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note: The measurement results include the L1 and N measurements.

See below for test graphs.

Conclusion: PASS

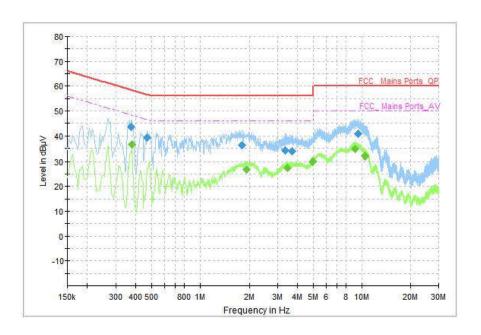


Fig.95 AC Power line Conducted Emission (Traffic)

Measurement Results: Quasi Peak

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.374000	43.76	58.41	14.66	N	ON	10
0.470000	39.25	56.51	17.26	N	ON	10
1.810000	36.23	56.00	19.77	N	ON	10
3.350000	34.16	56.00	21.84	N	ON	10
3.678000	33.86	56.00	22.14	N	ON	10
9.446000	40.70	60.00	19.30	N	ON	10

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)		Filler	(dB)
0.378000	36.61	48.32	11.72	N	ON	10
1.918000	26.87	46.00	19.13	N	ON	10
3.474000	27.41	46.00	18.59	N	ON	10
4.974000	29.99	46.00	16.01	L1	ON	10
9.086000	34.78	50.00	15.22	N	ON	10
10.426000	31.94	50.00	18.06	N	ON	10

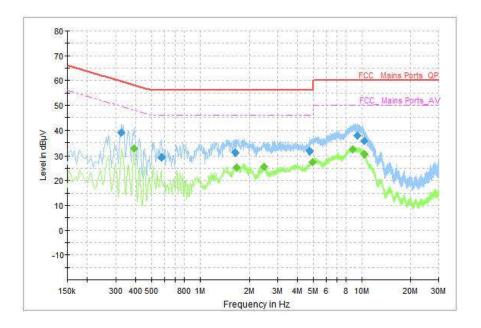


Fig.96 AC Power line Conducted Emission (Idle)

Measurement Results: Quasi Peak

Frequency	Quasi Peak	Limit	Margin	Line	Line Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.326000	38.93	59.55	20.62	N	ON	10
0.574000	29.24	56.00	26.76	N	ON	10
1.642000	31.07	56.00	24.93	N	ON	10
4.762000	31.59	56.00	24.41	L1	ON	10
9.438000	37.67	60.00	22.33	N	ON	10
10.398000	35.77	60.00	24.23	N	ON	10

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filtor	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)		Filter	(dB)
0.390000	32.48	48.06	15.59	N	ON	10
1.674000	25.29	46.00	20.71	N	ON	10
2.478000	25.66	46.00	20.34	L1	ON	10
4.958000	27.53	46.00	18.47	L1	ON	10
8.794000	32.25	50.00	17.75	L1	ON	10
10.398000	30.56	50.00	19.44	N	ON	10

END OF REPORT