

FCC Radio Test Report

FCC ID: 2AUYFRMX3686

Report No. Equipment Model Name Brand Name Applicant	BTL-FCCP-6-2208G029 Mobile Phone RMX3686 realme Realme Chongqing Mobile Telecommunications Corp., Ltd.	
Address Manufacturer Address Factory Address	No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing,China. Realme Chongqing Mobile Telecommunications Corp., Ltd. No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing,China. Realme Chongqing Mobile Telecommunications Corp., Ltd. No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing,China.	
Radio Function	Bluetooth EDR	
FCC Rule Part(s) Measurement Procedure(s)	FCC CFR Title 47, Part 15, Subpart C (15.247) ANSI C63.10-2013	
Date of Receipt Date of Test Issued Date	2022/8/18 2022/10/15 ~ 2022/10/23 2022/10/25	

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Engineer Jerr

Peter Chen, Vice Manager

Approved by

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	8
1.4	TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	8
1.5	DUTY CYCLE	9
2	GENERAL INFORMATION	10
2.1	DESCRIPTION OF EUT	10
2.2	TEST MODES	12
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	13
2.4	SUPPORT UNITS	14
3	AC POWER LINE CONDUCTED EMISSIONS TEST	15
3.1	LIMIT	15
3.2	TEST PROCEDURE	15
3.3	DEVIATION FROM TEST STANDARD	15
3.4	TEST SETUP	16
3.5	TEST RESULT	16
4	RADIATED EMISSIONS TEST	17
4.1	LIMIT	17
4.2	TEST PROCEDURE	18
4.3	DEVIATION FROM TEST STANDARD	18
4.4	TEST SETUP	18
4.5	EUT OPERATING CONDITIONS	19
4.6	TEST RESULT – BELOW 30 MHZ	20
4.7	TEST RESULT – 30 MHZ TO 1 GHZ	20
4.8	TEST RESULT – ABOVE 1 GHZ	20
5	NUMBER OF HOPPING CHANNEL	21
5.1	APPLIED PROCEDURES	21
5.2	TEST PROCEDURE	21
5.3	DEVIATION FROM STANDARD	21
5.4	TEST SETUP	21
5.5	EUT OPERATION CONDITIONS	21
5.6	TEST RESULTS	21
6	AVERAGE TIME OF OCCUPANCY	22
6.1	APPLIED PROCEDURES / LIMIT	22
6.2	TEST PROCEDURE	22
6.3	DEVIATION FROM STANDARD	22
6.4	TEST SETUP	22
6.5	EUT OPERATION CONDITIONS	22
6.6 7	TEST RESULTS	22
7 7 1		23
7.1 7.2	APPLIED PROCEDURES / LIMIT	23
7.2 7.3	TEST PROCEDURE DEVIATION FROM STANDARD	23 23
7.3 7.4	TEST SETUP	23 23
7.4 7.5	TEST SETUP TEST RESULTS	23 23
7.5 8	BANDWIDTH TEST	23 24
0		24

8.1		PLIED PROCEDURES	24
8.2		IT PROCEDURE	24
8.3		/IATION FROM STANDARD	24
8.4	TES	IT SETUP	24
8.5	EUT	OPERATION CONDITIONS	24
8.6		IT RESULTS	24
9	OUTPI	JT POWER TEST	25
9.1	APF	PLIED PROCEDURES / LIMIT	25
9.2	TES	T PROCEDURE	25
9.3	DE/	/IATION FROM STANDARD	25
9.4	TES	IT SETUP	25
9.5	EUT	OPERATION CONDITIONS	25
9.6	TES	T RESULTS	25
10	ANTEN	NA CONDUCTED SPURIOUS EMISSION	26
10.1	APF	PLIED PROCEDURES / LIMIT	26
10.2	TES	T PROCEDURE	26
10.3	DE/	/IATION FROM STANDARD	26
10.4	TES	T SETUP	26
10.5	EUT	OPERATION CONDITIONS	26
10.6	TES	T RESULTS	26
11	LIST O	F MEASURING EQUIPMENTS	27
12	EUT TI	EST PHOTO	29
13	EUT P	HOTOS	29
APPEN		AC POWER LINE CONDUCTED EMISSIONS	30
APPEN		RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	35
APPEN		RADIATED EMISSIONS - ABOVE 1 GHZ	38
APPEN			55
APPEN		AVERAGE TIME OF OCCUPANCY	57
APPEN		HOPPING CHANNEL SEPARATION MEASUREMENT	60
APPEN		BANDWIDTH	62
APPEN		OUTPUT POWER	64
APPEN		ANTENNA CONDUCTED SPURIOUS EMISSION	66
AFFEN		ANTENNA CONDUCTED OF URIOUS EN103101	00

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-6-2208G029	R00	Original Report.	2022/10/25	Valid

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX D	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass	
15.247 (b)(1)	Output Power	APPENDIX H	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

□ CB16

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659. ⊠ C06 ⊠ CB21 □ CB22

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

	C05	CB08	CB11	CB15
\boxtimes	SR11	SR05		

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95** %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C06	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

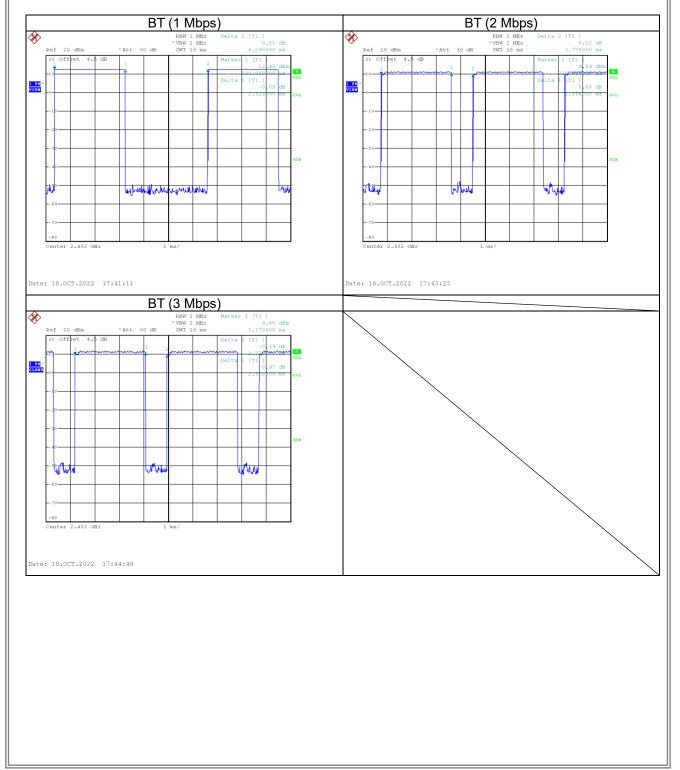
NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	21 °C, 58 %	AC 120 V	Paul Shen
Radiated emissions below 1 GHz	23 °C, 59 %	AC 120 V	Jay Tien
Radiated emissions above 1 GHz	25 °C, 62 %	AC 120 V	Jay Tien
Number of Hopping Frequency	25.5 °C, 53 %	AC 120 V	Angela Wang
Average Time of Occupancy	25.5 °C, 53 %	AC 120 V	Angela Wang
Hopping Channel Separation	25.5 °C, 53 %	AC 120 V	Angela Wang
Bandwidth	25.5 °C, 53 %	AC 120 V	Angela Wang
Output Power	25.5 °C, 53 %	AC 120 V	Angela Wang
Antenna conducted Spurious Emission	25.5 °C, 53 %	AC 120 V	Angela Wang

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING


Test Software	N/A						
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate			
GFSK	Default	Default	Default	1 Mbps			
π/4-DQPSK	Default	Default	Default	2 Mbps			
8DPSK	Default	Default	Default	3 Mbps			

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Wode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.914	1	2.914	6.290	46.33%	3.34
BT (2 Mbps)	2.894	1	2.894	3.770	76.76%	1.15
BT (3 Mbps)	2.914	1	2.914	3.770	77.29%	1.12

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Mobile Phone	
Model Name	RMX3686	
Brand Name	realme	
Model Difference	N/A	
Power Source	 #1 DC voltage supplied from AC/DC Adapter. #2 Supplied from Li-ion battery. #3 Supplied from USB port. 	
Power Rating	<pre>#1 For VCB7CAUH: 1. I/P: 100-130V~ 50/60Hz 1.8A O/P: 5V === 2A or 5-11V === 5A(MAX) I/P: 200-240V~ 50/60Hz 1.8A O/P: 5V === 2A or 5-11V === 6.1A(MAX) For VCB8JAUH: 1. I/P: 100-130V~ 50/60Hz 2.0A O/P: 5V === 2A or 5.0-11.0V === 6.1A MAX (67W MAX) 2. I/P: 200-240V~ 50/60Hz 2.0A O/P: 5V === 2A or 5.0-11.0V === 7.3A MAX (80W MAX) #2 DC 3.87V, 4890mAh/18.92Wh (Min) #3 DC 5V</pre>	
Products Covered	2 * Adapter: (1)VCB7CAUH (2)VCB8JAUH 1 * Li-ion battery: realme / BLP951 1 * TYPE-C Cable	
Operation Band	2400 MHz ~ 2483.5 MHz	
Operation Frequency	2402 MHz ~ 2480 MHz	
Modulation Type	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology	FHSS	
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps	
Output Power Max.	1 Mbps: 12.72 dBm (0.0187 W) 2 Mbps: 12.17 dBm (0.0165 W) 3 Mbps: 12.60 dBm (0.0182 W)	
Test Model	RMX3686	
Sample Status	Engineering Sample	
EUT Modification(s)	N/A	

