

TEST REPORT

No. I21N03262-BT

for

Realme Chongqing Mobile Telecommunications Corp., Ltd.

Mobile Phone

Model Name: RMX3393

with

Hardware Version: 11

Software Version: ColorOS 12.1

FCC ID: 2AUYFRMX3393

Issued Date: 2021-11-29

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

©Copyright. All rights reserved by SAICT.

CONTENTS

CONT	ENTS	. 2
1. SU	UMMARY OF TEST REPORT	.3
1.1.	Test Items	. 3
1.2.	TEST STANDARDS	. 3
1.3.	TEST RESULT	. 3
1.4.	TESTING LOCATION	. 3
1.5.	PROJECT DATA	. 3
1.6.	SIGNATURE	. 3
2. C	LIENT INFORMATION	. 4
2.1.	APPLICANT INFORMATION	. 4
2.2.	MANUFACTURER INFORMATION	. 4
3. E	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	. 5
3.1.	About EUT	. 5
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	. 5
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	. 5
3.4.	GENERAL DESCRIPTION	. 6
4. R	EFERENCE DOCUMENTS	. 7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	. 7
4.2.	Reference Documents for testing	. 7
5. TI	EST RESULTS	. 8
5.1.		
5.2.	TEST RESULTS	. 8
5.3.	STATEMENTS	. 8
6. T	EST EQUIPMENTS UTILIZED	.9
	ABORATORY ENVIRONMENT	
	IEASUREMENT UNCERTAINTY	
	X A: DETAILED TEST RESULTS	
	r Configuration	
	ANTENNA REQUIREMENT	
	MAXIMUM PEAK OUTPUT POWER	
	BAND EDGES COMPLIANCE	
A.3	CONDUCTED EMISSION	24
A.4]	RADIATED EMISSION	39
A.52	20dB Bandwidth	51
A.67	TIME OF OCCUPANCY (DWELL TIME)	57
A.7]	NUMBER OF HOPPING CHANNELS	61
A.8	CARRIER FREQUENCY SEPARATION	64
A.9	AC Power line Conducted Emission	67

1. Summary of Test Report

1.1. Test Items

Product Name	Mobile Phone
Model Name	RMX3393
Applicant's name	Realme Chongqing Mobile Telecommunications Corp., Ltd.
Manufacturer's Name	Realme Chongqing Mobile Telecommunications Corp., Ltd.

1.2. Test Standards

FCC CFR 47, Part 15, Subpart C 2019

1.3. Test Result

Pass

Please refer to "5.2.Test Results"

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project data

Testing Start Date:	2021-10-26
Testing End Date:	2021-11-25

1.6. Signature

Lin Zechuang (Prepared this test report)

An Ran (Reviewed this test report)

低

Zhang Bojun (Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	Realme Chongqing Mobile Telecommunications Corp., Ltd.		
Address:	No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing, China.		
Contact Person	Yang LiangPing		
E-Mail	ylp@realme.net		
Telephone:	(86)13798864426		
Fax:	1		

2.2. Manufacturer Information

Company Name:	Realme Chongqing Mobile Telecommunications Corp., Ltd.
Address:	No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing, China.
Contact Person	Yang LiangPing
E-Mail	ylp@realme.net
Telephone:	(86)13798864426
Fax:	1

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Product Name	Mobile Phone
Model Name	RMX3393
Frequency Band	2400MHz~2483.5MHz
Type of Modulation	GFSK/π/4 DQPSK/8DPSK
Number of Channels	79
Antenna Type	PIFA antenna
Antenna Gain	0.10dBi
Power Supply	3.87V DC by Battery
FCC ID	2AJOTRMX3393
Condition of EUT as received	No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Receive Date	
	868912050020558	11	ColorOS 12.1	2021-10-21	
UT03aa	868912050020541	11	000103 12.1	2021-10-21	
UT04aa	868912050020590	11	ColorOS 12.1	2021-10-25	
0104aa	868912050020582	11	C010103 12.1	2021-10-25	
UT20aa	868912050020632	11	ColorOS 12.1	2021-10-25	
	868912050020624		00010012.1	2021-10-20	

*EUT ID: is used to identify the test sample in the lab internally.

