# **TEST REPORT** # For # **Mobile Phone** Model Number: RMX3491 FCC ID: 2AUYFRMX3491 Report Number : WT218003132 Test Laboratory : Shenzhen Academy of Metrology and Quality Inspection Site Location : NETC Building, No.4 Tongfa Rd., Xili, Nanshan, Shenzhen, China Tel : 0086-755-86928965 Fax : 0086-755-86009898-31396 Web : www.smq.com.cn E-mail : emcrf@smq.com.cn Report No.: WT218003132 Page 1 of 60 #### **TEST REPORT DECLARATION** Applicant : Realme Chongqing Mobile Telecommunications Corp., Ltd. Address : No.178 Yulong Avenue, Yufengshan, Yubei District, Chongging, China Manufacturer : Realme Chongqing Mobile Telecommunications Corp., Ltd. Address : No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing, China EUT Description : Mobile Phone Model No. : RMX3491 Trade mark : realme Serial Number : / FCC ID : 2AUYFRMX3491 Test Standards: ### FCC Part 15 Subpart C 15.247 (2020) The EUT described above is tested by Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory to determine the maximum emissions from the EUT. Shenzhen Academy of Metrology and Quality Inspection EMC Laboratory is assumed full responsibility for the accuracy of the test results. The test report is valid for above tested sample only and shall not be reproduced in part without written approval of the laboratory. Project Engineer: (Zhou Fangai 周芳媛) Checked by: (Shi Changda 施昌达) Approved by: (Lin Yixiang 林奕翔) Date: Dec.03, 2021 Dec.03, 2021 Report No.: WT218003132 Page 2 of 60 # **TABLE OF CONTENTS** | IES | I KEP | DRI DECLARATION | 2 | |-----|--------------|-------------------------------------------------------|----| | 1. | TEST | Г RESULTS SUMMARY | 5 | | 2. | GEN | ERAL INFORMATION | 6 | | | 2.1. | Report Information | | | | 2.2. | Laboratory Accreditation and Relationship to Customer | | | | 2.3. | Measurement Uncertainty | | | 3. | PRO | DUCT DESCRIPTION | | | | 3.1. | EUT Description | 8 | | | 3.2. | Related Submittal(s) / Grant (s) | | | | 3.3. | Block Diagram of EUT Configuration | 8 | | | 3.4. | Operating Condition of EUT | 8 | | | 3.5. | Support Equipment List | | | | 3.6. | Test Conditions | | | | 3.7. | Special Accessories | | | | 3.8. | Equipment Modifications | | | 4. | TEST | Γ EQUIPMENT USED | 10 | | 5. | CON | DUCTED EMISSION TEST | 11 | | | 5.1. | Test Standard and Limit | 11 | | | 5.2. | Test Procedure | | | | 5.3. | Test Arrangement | | | | 5.4. | Test Data | | | 6. | | IATED EMISSION TEST | | | | 6.1. | Test Standard and Limit | | | | 6.2. | Test Procedure | | | | 6.3. | Test Arrangement | | | | 6.4. | Test Data | | | 7. | | B BANDWIDTH MEASUREMENT | | | | 7.1. | Limits of 20dB Bandwidth Measurement | | | | 7.2. | Test Procedure | | | | 7.3. | Test Setup | | | • | 7.4. | Test Data | | | 8. | | RIER FREQUENCY SEPARATION MEASUREMENT | | | | 8.1. | Limits of Carrier Frequency Separation Measurement | | | | 8.2.<br>8.3. | Test Procedure Test Setup | | | | o.s.<br>8.4. | Test Data | | | 9. | _ | BER OF HOPPING CHANNEL | | | 9. | | | | | | 9.1.<br>9.2. | Limits of Number of Hopping Channel Test Procedure | | | | 9.2.<br>9.3. | Test Setup | | | | 9.3.<br>9.4. | Test Data | | | 10. | _ | OF OCCUPANCY | | | IU. | I IIVI | . UF UUUUFANUT | 33 | | | 10.1. | Limits of Time Occupancy | 33 | |-----|-------|------------------------------------------------------|----| | | 10.2. | Test Procedure | 33 | | | 10.3. | Test Data | 33 | | 11. | MAXIN | NUM CONDUCTED OUTPUT POWER MEASUREMENT | 39 | | | 11.1. | Limits of Maximum Conducted Output Power Measurement | 39 | | | 11.2. | Test Procedure | 39 | | | 11.3. | Test Data | 39 | | 12. | BAND | EDGES MEASUREMENT | 42 | | | 12.1. | Limits of Band Edges Measurement | 42 | | | 12.2. | Test Procedure | 42 | | | 12.3. | Test Data | 42 | | 13. | COND | UCTED SPURIOUS EMISSION | 51 | | | 