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

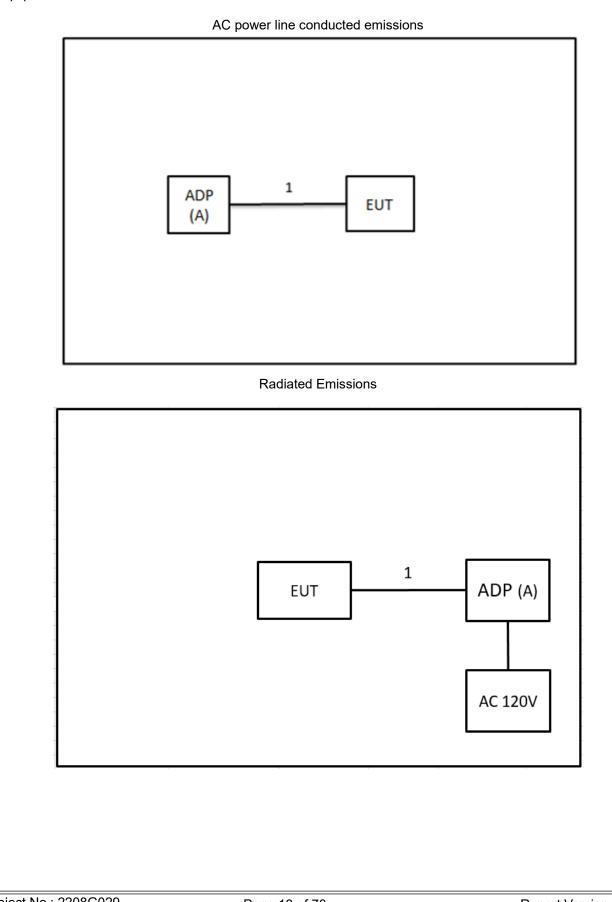
(3) Table for Filed Antenna:

Ant.	Brand Name	Model Name	Туре	Connector	Frequency (MHz)	Gain (dBi)
1	realme	Ant 8	IFA	N/A	2400-2500	-1.9

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	78	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-


NOTE:

(1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
A	ADP	SUPERVOOC	VCB7CAUH	N/A	Supplied by test requester.
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	USB to Type C Cable	Supplied by test requester.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

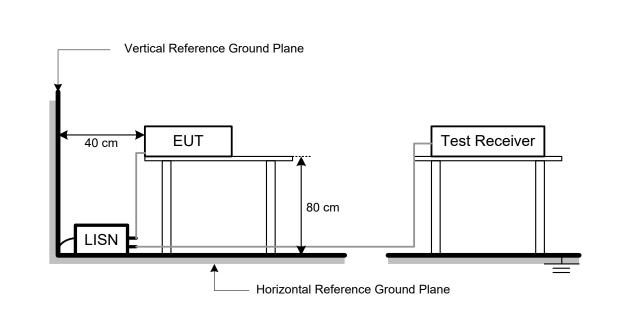
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment were powered from an additional LISN(s).

- The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:


- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

BTL

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBuV/m)		Measurement Distance
(IVIFIZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

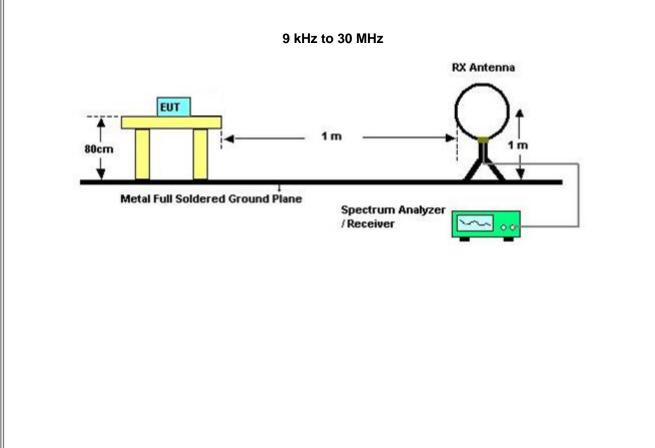
- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use)
 - Margin Level = Measurement Value Limit Value

Calculation example:

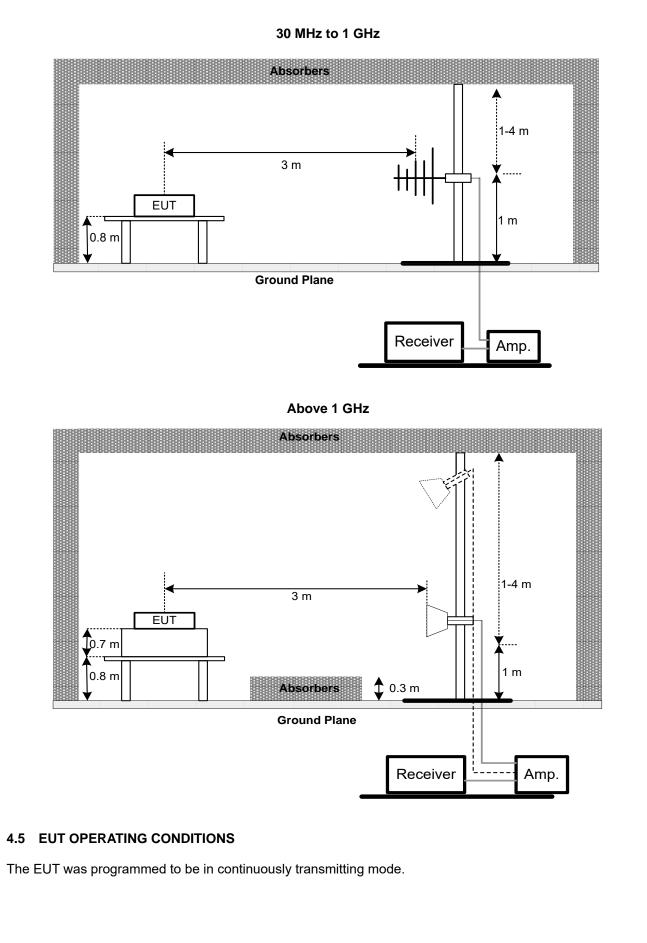
Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	=	24.08

Measurement Value		Limit Value		Margin Level
24.08	1	40	Ш	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector 90KHz~110KHz for QP detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector


4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

4.6 TEST RESULT – BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT – 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT – ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

FCC Part15 (15.247) , Subpart C					
Section	Test Item	Frequency Range (MHz)	Result		
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS		

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM		
	ANALYZER		

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse. A Period Time = (channel number) * 0.4

For Non-AFH Mode (79 Channel): DH1 Time Solt: Reading * (1600/2)/79 * (0.4 * 79) DH3 Time Solt: Reading * (1600/4)/79 * (0.4 * 79) DH5 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

For AFH Mode (20 Channel): DH1 Time Solt: Reading * (800/2)/20 * (0.4 * 20) DH3 Time Solt: Reading * (800/4)/20 * (0.4 * 20) DH5 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

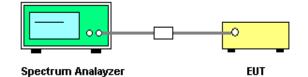
Please refer to the APPENDIX E.

7 HOPPING CHANNEL SEPARATION MEASUREMENT

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Frequency Range (MHz)		
15.247(a)(1)	Bandwidth	2400-2483.5		

Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	> Measurement Bandwidth or Channel Separation			
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)			
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

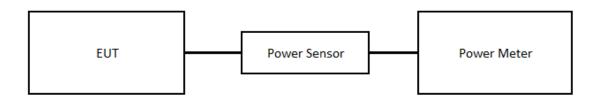
8.6 TEST RESULTS

Please refer to the APPENDIX G.

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

10.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101051	2022/6/15	2023/6/14	
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2022/5/2	2023/5/1	
3	EMI Test Receiver	R&S	ESR 7	101433	2021/11/24	2022/11/23	
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

Radiated Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7
3	Preamplifier	EMCI	EMC001340	980555	2022/4/6	2023/4/5
4	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2022/3/15	2023/3/14
5	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2022/3/15	2023/3/14
6	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2022/3/15	2023/3/14
7	EXA Signal Analyzer	keysight	N9020A	MY57120120	2022/3/7	2023/3/6
8	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2022/6/28	2023/6/27
9	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17
10	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17
11	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19
12	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19
13	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

		Num	ber of Hopping Fr	requency		
ltem	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1

		Ave	rage Time of Occ	upancy		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1

Power Meter

1

2022/6/1

2023/5/31

		Нор	ping Channel Se	paration			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1	
			Bandwidth				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1	
			Output Power	•			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
					0000/0//	0000/=/0/	

2	Power Sensor	Anritsu	MA2411B	1126001	2022/6/1	2023/5/31
		Antenna	conducted Spuric	ous Emission		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1

ML2495A

1128008

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Anritsu

12 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2208G029-FCCP-2 (APPENDIX-TEST PHOTOS).