UT03aa is used for conduction test, UT04aa is used for radiation test, and UT20aa is used for AC Power line Conducted Emission test.

3.3. Internal Identification of AE used during the test

AE ID*	Description	AE ID*
AE1	Battery	/
AE2	Charger	/
AE3	USB Cable	/
AE4	Headset	/

AE1

Model	BLP837	
Manufacturer	Sunwoda Electronic Co., Ltd.	
Capacity	4400mAh	
Nominal Voltage	3.87V	
AE2		
Model	VCA7JAUH	
©Copyright. All rights reserved by SAICT.		

Manufacturer Specification	Huizhou Golden Lake Industrial Co., Ltd. American Standard Charger
AE3	
Model	DL129
Manufacturer	/
AE4	
Model	MH156
Manufacturer	/

*AE ID: is used to identify the test sample in the lab internally.

3.4. General Description

The Equipment under Test (EUT) is a model of Mobile Phone with PIFA antenna and battery. It consists of normal options: Lithium Battery and Charger, USB Cable and Headset. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the client.

4. <u>Reference Documents</u>

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15	FCC CFR 47, Part 15, Subpart C:	2019
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902–928MHz,	
	2400–2483.5 MHz, and 5725–5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	

5. Test Results

5.1. <u>Testing Environment</u>

Normal Temperature:	15~35°C
Relative Humidity:	20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Band Edges Compliance	15.247 (d)	Р
3	Conducted Spurious Emission	15.247 (d)	Р
4	Radiated Spurious Emission	15.247,15.205,15.209	Р
5	Occupied 20dB bandwidth	15.247(a)	Ι
6	Time of Occupancy(Dwell Time)	15.247(a)	Р
7	Number of Hopping Channel	15.247(a)	Р
8	Carrier Frequency Separation	15.247(a)	Р
9	AC Power line Conducted Emission	15.107,15.207	Р

See ANNEX A for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

Disclaimer:

A. After confirmation with the customer, the sample information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences arising therefrom shall be borne by the customer.

B. The samples in this report are provided by the customer, and the test results are only applicable to the samples received.

6. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial	Manufacturer	Calibration	Calibration
NO.	Equipment	Widdei	Number	Wanuacturer	Due date	Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2021-12-30	1 year
2	Power Sensor	U2021XA	MY55430013	Agilent	2022-01-13	1 year
3	Data Acquisiton	U2531A	TW55443507	Agilent	/	/
4	RF Control Unit	JS0806-2	21C8060398	Tonscend	2022-05-09	1 year
5	Wireless Connective Tester	CMW270	100540	Rohde & Schwarz	2022-03-14	1 year
6	Test Receiver	ESCI	100702	Rohde & Schwarz	2022-01-13	1 year
7	LISN	ENV216	102067	Rohde & Schwarz	2022-07-15	1 year

Radiated test system

No Equipment		Model	Serial	Manufacturer	Calibration	Calibration
No.	Equipment	Model	Number	wanulacturer	Due date	Period
1	Loop Antenna	HLA6120	35779	TESEQ	2022-04-25	3 years
2	BiLog Antenna	3142E	0224831	ETS-Lindgren	2024-05-27	3 years
3	Horn Antenna	3117	00066577	ETS-Lindgren	2022-04-02	3 years
4	Horn Antenna	QSH-SL-18 -26-S-20	17013	Q-par	2023-01-06	3 years
5	Test Receiver	ESR7	101676	Rohde & Schwarz	2022-11-24	1 year
6	Spectrum Analyser	FSV40	101192	Rohde & Schwarz	2022-01-13	1 year
7	Chamber	FACT3-2.0	1285	ETS-Lindgren	2023-05-29	2 years