13.1. | Limits of Band Edges Measurement | 51 | | | 13.2. | Test Procedure | 51 | | | 13.3. | Test Data | 51 | | 14. | ANTE | NNA REQUIREMENTS | 60 | | | 14.1. | Antenna Connector | 60 | | | 14.2. | Antenna Gain | 60 | # 1. TEST RESULTS SUMMARY Table 1 Test Results Summary | Table 1 Test Results Guillinary | | | | | |------------------------------------------------------------------------|---------------------------------|-----------------|--|--| | Test Items | FCC Rules | Test<br>Results | | | | 20dB bandwidth measurement | 15.247 (a) (1) | Pass | | | | Carrier frequency separation measurement | 15.247 (a) (1) | Pass | | | | Number of hopping channel | 15.247 (a) (1) III | Pass | | | | Time of occupancy | 15.247 (a) (1) III | Pass | | | | Maximum conducted output power | 15.247 (b) (1) | Pass | | | | Band edge compliance measurement | 15.247 (d) | Pass | | | | Radiated spurious emission<br>&Radiated restricted band<br>measurement | 15.247 (d) /<br>15.205 & 15.209 | Pass | | | | Conducted spurious emission | 15.247 (d) | Pass | | | | Conducted emission | 15.207 | Pass | | | | Antenna requirements | 15.203 | Pass | | | Remark: "N/A" means "Not applicable." Report No.: WT218003132 Page 5 of 60 #### 2. GENERAL INFORMATION ### 2.1. Report Information This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that SMQ approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that SMQ in any way guarantees the later performance of the product/equipment. The sample/s mentioned in this report is/are supplied by Applicant, SMQ therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied. Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through SMQ, unless the applicant has authorized SMQ in writing to do so. The lab will not be liable for any loss or damage resulting for false, inaccurate, inappropriate or incomplete product information provided by the applicant/manufacturer. #### 2.2. Laboratory Accreditation and Relationship to Customer The testing report were performed by the Shenzhen Academy of Metrology and quality Inspection EMC Laboratory (Guangdong EMC compliance testing center), in their facilities located at NETC Building, No.4 Tongfa Rd., Xili, Nanshan, Shenzhen, China. At the time of testing, Laboratory is accredited by the following organizations: China National Accreditation Service for Conformity Assessment (CNAS) accredits the Laboratory for conformance to FCC standards, EMC international standards and EN standards. The Registration Number is CNAS L0579. The Laboratory is Accredited Testing Laboratory of FCC with Designation number CN1165 and Site registration number 582918. The Laboratory is registered to perform emission tests with Innovation, Science and Economic Development (ISED), and the registration number is 11177A. The Laboratory is registered to perform emission tests with VCCI, and the registration number are C-20048, G20076, R-20077, R-20078 and T-20047. The Laboratory is Accredited Testing Laboratory of American Association for Laboratory Accreditation (A2LA) and certificate number is 3292.01. Report No.: WT218003132 Page 6 of 60 # 2.3. Measurement Uncertainty Conducted Emission 9 kHz~150 kHz U=3.7dB k=2 150 kHz~30MHz U=3.3dB k=2 Radiated Emission 30MHz~1000MHz U=4.3dB k=2 1GHz~6GHz U=4.6 dB k=2 6GHz~40GHz U=5.1dB k=2 Report No.: WT218003132 Page 7 of 60 #### 3. PRODUCT DESCRIPTION NOTE: The extreme test conditions for temperature and antenna gain were declared by the manufacturer. #### 3.1. EUT Description Description : Mobile Phone Manufacturer : Realme Chongqing Mobile Telecommunications Corp., Ltd. Model Number : RMX3491 Operate Frequency : 2.402GHz~2.480GHz Antenna Designation PIFA Antenna: -0.29dBi Operating voltage : DC3.45V (Low)/DC3.87V (Nominal)/DC4.45V (Max) Software Version : realme UI V2.0 Hardware Version : 11 Remark: 1. There are five adapters, only the worst data of VCB3HDUH (4#) shown in this report. 