13 EUT PHOTOS

Please refer to document Appendix No.: EP-2208G029-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

Test Mod	de	Normal				Fested D)ate	2022/10/21						
Test Fre	quency	-								F	Phase		Line	•
80.0	dBuV													
70														
60			_											
50														
40			1 X								a			
30			2 X	3 X			5 X			7 X 8 X	10 X	11 X 12		
20				4 X			6 X			<u>^</u>		×		
10														
0.0	50		0.	5			(MHz)	1		5				30.000
		Readi		Corre	ct	Measure-								
No. Mk		Leve	el T	Fact		ment	Lim		Margin					
	MHz	dBu\		dB		dBuV	dBu\		dB	Detector	Comme	ent		
1 *	0.4425			9.6		38.10	57.0		-18.91	QP				
2	0.4425			9.6		23.36	47.0		-23.65	AVG				
3	0.5370			9.6		26.75	56.0		-29.25	QP				
4	0.5370			9.6		11.93	46.0		-34.07	AVG				
5	1.6958			9.74		27.32	56.0		-28.68	QP				
6	1.6958			9.74		18.73	46.0		-27.27	AVG				
7	5.1607			9.8		29.22	60.0		-30.78	QP				
8	5.1607			9.8		22.39	50.0		-27.61	AVG				
9	7.7550			9.8		33.51	60.0		-26.49	QP				
10	7.7550			9.8		27.89	50.0		-22.11	AVG				
11	12.9885	5 15.8	2	9.9	0	25.72	60.0	0	-34.28	QP				

REMARKS:

12.9885

12

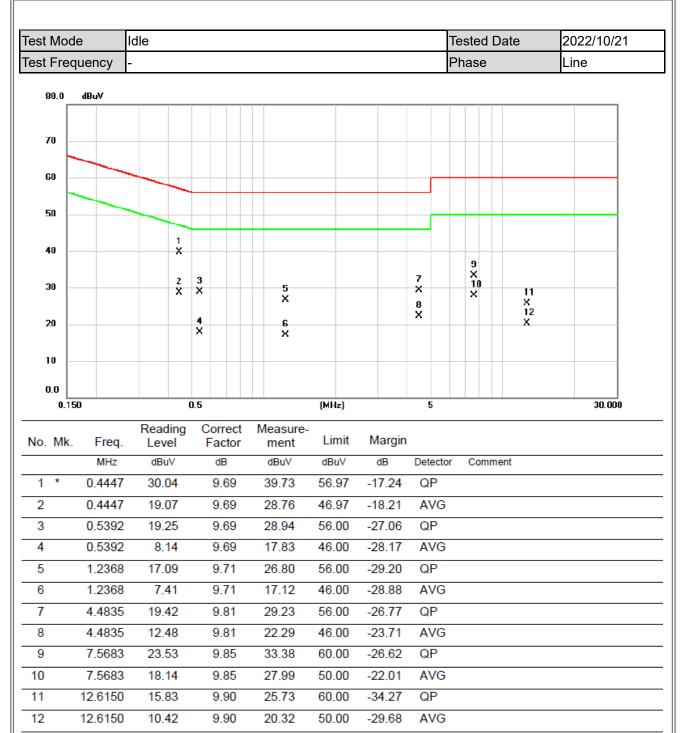
(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

9.90

20.22

50.00 -29.78 AVG

10.32

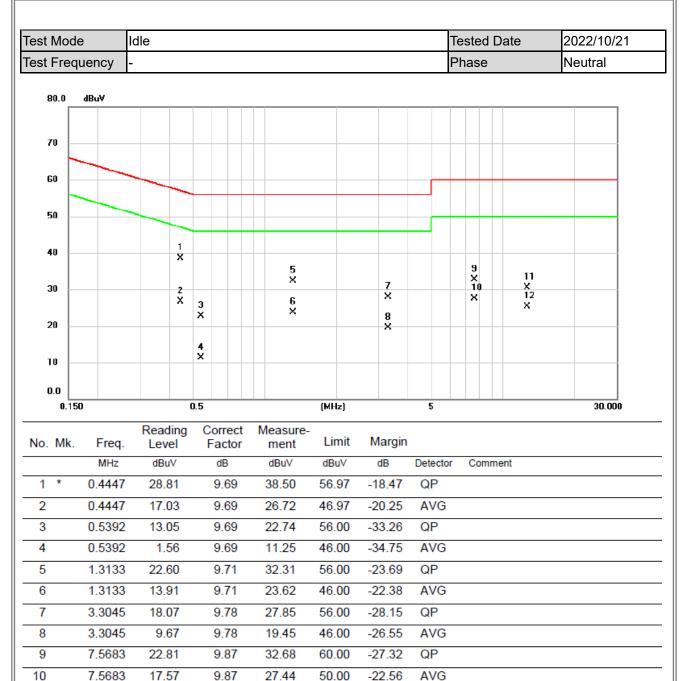

BIL

Test Mo	de	Normal									Teste	-d L)ate	202	2/10/21
		-									Phas		ale	Neu	
Test Frequency														1100	
80.0	dBuV														
70															
60			~												
50															
				_											
40			1 X												
30						5 X			7		9 X 1	'n	11 X		
30			2 X	з Х		6			×		×		12 X		
20				4		×			8 ×						
				×											
10															
0.0															
0.1	50			15			(MHz)			5					30.000
No. Mk	. Freq.	Readi Leve			rect ctor	Measure- ment	Limi	t I	Margin						
	MHz	dBu\	/	d	В	dBuV	dBuV		dB	Detecto	r C	ommo	ent		
1 *	0.4447	28.8	8	9	.69	38.57	56.97	- 1	18.40	QP					
2	0.4447	16.6	7	9	.69	26.36	46.97	- '	20.61	AVG					
3	0.5460	14.9	8	9	.69	24.67	56.00) -	31.33	QP					
4	0.5460				.69	15.23	46.00		30.77	AVG					
5	1.3133				.71	31.96	56.00		24.04	QP					
6	1.3133			9	.71	23.08	46.00		22.92	AVG					
7	3.3045				.78	27.91	56.00		28.09	QP					
8	3.3045				.78	19.29	46.00		26.71	AVG					
9	7.5683				.87	32.71	60.00		27.29	QP					
10	7.5683				.87	27.42	50.00		22.58	AVG					
11	12.6150				.93	30.68	60.00		29.32	QP					
12	12.6150	15.4	3	9	.93	25.36	50.00) -	24.64	AVG					

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

3โL



REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

BIL

REMARKS:

11 12 12.6150

12.6150

(1) Measurement Value = Reading Level + Correct Factor.

9.93

9.93

(2) Margin Level = Measurement Value - Limit Value.

20.62

15.37

30.55

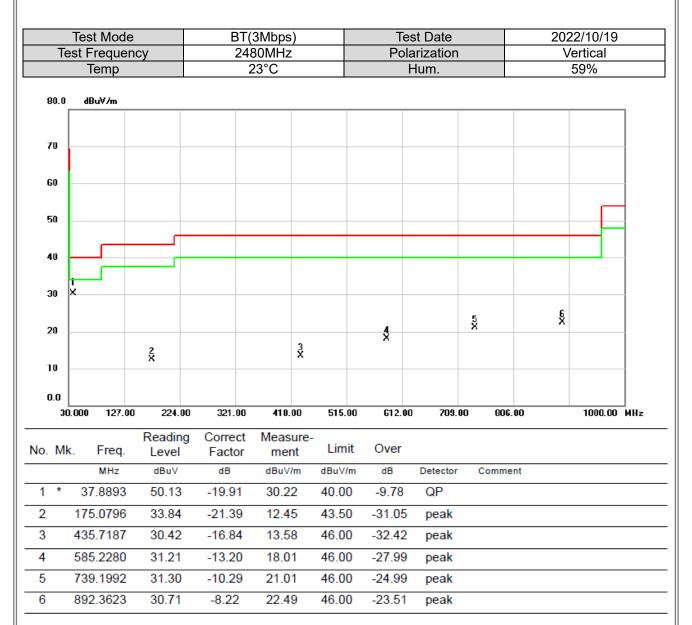
25.30

60.00

50.00

-29.45

-24.70


QP

AVG

APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

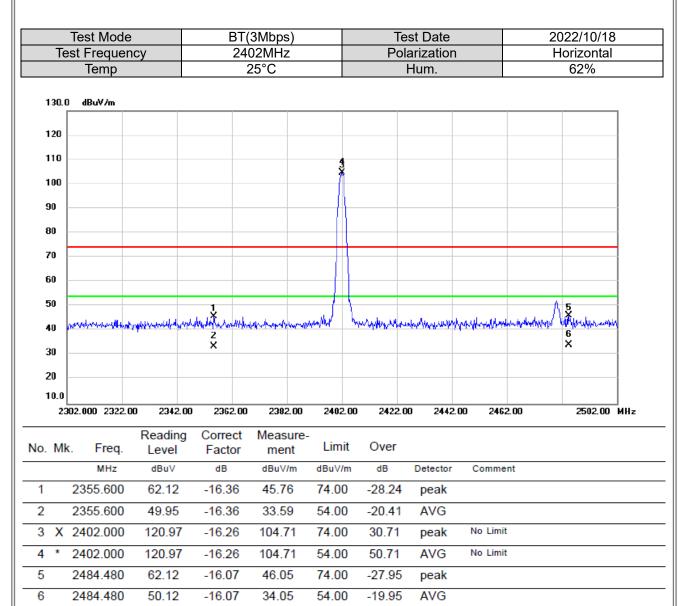
REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