Test software

No.	Equipment	Manufacturer	Version
1	JS1120-3	Tonscend	2.6
2	EMC32	Rohde & Schwarz	10.50.40

EUT is engineering software provided by the customer to control the transmitting signal. The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Semi-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	<±4 dB, 3 m distance, from 30 to 1000 MHz

Shielded room

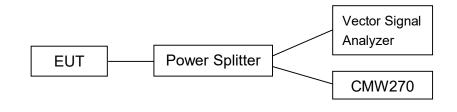
Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-1000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	<4Ω

Fully-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Voltage Standing Wave Ratio (VSWR)	\leq 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

8. <u>Measurement Uncertainty</u>

Test Name	Uncertainty (<i>k</i> =2)	
1. Maximum Peak Output Power	1.32	dB
2. Band Edges Compliance	1.92	dB
	30MHz≤f<1GHz	1.41dB
2 Transmitter Spurious Emission Conducted	1GHz≤f<7GHz	1.92dB
3. Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB
	9kHz≤f<30MHz	1.79dB
4 Transmitter Spurious Emission Redicted	30MHz≤f<1GHz	4.86dB
4 Transmitter Spurious Emission - Radiated	1GHz≤f<18GHz	4.82dB
	18GHz≤f≤40GHz	2.90dB
5. 20dB Bandwidth	66⊢	Iz
6. Time of Occupancy (Dwell Time) & Number	0.58ms	
of Hopping Channels		
7. Carrier Frequency Separation	66H	lz
8. AC Power line Conducted Emission	150kHz≤f≤30MHz	2.62dB

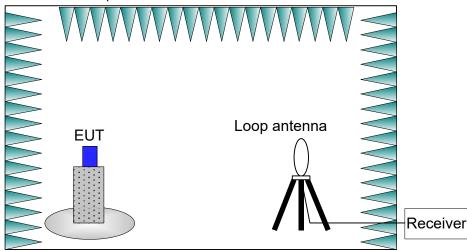

ANNEX A: Detailed Test Results

Test Configuration

The measurement is made according to ANSI C63.10.

1) Conducted Measurements

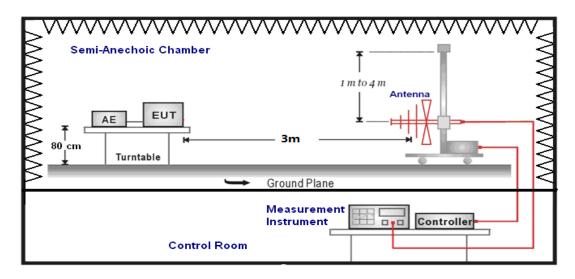
- 1. Connect the EUT to the test system correctly.
- 2. Set the EUT to the required work mode.
- 3. Set the EUT to the required channel.
- 4. Set the EUT hopping mode (hopping on or hopping off).
- 5. Set the spectrum analyzer to start measurement.
- 6. Record the values.

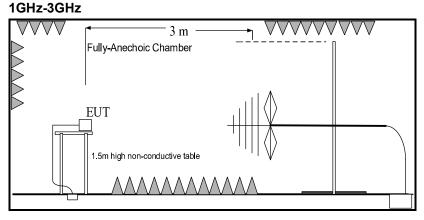


2) Radiated Measurements

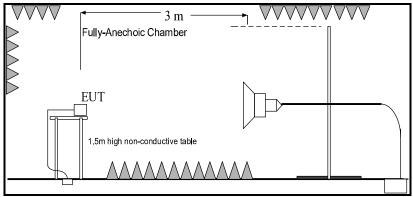
Test setup:

9kHz-30MHz:

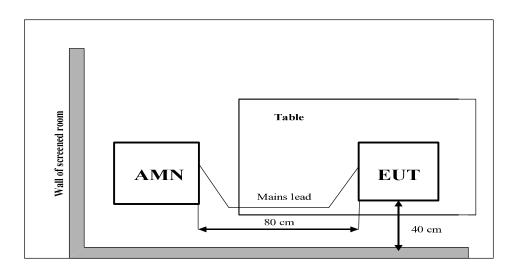

The EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.