2. There are three batteries, only the worst data of BLP911 (1#) shown in this report. #### 3.2. Related Submittal(s) / Grant (s) This submittal(s) (test report) is intended for FCC ID: **2AUYFRMX3491** filing to comply with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C. #### 3.3. Block Diagram of EUT Configuration #### 3.4. Operating Condition of EUT The transmitter has a maximum peak conducted output power of Basic rate GFSK modulation and EDR mode 8DPSK modulation. Tests were performed with Basic rate GFSK modulation and EDR mode 8DPSK modulation. #### 3.5. Support Equipment List Table 2 Support Equipment List | : 6.5.5 = 0 4.5 p 5 : 1 = 4.5 p = | | | | | | | |-----------------------------------|----------|-----|------------------------------------------------|--|--|--| | Name Model No | | S/N | Manufacturer | | | | | Adapter 1# for EUT | VCB3HAUH | | SHENZHEN HUNTKEY ELECTRIC CO LTD | | | | | Adapter 2# for EUT VCB3HAUH | | | Huizhou Golden Lake Industrial Co., Ltd. | | | | | Adapter 3# for EUT VCB3HDUH | | | SHENZHEN HUNTKEY ELECTRIC CO LTD | | | | | Adapter 4# for EUT | VCB3HDUH | | Huizhou Golden Lake Industrial Co., Ltd. | | | | | Adapter 5# for EUT VCB3HDU | | | Dongguan YOHOO Electronic Technology Co., Ltd. | | | | Report No.: WT218003132 Page 8 of 60 | Rechargeable Li-ion<br>Polymer Battery 1# for<br>EUT | BLP911 | <br>Sunwoda Electronic CO.,LTD | |------------------------------------------------------|--------|----------------------------------------| | Rechargeable Li-ion Polymer Battery 2# for EUT | BLP911 | <br>TWS Technology (Guangzhou) Limited | | Rechargeable Li-ion Polymer Battery 3# for EUT | BLP911 | <br>Chongqing CosMX Battery Co., Ltd. | | Earphone for EUT | MH156 | <br> | | USB Cable for EUT | | <br> | ### 3.6. Test Conditions Date of test: Nov.02, 2021-Dec.01, 2021 Date of EUT Receive: Nov.01, 2021 Temperature: 22 °C -25 °C Relative Humidity: 44%-55% # 3.7. Special Accessories Not available for this EUT intended for grant. # 3.8. Equipment Modifications Not available for this EUT intended for grant. Report No.: WT218003132 Page 9 of 60 # 4. TEST EQUIPMENT USED Table 3 Test Equipment | | | Table 3 Test E | quipment | | | | |------------|------------------------|----------------|-----------|----------------|------------------|--| | No. | Equipment | Manufacturer | Model No. | Last Cal. | Cal.<br>Interval | | | SB9058/05 | Test Receiver | R&S | ESCI 3 | Sep.24,2021 | 1 Year | | | SB4357 | AMN | R&S | ENN216 | Aug.25,2021 | 1 Year | | | SB9549 | Shielded Room | Albatross | SR | Sep.24,2021 | 1 Year | | | SB15044/01 | Test Receiver | R&S | ESW8 | Sep.14,2021 | 1 Year | | | SB12944 | Broadband Antenna | R&S | VULB9163 | Jan.08,2021 | 1 Year | | | SB18844 | Semi Anechoic Chamber | Albatross | 9×6×6(m) | Mar.23,2021 | 1 Year | | | SB8501/09 | Test Receiver | R&S | ESU40 | Feb.05,2021 | 1 Year | | | SB3435 | Horn Antenna | R&S | HF906 | Dec.16,2020 | 1 Year | | | SB9054/08 | Broadband Antenna | Schwarzbeck | VULB 9163 | Jan.05,2021 | 1 Year | | | SB9555/02 | Fully Anechoic Chamber | Albatross | 10.0×5.2× | Aug.25,2021 | 1 Year | | | 02000702 | | , | 5.4(m) | 7 to g.