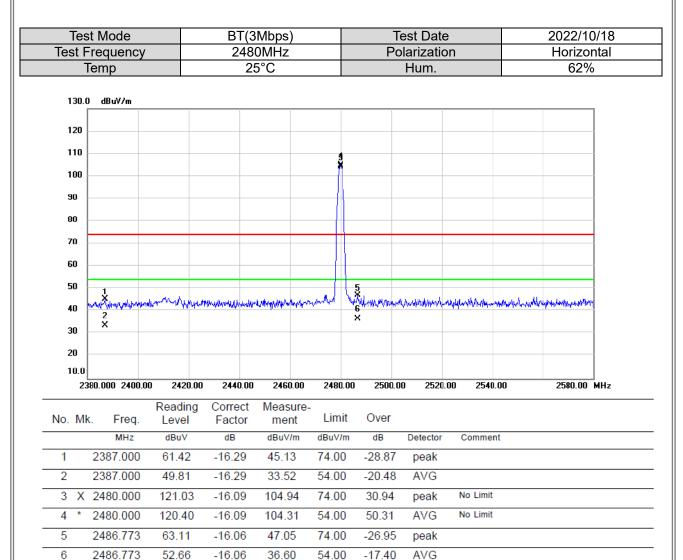
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

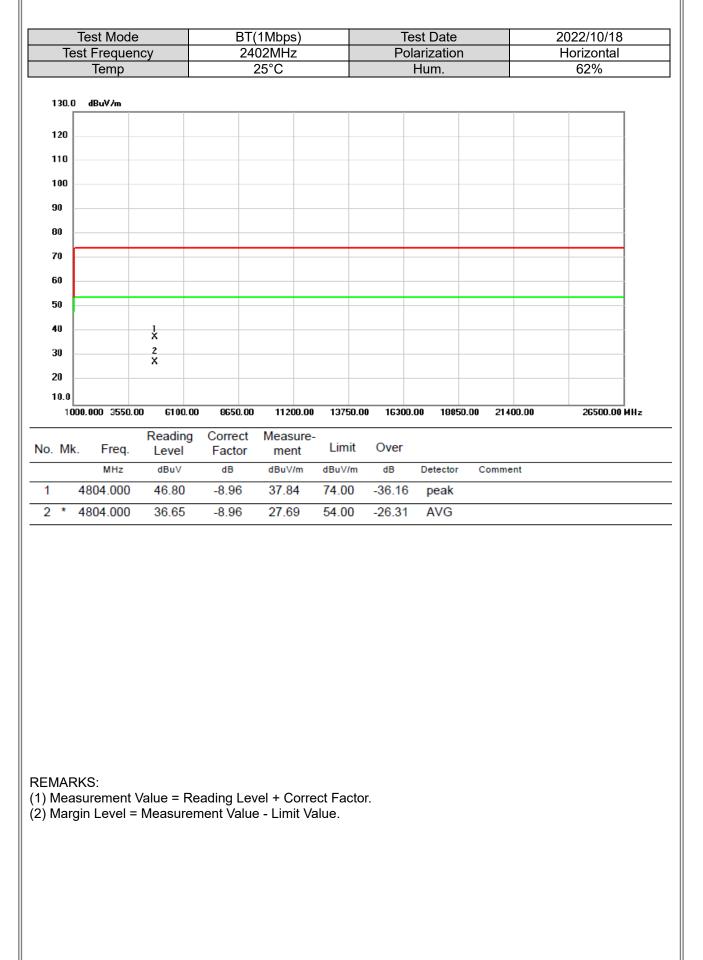
					r				-	-					
	Та	Test Mo					Mbps) 2MHz				st Date arization			2/10/18 rizontal	
	Te	est Freq Tem		,y		-	2101112 5°C				Hum.			62%	
1	30. C	•				20								0270	
1	20]
1	10								4						
1	00														
9	0														ł
8	0								-						
7	0														
6	0								+						
5	0								t	lı –		Musicehortunordioretunoga		5 X	
4	0	mandaran	orthogy	whereather	Kehlennighedd	2	uk.Haryh.Au	undered of "	744	rytechternetwik	Whysippeturature	Angles for a short of the second	un Marchallan	0	
3	0					×								X	
2	0														{
1	0.0														
	23	02.000 23	22.00	2342.	00 236	2.00	2382.0)0 240	2.00	2422.0	0 2442	.00 2462.	00	2502.00	MHz
No.	Mk	. Fre	q.	Readin Level	g Corre Fac		Measu ment		nit	Over					
		MH	z	dBuV	dB		dBuV/m	n dBu∖	/m	dB	Detector	Comment	:		
1		2367.1	67	62.32	-16.3	34	45.98	74.0	0	-28.02	peak				
2		2367.1		49.88	-16.3		33.54	54.0	0	-20.46	AVG				
3		2402.0		123.43			107.17			33.17	peak	No Limit			
4	*	2402.0		122.81			106.55			52.55	AVG	No Limit			
5		2489.0		61.88	-16.0		45.82			-28.18	peak				
6		2489.0	80	49.97	-16.0	06	33.91	54.0	0	-20.09	AVG				


- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

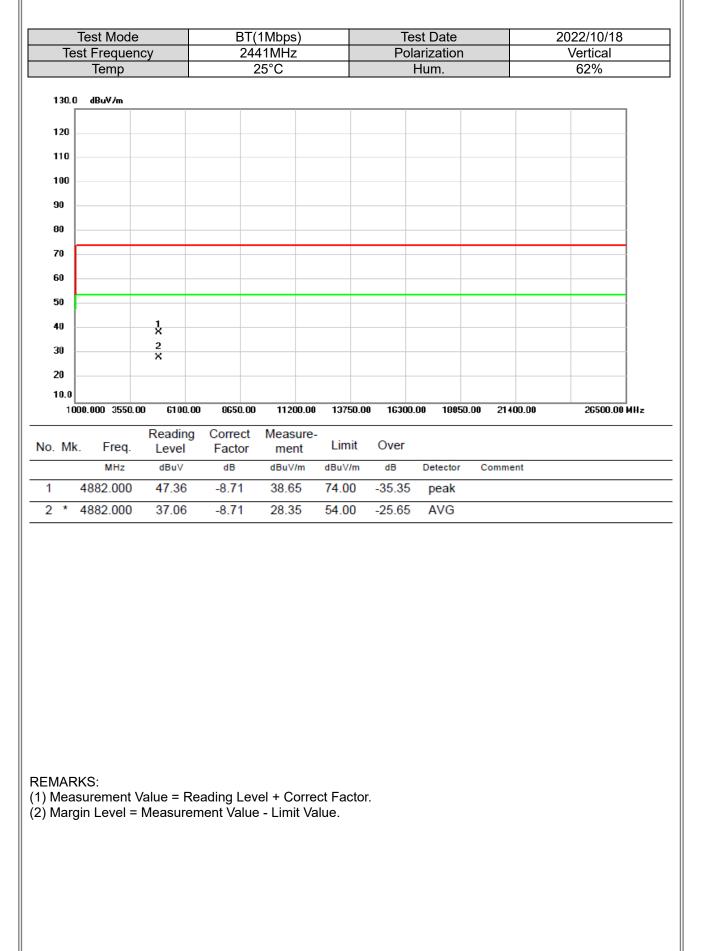
							_			
	Test Mod			(1Mbps)			est Date		2022/10/18	8
I	Test Freque	ncy		80MHz 25°C		Po	larization		Horizontal 62%	
	Temp			25 0			Hum.		02%	
130).0 dBuV/m									-
120	J									
110)									
100	J				1					
90										
80										1
70										
60										
50	1.					5				1
										1
40	2	where a property	Manahandaa jaaa daga	a stragging in planta planta	umlet h	fWirth Manum	anutraliant	Uphelanyth Marthera	adamphan Merapanan Mer	•
40 30		where a physical states and the states of th	Marahan dal Jupudan	a.maqainplutaalarr	um Air A	Р М-ніл.Чланн 5 ×	a hadadaa ha	hiplelanyth/historian	ndavislass.Menghadnisasisme	
	2	and we want a first state of the	Merselands) Jackadse	a.shequshinhasin	umdud Vu	₩₩₩₩₩₩₩₩₩₩₩ ×	h.h.ridhthiliterh.r	uglalanght kanbana	adadudu susten go a dan kanan serien sa	
30 20 10.0	0					×				
30 20 10.0	X			4,####################################	2480.00	×				
30 20 10.0 2	2 X 0 2380.000 2400.					×				
30 20 10.0	2 X 0 2380.000 2400.	00 2420.00 Reading	2440.00 Correct	2460.00 Measure-	2480.00	X) 2500.0			00 2580.00	
30 20 10.0 2	2 X 2380.000 2400. /k. Freq.	00 2420.00 Reading Level	2440.00 Correct Factor	2460.00 Measure- ment	2490.00 Limit	x 0 2500.0 Over	JO 2520.I	00 2540	00 2580.00	
30 20 10.(2 No. M	2 X 0 2380.000 2400. //k. Freq. MHz	00 2420.00 Reading Level dBuV	2440.00 Correct Factor dB	2460.00 Measure- ment dBuV/m	2480.00 Limit dBuV/m	2500.0 Over dB	00 2520.1 Detector	00 2540	00 2580.00	
30 20 10.0 2 No. M 1 2 3 X	2 X 0 2380.000 2400. //k. Freq. MHz 2387.000 2387.000 2387.000 X 2480.000	00 2420.00 Reading Level dBuV 61.42 49.81 121.03	2440.00 Correct Factor dB -16.29 -16.29 -16.09	2460.00 Measure- ment dBuV/m 45.13 33.52 104.94	2480.00 Limit dBuV/m 74.00 54.00 74.00	x 0 2500.0 Over dB -28.87 -20.48 30.94	Detector peak AVG peak	00 2540 Commer	00 2580.00	
30 20 10.(2 No. M 1 2 3 X 4 *	Z X 0 2390.000 2400. //k. Freq. MHz 2387.000 2387.000 X 2480.000 2480.000	00 2420.00 Reading Level dBuV 61.42 49.81 121.03 120.40	2440.00 Correct Factor dB -16.29 -16.29 -16.09 -16.09	2460.00 Measure- ment dBuV/m 45.13 33.52 104.94 104.31	2480.00 Limit dBuV/m 74.00 54.00 74.00 54.00	x 0 2500.0 Over dB -28.87 -20.48 30.94 50.31	Detector peak AVG peak AVG	00 2540 Commer	00 2580.00	
30 20 10.0 2 No. M 1 2 3 X	2 X 0 2380.000 2400. //k. Freq. MHz 2387.000 2387.000 2387.000 X 2480.000	00 2420.00 Reading Level dBuV 61.42 49.81 121.03	2440.00 Correct Factor dB -16.29 -16.29 -16.09	2460.00 Measure- ment dBuV/m 45.13 33.52 104.94	2480.00 Limit dBuV/m 74.00 54.00 74.00	x 0 2500.0 Over dB -28.87 -20.48 30.94	Detector peak AVG peak	00 2540 Commer	00 2580.00	


- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

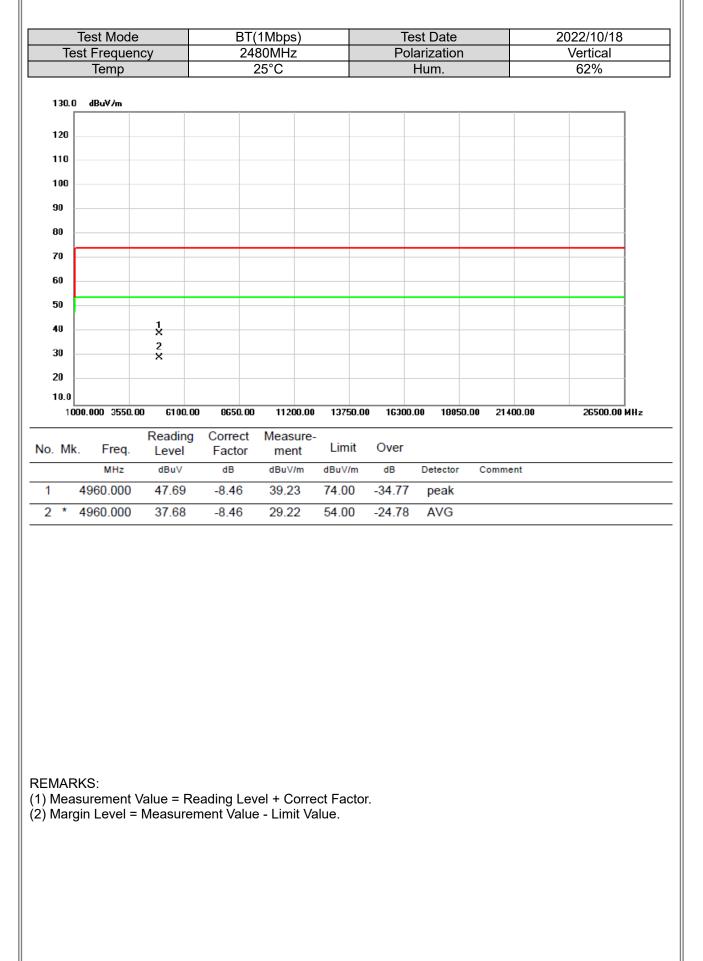
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



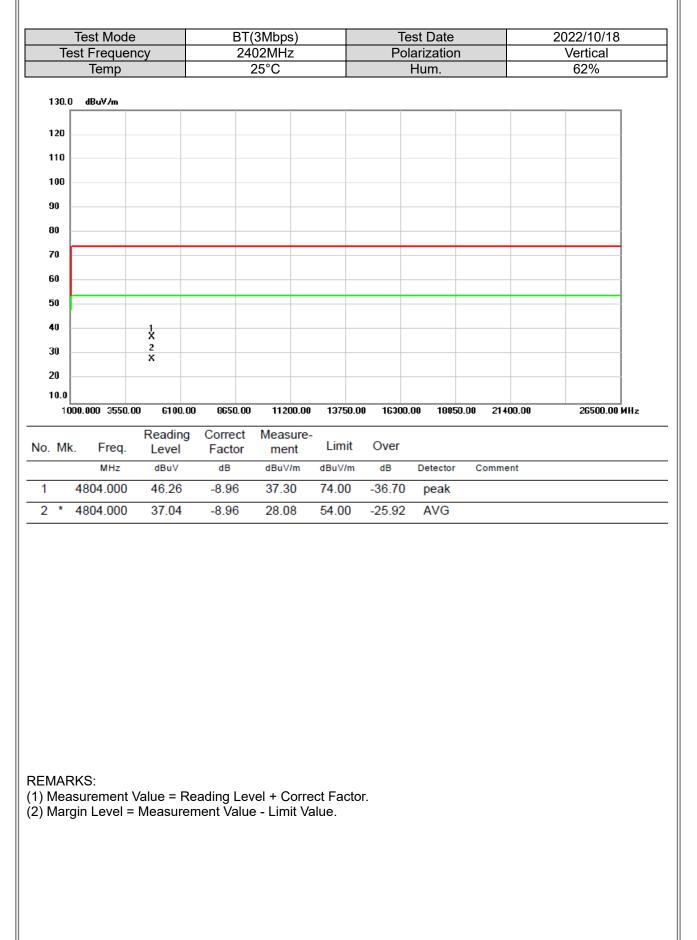
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



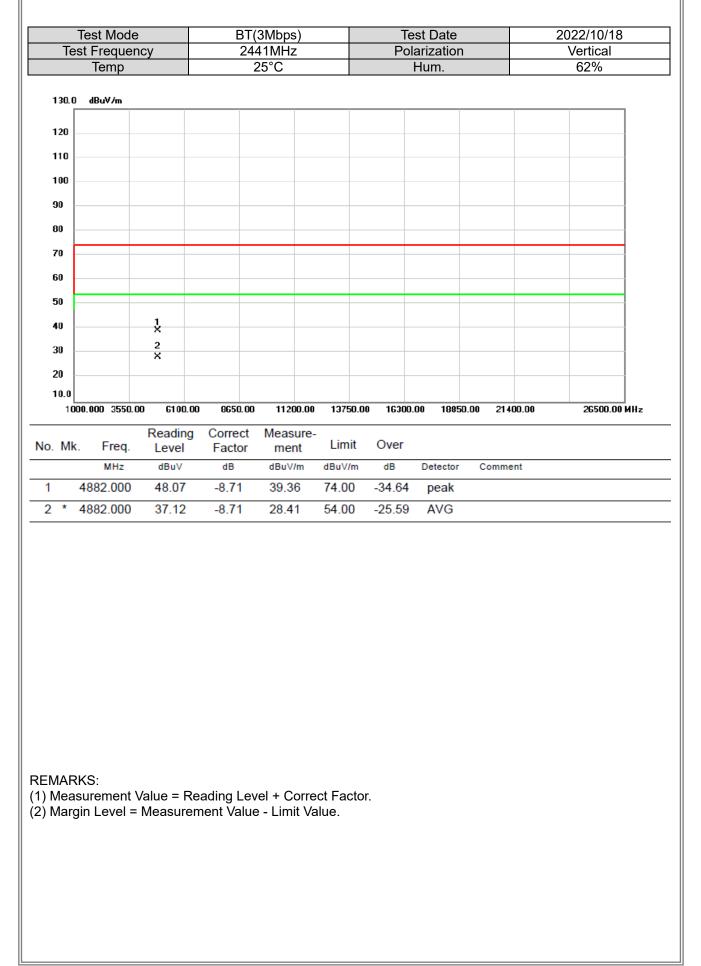
	Test Mode			1Mbps)			est Date		2022/10/18
10	st Frequen Temp	су		02MHz 25°C			larizatior Hum.	١	Vertical 62%
	Temp		4				num.		02 70
130.0	dBuV/m								
120									
110									
100									
90 -									
80									
70									
60 -									
50									
40		1 X							
30		2 X							
20		x							
10.0									
100	0.000 3550.0		8650.00	11200.00	13750.00	16300.	.00 1885	0.00 21400.	00 26500.00 MH
o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
2. 1010.	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4804.000	47.20	-8.96	38.24	74.00	-35.76	peak		
2 *	4004.000	36.56	-8.96	27.60	54.00	-26.40	AVG		
	4804.000	30.50							
	4804.000	30.30							