30MHz-1GHz:

The EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1.0 meter to 4.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.


Above 1GHz:

EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the receive antenna. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiving antenna polarization.



3GHz-40GHz

3) AC Power line Conducted Emission Measurement

The EUT is working as Bluetooth terminal. A communication link of Bluetooth is set up with a System Simulator (SS). The EUT is commanded to operate at maximum transmitting power.

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator shall be considered sufficient to comply with the provisions of
	this section. The manufacturer may design the unit so that a broken antenna can
	be replaced by the user, but the use of a standard antenna jack or electrical
FCC CRF Part	connector is prohibited. This requirement does not apply to carrier current devices
15.203	or to devices operated under the provisions of §15.211, §15.213, §15.217,
	§15.219, or §15.221. Further, this requirement does not apply to intentional
	radiators that must be professionally installed, such as perimeter protection
	systems and some field disturbance sensors, or to other intentional radiators
	which, in accordance with §15.31(d), must be measured at the installation site.
	However, the installer shall be responsible for ensuring that the proper antenna is
	employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 0.10dBi. The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 7.8.5.

A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

Measurement Limit:

Standard	Limit (dBm)
FCC CRF Part 15.247(b)	< 30

Measurement Results:

Mada	Peak Conducted Output Power (dBm)			
Mode	2402MHz (Ch0)	2441MHz (Ch39)	2480MHz (Ch78)	
GFSK	11.91	12.19	11.35	
π/4 DQPSK	11.42	11.70	11.21	
8DPSK	11.97	12.21	11.52	

Conclusion: Pass

A.2 Band Edges Compliance

Method of Measurement: See ANSI C63.10-clause 7.8.6.

Measurement Limit:

Standard	Limit (dBm)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

Mode	Channel	Hopping	Test Results	Conclusion
	0	OFF	Fig.1	Р
GFSK	78	OFF	Fig.2	Р
Gran	0	ON	Fig.3	Р
	78	ON	Fig.4	Р
	0	OFF	Fig.5	Р
π/4 DQPSK	78	OFF	Fig.6	Р
11/4 DQP3K	0	ON	Fig.7	Р
	78	ON	Fig.8	Р
	0	OFF	Fig.9	Р
8DPSK	78	OFF	Fig.10	Р
ODPSK	0	ON	Fig.11	Р
	78	ON	Fig.12	Р

See below for test graphs.

Conclusion: Pass

At	f Leve t int 300		00 de 30 (4 dB ● RBW 1 . ms ● VBW 3		le Auto Swe	еер	
9 1P	(View								
							M1[1]		10.891dBn
10 c	Bm—	-		-	1997		M2[1]		2.4020959 GH
0 dB							m2[1]		2.4000000 GH
0 46	411							1 1	
-10	dBm	D1 -	9.110) dBm			-		
-20	dBm								
20	aom							1 1	
-30	dBm—	-					-		
-40	dBm								
				monderalized	M4			M3	19 2
-50	dBm	Rentero .	unner	North Contraction of the second	- Mar and all and and	and have been and the	mound	- Mandal Jammer	Cherry Charman 1
-60	dBm							_	
-70	dBm							-	
Sta	t 2.35	GHz			1	691 pts			Stop 2.405 GHz
Ma	rker								
	Туре	Ref		Stimulus	Response	Function		Function	Result
1	N1		1	2.402095 GHz	10.89 dBm				
2	N2 N3	_	1	2.4 GHz 2.39 GHz	-47.83 dBm				
3	N3 N4	_	1	2.39 GHz 2.3732754 GHz	-48.35 dBm -46.40 dBm		3		