=0,=0=1 | | | | SB9058/03 | Pre-Amplifier | R&S | SCU 18 | Feb.05,2021 | 1 Year | | | SB8501/10 | Horn Antenna | R&S | 3160-09 | Mar.10,2020 | 3 Years | | | SB8501/11 | Horn Antenna | R&S | 3160-09 | Mar.09,2020 | 3 Years | | | SB8501/12 | Horn Antenna | R&S | 3160-10 | Mar.17,2020 | 3 Years | | | SB8501/13 | Horn Antenna | R&S | 3160-10 | Mar.10,2020 | 3 Years | | | SB8501/14 | Pre-Amplifier | R&S | SCU-03 | Feb.05,2021 | 1 Year | | | SB8501/15 | Pre-Amplifier | R&S | SCU-03 | Feb.05,2021 | 1 Year | | | SB8501/16 | Pre-Amplifier | R&S | SCU 26 | Feb.05,2021 | 1 Year | | | SB8501/17 | Pre-Amplifier | R&S | SCU-18 | Feb.05,2021 | 1 Year | | | SB7941/02 | Spectrum Analyzer | R&S | FSU26 | May.17, 2021 | 1 Year | | # Table 4 Test software | Name | Manufacturer | Version | | |--------------------------------|------------------------------|-------------|--| | Bluetooth and WiFi Test System | Shenzhen JS tonscend co.,ltd | 2.6.88.0330 | | Report No.: WT218003132 Page 10 of 60 #### 5. CONDUCTED EMISSION TEST #### 5.1. Test Standard and Limit #### 5.1.1.Test Standard FCC Part 15 15.207 #### 5.1.2.Test Limit Table 5 Conducted Emission Test Limit | Frequency | Maximum RF Line Voltage (dBμV) | | | | |---------------|--------------------------------|---------------|--|--| | requericy | Quasi-peak Level | Average Level | | | | 150kHz~500kHz | 66 ~ 56 * | 56 ~ 46 * | | | | 500kHz~5MHz | 56 | 46 | | | | 5MHz~30MHz | 60 | 50 | | | <sup>\*</sup> Decreasing linearly with logarithm of the frequency #### 5.2. Test Procedure The EUT is put on a table of non-conducting material that is 80cm high. The vertical conducting wall of shielding is located 40cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI test receiver (R&S Test Receiver ESCS30) is used to test the emissions from both sides of AC line. According to the requirements of ANSI C63.10-2020.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz. #### **5.3. Test Arrangement** The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture. #### 5.4. Test Data The emissions don't show in below are too low against the limits. Refer to the test curves. Report No.: WT218003132 Page 11 of 60 <sup>\*</sup> The lower limit shall apply at the transition frequency. Table 6 Conducted Emission Test Data | Test mode | Test mode: Charging and Transmitting | | | | | | | | | |-----------|--------------------------------------|----------------|-------------------|------------------------------------------|-----------------|-------------------|-----------------------------|-----------------|--| | | Frequency | Correction | | Quasi-Peak | | Average | | | | | | (MHz) | Factor<br>(dB) | Reading<br>(dBμV) | Emission<br>Level<br>(dB <sub>µ</sub> V) | Limit<br>(dBμV) | Reading<br>(dBμV) | Emission<br>Level<br>(dBµV) | Limit<br>(dBμV) | | | | 0.150 | 9.7 | 39.4 | 49.1 | 66 | 27.0 | 36.7 | 56 | | | | 0.181 | 9.7 | 34.4 | 44.1 | 64.4 | 25.0 | 34.7 | 54.4 | | | | 0.271 | 9.7 | 27.3 | 37.0 | 61.1 | 25.1 | 34.8 | 51.1 | | | Line | 0.384 | 9.7 | 28.9 | 38.6 | 58.2 | 24.7 | 34.4 | 48.2 | | | | 4.951 | 9.9 | 25.4 | 35.3 | 56 | 20.6 | 30.5 | 46 | | | | 9.213 | 10.0 | 34.1 | 44.1 | 60 | 28.8 | 38.8 | 50 | | | | 0.150 | 9.7 | 37.4 | 47.1 | 66 | 27.6 | 37.3 | 56 | | | | 0.181 | 9.7 | 32.7 | 42.4 | 64.4 | 25.3 | 35.0 | 54.4 | | | Mandaal | 0.330 | 9.7 | 31.3 | 41.0 | 59.5 | 28.2 | 37.9 | 49.5 | | | Neutral | 0.384 | 9.7 | 30.3 | 40.0 | 58.2 | 25.7 | 35.4 | 48.2 | | | | 4.830 | 9.9 | 24.9 | 34.8 | 56 | 20.5 | 30.4 | 46 | | | | 9.082 | 10.0 | 32.4 | 42.4 | 60 | 27.5 | 37.5 | 50 | | REMARKS: 1. Emission level (dB $\mu$ V) =Read Value (dB $\mu$ V) + Correction Factor (dB) Report No.: WT218003132 Page 12 of 60 <sup>2.</sup> Correction Factor (dB) =LISN Factor (dB) + Cable Factor (dB) +Limiter Factor (dB) <sup>3.