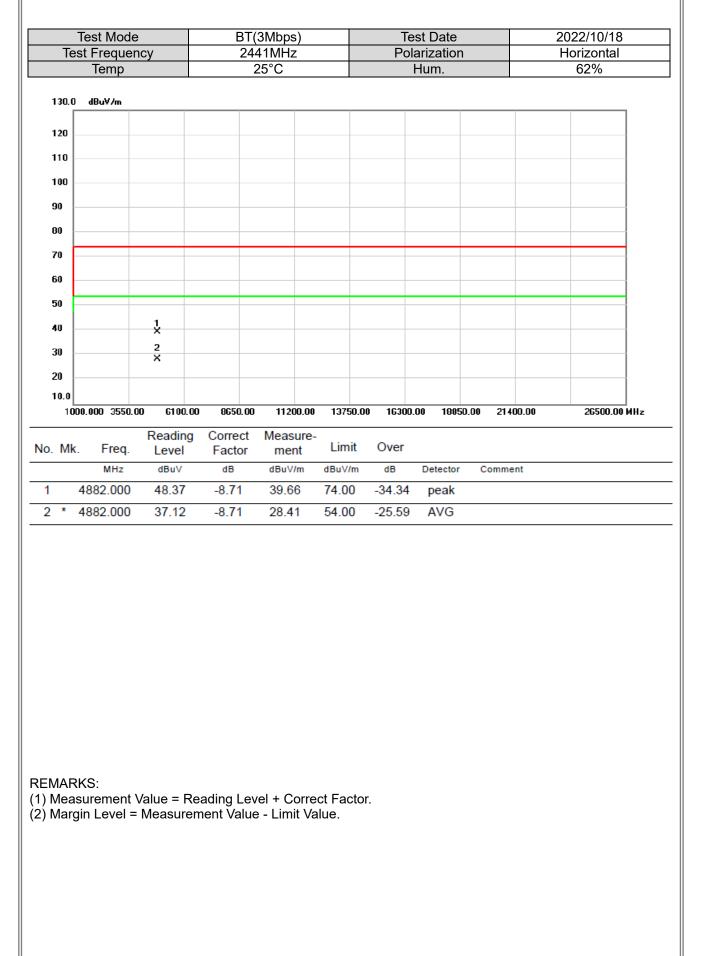


Frequenc Temp BuV/m BuV/m D0 3550.00 Freq.	1 1 2 2 3 6100.00 Reading	8650.00	41MHz 25°C			<u>larizatior</u> Hum.			Horizontal 62%
3uV/m	2 X 6100.00 Reading	8650.00							
00 3550.00	2 X 6100.00 Reading		11200.00						
	2 X 6100.00 Reading		11200.00						
	2 X 6100.00 Reading		11200.00						
	2 X 6100.00 Reading		11200.00						
	2 X 6100.00 Reading		11200.00						
	2 X 6100.00 Reading		11200.00						
	2 X 6100.00 Reading		11200.00						
	2 X 6100.00 Reading		11200.00						
	2 X 6100.00 Reading		11200.00						
	2 X 6100.00 Reading		11200.00						
	6100.00 Reading		11200.00						
	6100.00 Reading		11200.00						
	Reading		11200.00						
	Reading		11200.00						
Freq.				13750.00) 16300	D.00 1885	50.00 214	400.00	26500.00 MH
	Level	Correct Factor	Measure- ment	Limit	Over				
MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent	
32.000	48.79	-8.71	40.08	74.00	-33.92	peak			
32.000	37.11	-8.71	28.40	54.00	-25.60	AVG			
: ement V	alue = Rea	adina L ev	vel + Corre	ct Factor					
Level = N	Measurem	ient Value	e - Limit Va	ilue.					
e	ement Va	: ement Value = Rea	: ement Value = Reading Lev	: ement Value = Reading Level + Corre		: ement Value = Reading Level + Correct Factor.	: ement Value = Reading Level + Correct Factor.	: ement Value = Reading Level + Correct Factor.	: ement Value = Reading Level + Correct Factor.



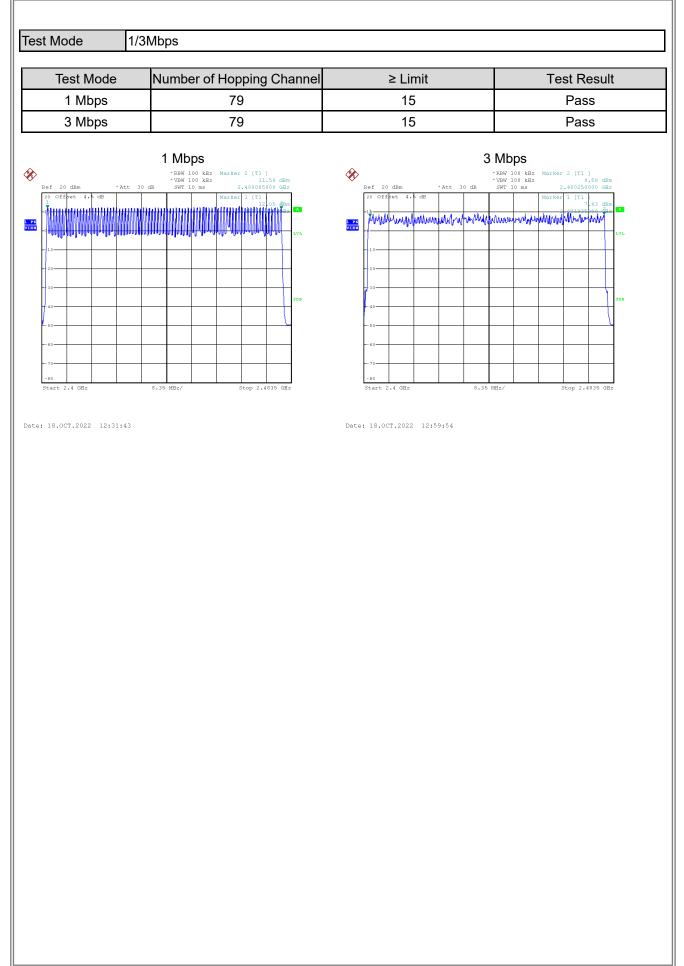
	Test Mode st Frequenc	ÿ	248	1Mbps) 80MHz		Pola	st Date arization	1		2022/10/18 Horizontal
	Temp		2	5°C		ŀ	Hum.			62%
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50		1								
40		1 × 2								
30		×								
20										
10.0 10	00.000 3550.00	6100.00	8650.00	11200.00	13750.00	16300.	00 1885	50.00	21400.00	26500.00 MHz
		Reading	Correct	Measure-						
b. Mk		Level	Factor	ment	Limit	Over				
1	MHz 4960.000	dBu∨ 47.95	dB -8.46	dBuV/m 39.49	dBuV/m 74.00	dB -34.51	Detector peak	0	mment	
2 *	4960.000	37.42	-8.46	28.96	54.00	-25.04	AVG			





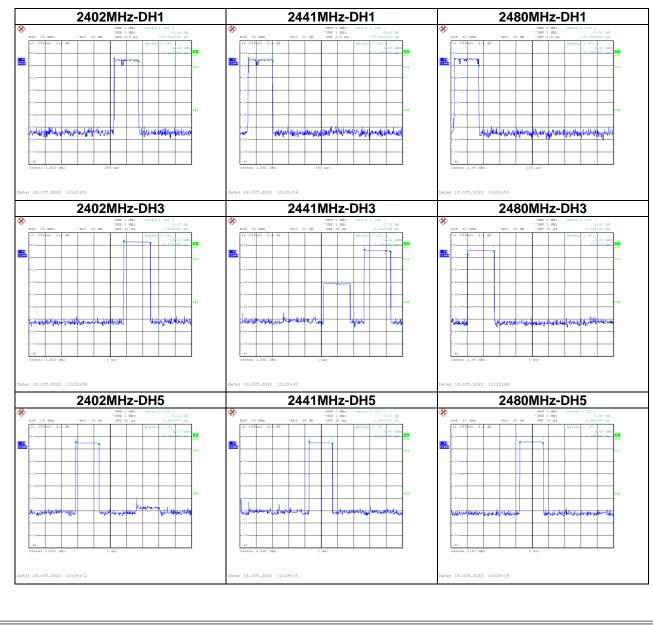
Та	Test Mode est Frequer			3Mbps) 02MHz			est Date arizatior	1		2022/10/18 Horizontal		
TE	Temp	icy		25°C			Hum.	1		П	62%	
130.0	0 dBuV/m											1
120												
110												
100												
90												
80												
70												
60												
50												
40		1 X										
30		2 X										
20		x										
10.0												
	000.000 3550.0	00 6100.00	9650.00	11200.00	13750.00	16300.	.00 1985	50.00	21400.00		26500.00	MHz
		Reading	Correct	Measure-								
. MI		Level	Factor	ment	Limit	Over						
	MHz 4804.000	dBu∨ 47.26	dB -8.96	dBuV/m 38.30	dBuV/m 74.00	dB -35.70	Detector peak	Con	nment			
*	4804.000	36.93	-8.96	27.97	54.00	-26.03	AVG					
				21.01		20.00						
	RKS:											
	asurement		odina !		of Eactor							

Temp 25°C Hum. 62% 130.0 48.0/m	Tes	Test Mode st Frequen			3Mbps) 80MHz			est Date arization		2022/10/18 Vertical
EMARKS: Maguarement Value = Reading Level + Correct Factor.										
10 1	130.0	dBuV/m								
100 00 <t< th=""><th>[</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	[
100 00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
MARKS: MARKS:	110									
00 0	100									
MARKS: Marks:	90									
MARKS: MARKS:	80									
30 1	70									
40 30 30 30 30 30 30 30 30 30 30 30 30 30	60									
30 2 -	50									
20 1000.000 3550.00 6100.00 6650.00 11200.00 13750.00 16950.00 21400.00 26500.00 MHz 0. Mk. Freq. Level Factor ment Limit Over Over 000.00 21400.00 26500.00 MHz 0. Mk. Freq. Level Factor ment Limit Over 000.00 21400.00 26500.00 MHz 0. Mk. Freq. Level Factor ment Limit Over 000.00 21400.00 26500.00 MHz 1 4960.000 48.01 -8.46 39.55 74.00 -34.45 peak 2 4960.000 37.10 -8.46 28.64 54.00 -25.36 AVG 2 * 4960.000 37.10 -8.46 28.64 54.00 -25.36 AVG 30.55	40		1.							
20 100 1000.00 3550.00 6100.00 6650.00 11200.00 13750.00 16950.00 21400.00 26500.00 MHz 0. Mk. Freq. Level Factor ment Limit Over 0 <t< td=""><td>30</td><td></td><td>2 X</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	30		2 X							
ID00.000 3550.00 6100.00 650.00 11200.00 13750.00 16300.00 19850.00 21400.00 26500.00 HHz 0. Mk. Freq. Level Factor ment Limit Over	20									
Reading b. Mk. Correct Level Measure- Factor Limit Over MHz dBuV dB dBuV/m dB Detector Comment 1 4960.000 48.01 -8.46 39.55 74.00 -34.45 peak 2 * 4960.000 37.10 -8.46 28.64 54.00 -25.36 AVG	L									
b. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 1 4960.000 48.01 -8.46 39.55 74.00 -34.45 peak 2 * 4960.000 37.10 -8.46 28.64 54.00 -25.36 AVG	100	00.000 3550.0					16300.	.00 18850.0	DO 21400.00	26500.00 MHz
MHz dBuV dB dBuV/m dBuV/m dB Detector Comment 1 4960.000 48.01 -8.46 39.55 74.00 -34.45 peak 2 * 4960.000 37.10 -8.46 28.64 54.00 -25.36 AVG	o. Mk	. Freq.				Limit	Over			
2 * 4960.000 37.10 -8.46 28.64 54.00 -25.36 AVG MARKS: Measurement Value = Reading Level + Correct Factor.						dBuV/m		Detector	Comment	
MARKS: Measurement Value = Reading Level + Correct Factor.	1	4960.000	48.01	-8.46	39.55	74 00	-34 45	neak		
Measurement Value = Reading Level + Correct Factor.							01.10	peak		
Margin Level = Measurement Value - Limit Value.	2 *	4960.000	37.10							



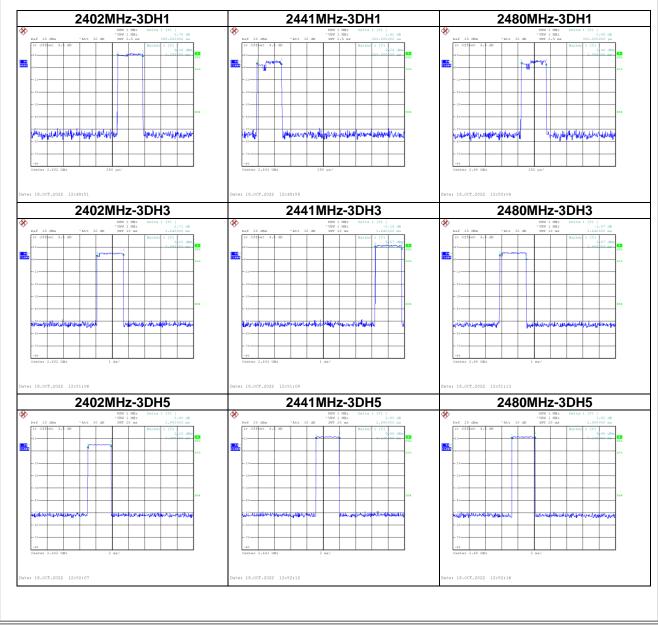
103	est Mode t Frequenc	V	248	3Mbps) 30MHz			est Date arizatio				022/10/18 Iorizonta	
	Temp	<i>y</i>		25°C			Hum.				62%	1
400 -												
130.0	dBuV/m											
120												
110												
100												
90 -												_
80 -												_
70												-
60 —												
50												-
40		1 X										
30		2 X										
20		^										
10.0												
1000	.000 3550.00	6100.00	8650.00	11200.00	13750.00) 16300	.00 180	50.00	21400.00)	26500.0	0 MHz
. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over						
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detecto	or C	omment			
4	960.000	47.56	-8.46	39.10	74.00	-34.90	peak					
* 4	960.000	37.15	-8.46	28.69	54.00	-25.31	AVG					
MARK Measu	(S: urement Va n Level = N	alue = Rea	ading Lev	el + Correc	ct Factor							

APPENDIX D NUMBER OF HOPPING CHANNEL



APPENDIX E AVERAGE TIME OF OCCUPANCY

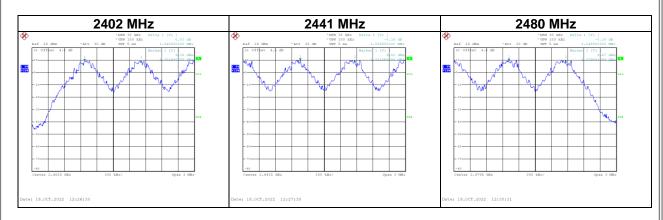
Test Mode :	1Mbps				
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH1	2402	0.3750	0.1200	0.4000	Pass
DH3	2402	1.6400	0.2624	0.4000	Pass
DH5	2402	2.8800	0.3072	0.4000	Pass
DH1	2441	0.3750	0.1200	0.4000	Pass
DH3	2441	1.6200	0.2592	0.4000	Pass
DH5	2441	2.8800	0.3072	0.4000	Pass
DH1	2480	0.3750	0.1200	0.4000	Pass
DH3	2480	1.6400	0.2624	0.4000	Pass
DH5	2480	2.8800	0.3072	0.4000	Pass



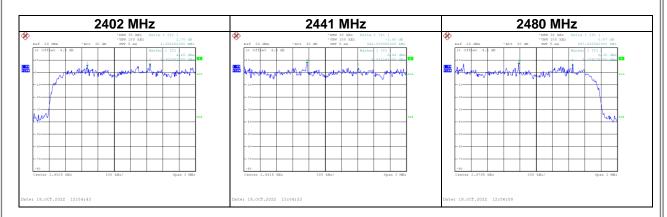
Project No.: 2208G029

3[]

Test Mode : 3Mbps Frequency Pulse Data Packet Dwell Time(s) Limits(s) **Test Result** (MHz) Duration(ms) 3DH1 2402 0.3850 0.1232 0.4000 Pass 3DH3 2402 1.6400 0.2624 0.4000 Pass 3DH5 2402 2.8800 0.3072 0.4000 Pass 3DH1 2441 0.3800 0.1216 0.4000 Pass Pass 3DH3 2441 1.6400 0.2624 0.4000 3DH5 2441 Pass 2.8800 0.3072 0.4000 3DH1 2480 0.3800 0.4000 Pass 0.1216 3DH3 2480 1.6400 0.2624 0.4000 Pass 3DH5 2480 2.8800 0.3072 0.4000 Pass



APPENDIX F HOPPING CHANNEL SEPARATION MEASUREMENT


Test Mode :	Test Mode : Hopping on _1Mbps										
Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result								
2402	1.046	0.567	Pass								
2441	1.007	0.543	Pass								
2480	1.049	0.573	Pass								

Test Mode :

Hopping on _3Mbps

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.158	0.879	Pass
2441	0.946	0.861	Pass
2480	0.997	0.871	Pass