</sup> The other emission levels were very low against the limit. # Line # Neutral Report No.: WT218003132 Page 13 of 60 #### 6. RADIATED EMISSION TEST #### 6.1. Test Standard and Limit 6.1.1.Test Standard FCC Part 15 15.209 #### 6.1.2.Test Limit Table 7 Radiation Emission Test Limit for FCC (Class B) (9 kHz-1GHz) | (0.000 = 7 (0.000 = 7 ) | | | | | | | |-------------------------|--------------------|----------------------|--|--|--|--| | Frequency | Field Strength | Measurement Distance | | | | | | (MHz) | (microvolts/meter) | (meters) | | | | | | 0.009~0.490 | 2400/F(KHz) | 300 | | | | | | 0.490~1.705 | 24000/F(KHz) | 30 | | | | | | 1.705~30.0 | 30 | 30 | | | | | | 30~88 | 100 | 3 | | | | | | 88~216 | 150 | 3 | | | | | | 216~960 | 200 | 3 | | | | | | 960~1000 | 500 | 3 | | | | | Table 8 Radiation Emission Test Limit for FCC (Class B) (Above 1G) | Frequency (MHz) | (dBuV/m) (at 3 meters) | | | |-----------------|------------------------|---------|--| | | PEAK | AVERAGE | | | Above 1000 | 74 | 54 | | <sup>\*</sup> The lower limit shall apply at the transition frequency. # **6.2. Test Procedure** The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.10-2020.The EUT is set to transmit in a continuous mode. Radiated measurements were performed on the frequency range from 30MHz to 25GHz. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz ,VBW≥RBW. All readings above 1 GHz are AV and PK values. RBW=1MHz and 1/T (10Hz) for AV value, RBW=1MHz and VBW≥RBW for peak value. Measurements were made at 3 meters. #### **6.3. Test Arrangement** The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application. The detailed information refers to test picture. Report No.: WT218003132 Page 14 of 60 <sup>\*</sup> The test distance is 3m. #### 6.4. Test Data The emissions don't show in following result tables are more than 20dB below the limits. Bluetooth basic rate and Bluetooth EDR mode were tested, below only shows worst case result of Bluetooth basic rate. The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported. #### 9 kHz-30MHz The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported. Table 9 Radiated Emission Test Data 9k Hz-30MHz | | Table o Madated Elillosoff Tool Bata of Tiz Collinz | | | | | | | | |--------------------|-----------------------------------------------------|---------------------------|---------------------|-------------------|-------------------|-------------------|----------------|------| | Frequency<br>(MHz) | Cable<br>Loss<br>+preamp<br>(dB) | Antenna<br>Factor<br>(dB) | Reading<br>(dBµV/m) | Level<br>(dBµV/m) | Polarity<br>(H/V) | Limit<br>(dBµV/m) | Margin<br>(dB) | Note | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | #### 30MHz-1GHz Worst case is shown below for 30MHz-1GHz only. The emissions don't show in following result tables are more than 20dB below the limits. Table 10 Radiated Emission Test Data 30MHz-1GHz | Frequency<br>(MHz) | Cable<br>Loss<br>+preamp<br>(dB) | Antenna<br>Factor<br>(dB) | Reading<br>(dBµV/m) | Level<br>(dBµV/m) | Polarity<br>(Horizontal/<br>Vertical) | Limit<br>(dBµV/m) | Margin<br>(dB) | Note | |--------------------|----------------------------------|---------------------------|---------------------|-------------------|---------------------------------------|-------------------|----------------|------| | 33.273 | 0.7 | 12.3 | 18.1 | 31.1 | Vertical | 40 | 8.9 | QP | | 57.766 | 0.8 | 13.0 | 8.8 | 22.6 | Vertical | 40 | 17.4 | QP | | 63.707 | 0.9 | 12.7 | 9.9 | 23.5 | Vertical | 40 | 16.5 | QP | | 85.653 | 1.0 | 10.3 | 11.9 | 23.2 | Vertical | 40 | 16.8 | QP | | 143.126 | 1.3 | 10.5 | 15.2 | 27.0 | Vertical | 43.5 | 16.5 | QP | | 158.282 | 1.4 | 8.3 | 16.3 | 26.0 | Vertical | 43.5 | 17.5 | QP | | 80.561 | 0.9 | 8.5 | 8.8 | 18.2 | Horizontal | 40 | 21.8 | QP | | 94.020 | 1.1 | 11.9 | 0.8 | 13.8 | Horizontal | 43.5 | 29.7 | QP | | 130.758 | 1.3 | 10.5 | 7.8 | 19.6 | Horizontal | 43.5 | 23.9 | QP | | 167.861 | 1.5 | 8.7 | 7.2 | 17.4 | Horizontal | 43.5 | 26.1 | QP | | 194.657 | 1.6 | 10.6 | 8.4 | 20.6 | Horizontal | 43.5 | 22.9 | QP | | 243.521 | 1.8 | 12.1 | 4.7 | 18.6 | Horizontal | 46 | 27.4 | QP | Remark: Emission level (dBµV)=Read Value(dBµV/m) + Antenna Factor(dB)+ Cable Loss +preamp(dB) Report No.: WT218003132 # 30MHz-1GHz # Horizontal ESW8 Field strength 30M-1GHz # Vertical ESW8 Field strength 30M-1GHz Report No.: WT218003132 Page 16 of 60 # GFSK CH0 Horizontal # Vertical Report No.: WT218003132 Page 17 of 60 # GFSK CH39 Horizontal # Vertical Report No.: WT218003132 Page 18 of 60 # GFSK CH78 Horizontal # Vertical Report No.: WT218003132 Page 19 of 60 # 8PDSK CH0 Horizontal # Vertical Report No.: WT218003132 Page 20 of 60 # 8PDSK CH39 Horizontal # Vertical Report No.: WT218003132 Page 21 of 60 # 8PDSK CH78 Horizontal # Vertical Report No.: WT218003132 Page 22 of 60 # 18-26.5GHz No Peak found in pre-scan, only worst case result is listed in this report. Horizontal # Vertical Report No.: WT218003132 Page 23 of 60 Table 11 Restricted Band Radiated Emission Data | MHz | MHz | MHz | GHz | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------| | 0.090 - 0.110<br>0.495 - 0.505<br>2.1735 - 2.1905<br>4.125 - 4.128<br>4.17725 - 4.17775<br>4.20725 - 4.20775<br>6.215 - 6.218<br>6.26775 - 6.26825<br>6.31175 - 6.31225<br>8.291 - 8.294<br>8.362 - 8.366<br>8.37625 - 8.366<br>8.37625 - 8.38675<br>8.41425 - 8.41475<br>12.29 - 12.293<br>12.51975 - 12.52025<br>12.57675 - 12.57725<br>13.36 - 13.41 | 16.42 - 16.423<br>16.69475 - 16.69525<br>16.80425 - 16.80475<br>25.5 - 25.67<br>37.5 - 38.25<br>73 - 74.6<br>74.8 - 75.2<br>108 - 121.94<br>123 - 138<br>149.9 - 150.05<br>156.52475 - 156.52525<br>156.7 - 156.9<br>162.0125 - 167.17<br>167.72 - 173.2<br>240 - 285<br>322 - 335.4 | 399.9 - 410<br>608 - 614<br>960 - 1240<br>1300 - 1427<br>1435 - 1626.5<br>1645.5 -<br>1646.5<br>1660 - 1710<br>1718.8 -<br>1722.2<br>2200 - 2300<br>2310 - 2390<br>2483.5 - 2500<br>2655 - 2900<br>3260 - 3267<br>3332 - 3339<br>3345.8 - 3358<br>3600 - 4400 | 4.5 - 5.15<br>5.35 - 5.46<br>7.25 - 7.75<br>8.025 - 8.5<br>9.0 - 9.2<br>9.3 - 9.5 | Except as shown in table 9 to table 15, all other emission of the above band were less than the limit 20dB. Report No.: WT218003132 Page 24 of 60 #### 7. 20DB BANDWIDTH MEASUREMENT #### 7.1. Limits of 20dB Bandwidth Measurement CFR 47 (FCC) part 15.247 (a) (1) and DA 00-705 #### 7.2. Test Procedure The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30kHz RBW and VBW≥RBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB. #### 7.3. Test Setup #### 7.4. Test Data Table 12 20dB Bandwidth Test Data | Test Mode | CHANNEL<br>FREQUENCY<br>(MHz) | Modulation | 20dB<br>BANDWIDTH<br>(MHz) | Result | |-----------|-------------------------------|------------|----------------------------|--------| | | 2402 | | 1.068 | Pass | | DH1 | 2441 | GFSK | 1.074 | Pass | | | 2480 | | 1.065 | Pass | | | 2402 | | 1.359 | Pass | | 3DH1 | 2441 | 8DPSK | 1.347 | Pass | | | 2480 | | 1.356 | Pass | Report No.: WT218003132 Page 25 of 60 #### 8. CARRIER FREQUENCY SEPARATION MEASUREMENT ### 8.1. Limits of Carrier Frequency Separation Measurement Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. #### 8.2. Test Procedure - (a) Connect test port of EUT to spectrum analyzer and universal communication tester - (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function, then set the measured frequency number to two adjacent channels separately and test the carrier frequency separation with spectrum analyzer. #### 8.3. Test Setup #### 8.4. Test Data Table 13 Carrier Frequencies Separation | Test<br>Mode | Frequency<br>[MHz] | Frequency<br>[MHz] | Modulation | Frequency<br>separation<br>[MHz] | Limit<br>[MHz] | Result | |--------------|--------------------|--------------------|------------|----------------------------------|----------------|--------| | | 2402 | 2403 | GFSK | 1.006 | >=0.688 | Pass | | DH1 | 2441 | 2442 | | 1 | >=0.688 | Pass | | | 2479 | 2480 | | 1 | >=0.688 | Pass | | | 2402 | 2403 | | 1.003 | >=0.868 | Pass | | 3DH1 | 2441 | 2442 | 8DPSK | 1.003 | >=0.868 | Pass | | | 2479 | 2480 | | 0.997 | >=0.868 | Pass | Report No.: WT218003132 Page 28 of 60 ### 9. NUMBER OF HOPPING CHANNEL ### 9.1. Limits of Number of Hopping Channel Number of hopping channel should be compliance with the requirements in part15.247 (a) (1) III. #### 9.2. Test Procedure - (a) Connect test port of EUT to spectrum analyzer. - (b) Set the EUT to transmit maximum output power at 2.4GHz and switch on. Frequency hopping function, then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer. - (c) Count the quantity of peaks to get the number of hopping channels. #### 9.3. Test Setup #### 9.4. Test Data Table 14 Hopping Channel Number Test Data | Test Mode | Hopping<br>Numbers | Modulation | Limit | Result | |-----------|--------------------|------------|-------|--------| | DH1 | 79 | GFSK | >=15 | Pass | | 3DH1 | 79 | 8DPSK | >=15 | Pass | Report No.: WT218003132 Page 31 of 60 Report No.: WT218003132 Page 32 of 60 # 10. TIME OF OCCUPANCY ### 10.1.Limits of Time Occupancy The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. #### 10.2.Test Procedure - (a) Connect test port of EUT to spectrum analyzer and universal communication tester. - (b) Set the EUT to transmit maximum output power at 2.4GHz and switch on frequency hopping function. - (c) Set the span of spectrum analyzer to 0 Hz, and set the resolution bandwidth to 1 MHz and the video bandwidth to 1 MHz, then get the time domain measured diagram. and set sweep time to 2 times of one burst occupancy time, and measure the time of occupancy of one burst. - (d) Set the resolution bandwidth to 1 MHz and the video bandwidth to 3 MHz ,and set the sweep time to a period (0.4 seconds multiplied by the number of hopping channels employed), and count the number of the bursts. - (e) Calculate the time of occupancy in a period with time occupancy of a burst and quantity of bursts. DH1: Dwell time equal to Pluse time (ms)\*(1600/2/79)\*31.6ms DH3: Dwell time equal to Pluse time (ms)\*(1600/4/79)\*31.6ms DH5: Dwell time equal to Pluse time (ms)\*(1600/6/79)\*31.6ms AFH Mode: DH1: Dwell time equal to Pluse time (ms)\*(800/2/20)\* (0.4\*20) ms DH3: Dwell time equal to Pluse time (ms)\*(800/4/20)\* (0.4\*20) ms DH5: Dwell time equal to Pluse time (ms)\*(800/6/20)\* (0.4\*20) ms #### 10.3.Test Data **GFSK** Table 15 Time of Occupancy | | | | | - / | | | |----------------|--------------------------------|------------------------------------|-------------------------------------------|----------------------------------------------------|-----------|---------| | Data<br>Packet | Time of<br>Single Slot<br>[ms] | Numbers of<br>Slots in a<br>period | Time of<br>Occupied<br>in a period<br>[s] | AFH Mode<br>Time of<br>occupied in a<br>period [s] | Limit [s] | Results | | DH1 | 0.38 | 320 | 0.122 | 0.061 | <= 0.40 | Pass | | DH3 | 1.64 | 70 | 0.115 | 0.0575 | <= 0.40 | Pass | | DH5 | 2.89 | 50 | 0.145 | 0.0725 | <= 0.40 | Pass | Report No.: WT218003132 Page 33 of 60 # 8DPSK Table 16 Time of Occupancy | Data<br>Packet | Time of<br>Single Slot<br>[ms] | Numbers of<br>Slots in a<br>period | Time of<br>Occupied<br>in a period<br>[s] | AFH Mode Time<br>of occupied in a<br>period<br>[s] | Limit<br>[s] | Result | |----------------|--------------------------------|------------------------------------|-------------------------------------------|----------------------------------------------------|--------------|--------| | 3DH1 | 0.39 | 320 | 0.125 | 0.0625 | <= 0.40 | Pass | | 3DH3 | 1.64 | 60 | 0.098 | 0.049 | <= 0.40 | Pass | | 3DH5 | 2.89 | 70 | 0.202 | 0.101 | <= 0.40 | Pass | Report No.: WT218003132 Page 36 of 60 ### 11. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT ### 11.1.Limits of Maximum Conducted Output Power Measurement Compliance with part 15.247 (b) (1)& RSS-247Clause 5.4(2), for frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watt. #### 11.2.Test Procedure - (a) Connect test port of EUT to universal communication tester. - (b) Set the EUT to transmit maximum output power at 2.4GHz and switch off frequency hopping function. - (c) Then set the EUT to transmit at high, middle and low frequency and measure the conducted output power separately. #### 11.3.Test Data Table 17 Maximum Conducted Output Power Test Data | Test Mode | Center<br>Freq.<br>[MHz] | Modulation Meas. Level (Cond.) [dBm] | | Limit [dBm] | Result | | |-----------|--------------------------|--------------------------------------|-------|-------------|--------|--| | | 2402 | | 10.95 | <=20.97 | Pass | | | DH1 | 2441 | GFSK | 11.45 | <=20.97 | Pass | | | | 2480 | | 10.71 | <=20.97 | Pass | | | | 2402 | | 10.28 | <=20.97 | Pass | | | 3DH1 | 2441 | 8DPSK | 10.88 | <=20.97 | Pass | | | | 2480 | | 10.11 | <=20.97 | Pass | | Report No.: WT218003132 Page 39 of 60 #### 12. BAND EDGES MEASUREMENT ### 12.1.Limits of Band Edges Measurement Below –20dB of the highest emission level of operating band (in 100 kHz resolution bandwidth). #### 12.2.Test Procedure - 1. The EUT is placed on a turntable, which is 1.5m above the ground plane. - 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. - 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission. - 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: - (a) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO - (b) PEAK: RBW=VBW=1MHz / Sweep=AUTO - 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured. #### 12.3.Test Data The measured plots are attached on the following. Test data shows compliance with the band edge requirement in part 15.247(d). Report No.: WT218003132 Page 42 of 60 # GFSK Low edge ## Horizontal Report No.: WT218003132 Page 43 of 60 Report No.: WT218003132 Page 44 of 60 # GFSK Upper Edge ### Horizontal Report No.: WT218003132 Page 45 of 60 Report No.: WT218003132 Page 46 of 60 # 8DPSK Low edge ### Horizontal Report No.: WT218003132 Page 47 of 60 Report No.: WT218003132 Page 48 of 60 # 8DPSK Upper edge ### Horizontal Report No.: WT218003132 Page 49 of 60 Report No.: WT218003132 Page 50 of 60 ## 13. CONDUCTED SPURIOUS EMISSION ## 13.1.Limits of Band Edges Measurement Below –20dB of the highest emission level of operating band (in 100 kHz resolution bandwidth). ### 13.2.Test Procedure The transmitter output was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz. The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels. The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal #### 13.3.Test Data Report No.: WT218003132 Page 51 of 60 ## GFSK Low Channel Report No.: WT218003132 Page 52 of 60 ## GFSK Mid Channel Report No.: WT218003132 Page 53 of 60 # GFSK High Channel Report No.: WT218003132 Page 54 of 60 # GFSK Band Edge Hopping on Report No.: WT218003132 Page 55 of 60 ## 8DPSK Low Channel Report No.: WT218003132 Page 56 of 60 ## 8DPSK Mid Channel Report No.: WT218003132 Page 57 of 60 # 8DPSK High Channel Report No.: WT218003132 Page 58 of 60 # 8DPSK Band Edge Hopping on Report No.: WT218003132 Page 59 of 60 #### 14. ANTENNA REQUIREMENTS #### 15.203 requirements: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. ### 15.247(b) (4) requirements: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### 14.1.Antenna Connector Antenna Connector is on the PCB within enclosure and not accessible to user. #### 14.2.Antenna Gain | Tha | antenna | nien | Ωf | FIIT | ic | ععطا | than | A | dRi | |------|---------|-------|-----|------|----|------|-------|---|------| | 1110 | antenna | yallı | OI. | -0 I | 13 | 1000 | uiaii | U | uDI. | | End of Report | |---------------| Report No.: WT218003132 Page 60 of 60