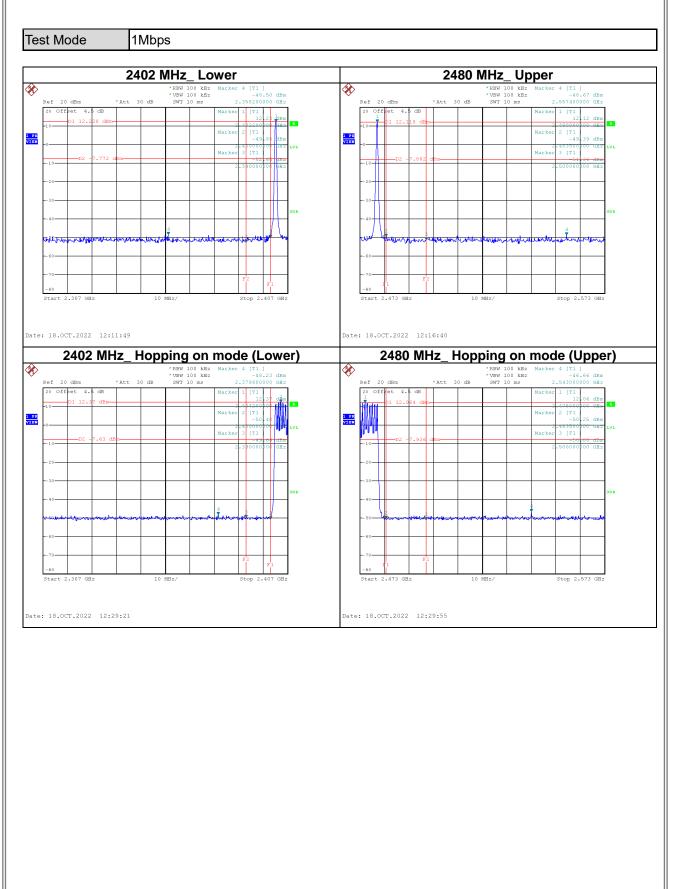
APPENDIX G BANDWIDTH

Test Mode : 1	Mbps				
Frequency (MHz)	20d	B Bandwidth (MHz)	99% Occi (MI		Test Result
2402		0.850	0.7	'56	Pass
2441		0.814	0.7	752	Pass
2480		0.860	0.7	60	Pass
2402 MH	alta 1 [Ti] 0.40 dB 850.0000000 Arm	2441 M			*New 10 MHz *New 10 MHz *WW 100 MHz 0.02 de 597 2.0 m 059500000 MHz
Image: Second	ичение 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (Image: Contract of the second secon	Hararo 1 ITI. C (1955) Joseph	A	With Mr. 1 (27, 1 (7, 1)) The second se
Frequency (MHz)	20d	B Bandwidth (MHz)	99% Occ (MI		Test Result
2402		1.318	1.2	200	Pass
2441	2441		1.1	84	Pass
2480		1.306	1.1	92	Pass
2402 MH	Z	2441 M		24	80 MHz
*VBM 100 kHz Ref 20 dHm *Att 30 dB 5WT 2.5 ms 20 Officet 4.6 dB	-1-12 00 1-1272 00 1-1272000 00 1-1272000 00 0-1212000 00 0-121200 00 0-1212000000000000000000000000000000000	Canter 2,443 BE Canter 2,043 BE	Bit Delevals (Tril) Trill		************************************

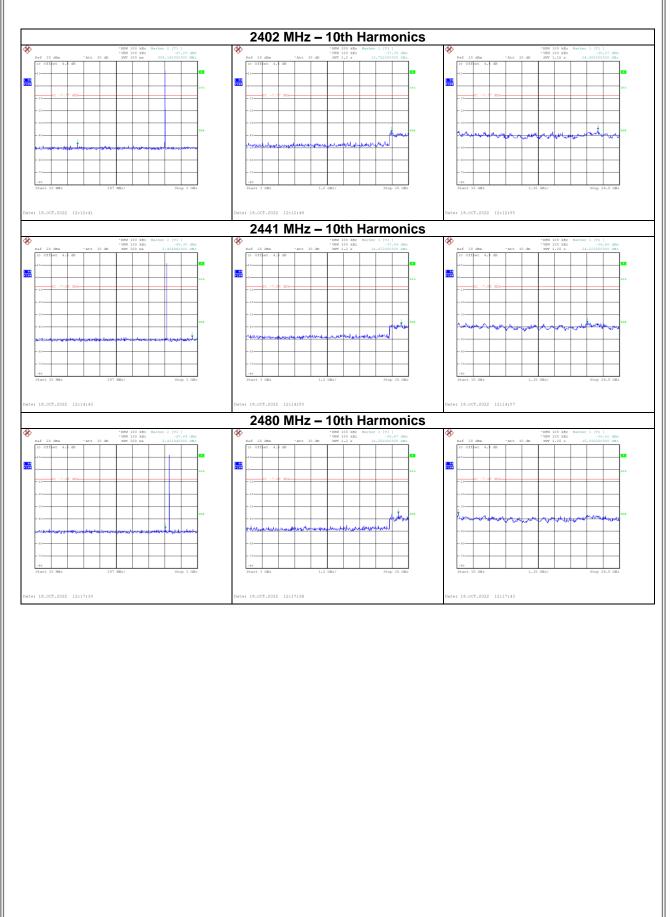
APPENDIX H OUTPUT POWER

BIL

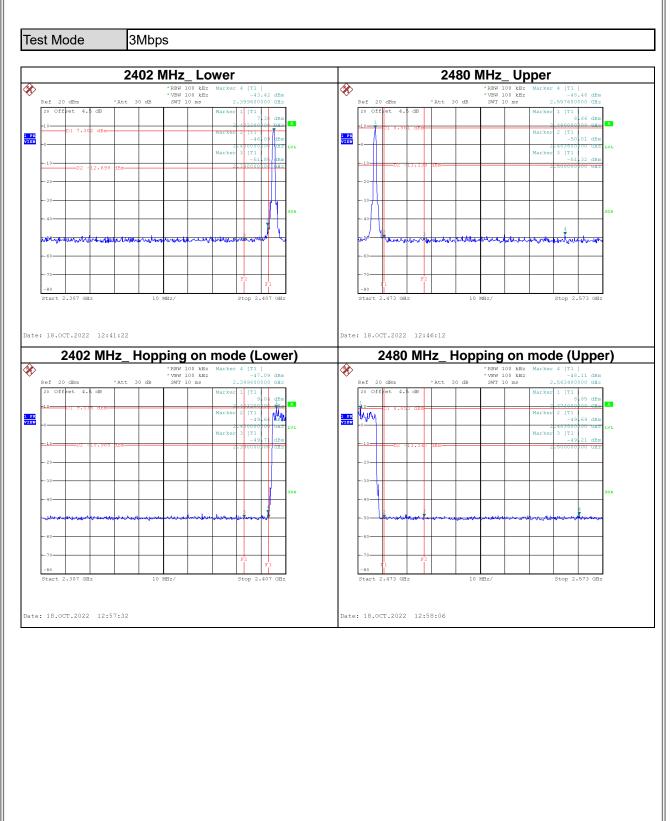
Test Mode :	1Mbps	Tested Date		2022/10/18	
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	12.30	0.0170	21.00	0.1250	Pass
2441	12.72	0.0187	21.00	0.1250	Pass
2480	12.61	0.0182	21.00	0.1250	Pass

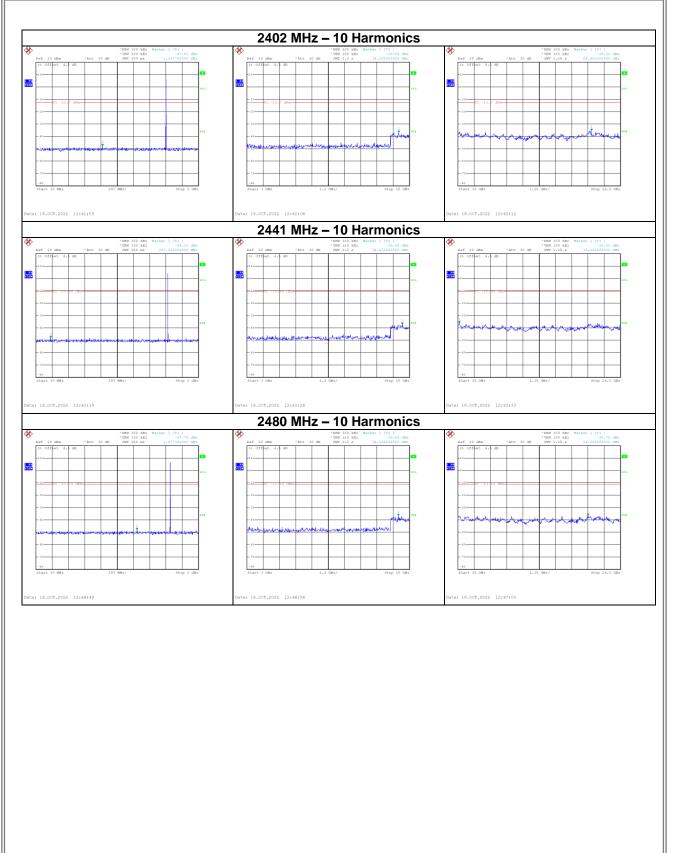

Test Mode :	2Mbps			d Date	2022/10/18	
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result	
2402	12.17	0.0165	21.00	0.1250	Pass	
2441	12.04	0.0160	21.00	0.1250	Pass	
2480	12.09	0.0162	21.00	0.1250	Pass	

Test Mode :	3Mbps	Tested Date		2022/10/18	
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	12.59	0.0182	21.00	0.1250	Pass
2441	12.60	0.0182	21.00	0.1250	Pass
2480	12.59	0.0182	21.00	0.1250	Pass



APPENDIX I ANTENNA CONDUCTED SPURIOUS EMISSION





End of Test Report