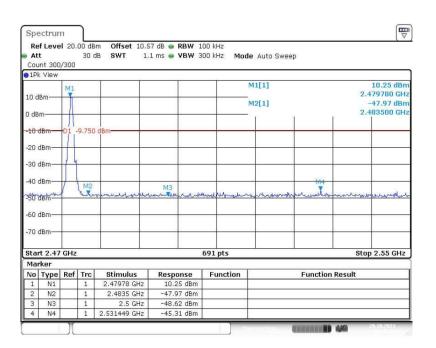


Fig. 2 Band Edges (GFSK, CH78, Hopping OFF)

At	f Leve t int 300		00 d8 30 d		9 dB 👄 RBW 1 . ms 👄 VBW 3		le Auto Sw	еер	
	(View			5. H.	125				
							M1[1]		10.30 dB
10 d	Bm—	-					M2[1]		2.4028110 GH -49.34 dB
) dB	m								2.4000000/01
10	d8m-	D1 -	9.700	dBm					
20	dBm				1.00				
20.	dBm								
501	ubm								
40	dBm					M4	-	M3	40
301		man	howing	rentermenter	warman have	mound	amound	wor Manutur	mandered
	dBm								
60.	asm				1242.4				
70 (dBm	-					-		
Star	t 2.35	GHz	(691 pts			Stop 2.405 GHz
Mai	rker								and the second se
	Туре	Ref		Stimulus	Response	Function		Function	Result
1	N1 N2		1	2.402811 GHz 2.4 GHz	10.30 dBm -49.34 dBm				
3	NZ N3	-	1	2.4 GHZ 2.39 GHz	-49.34 UBm				
4	N4	-	1	2.3763043 GHz	-46.07 dBm	7	1		

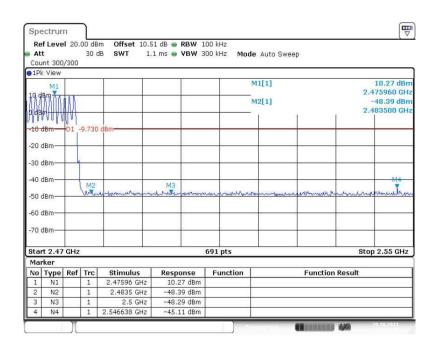
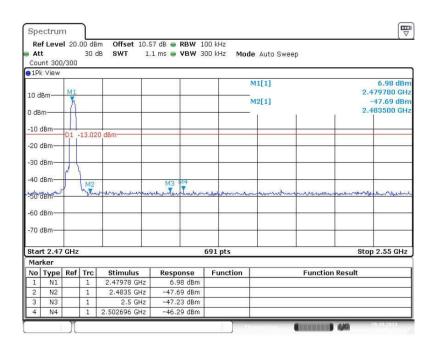



Fig. 4 Band Edges (GFSK, CH78, Hopping ON)

At	f Leve t int 300		00 dB 30 d		4 dB 👄 RBW 1 . ms 👄 VBW 3		de Auto Sv	veep	
	(View	/300							
10 d							M1[1] M2[1]		7.76 dBr 2.4017760 GH -44.54 dBr
) dB							1	1	2.4000000 GH
	dBm— dBm—	D1 -	12.24	0 dBm					
30 (dBm								
	dBm							M3	
	dBm	hund	when	alter and	and when when		andraghan	- Company College	
	dBm—						_		
_	t 2.35	GHz	(691 pts			Stop 2.405 GHz
	rker	Ref	Tro	Stimulus	Despense	Function	r	Function	Decult
1	Type N1	Ker	1	2.401776 GHz	Response 7.76 dBm	Function		Function	Result
2	N2		1	2.4 GHz	-44.54 dBm				
3	NЗ		1	2.39 GHz	-48.61 dBm				
4	N4		1	2.3998188 GHz	-44.55 dBm				

Re	f Leve t	1 20.	00 dB 30 (9 dB 👄 RBW 1 . ms 👄 VBW 3		le Auto Sw	еер	
_	nt 300	/300	pyperson a	and managements consider		AVANDAN (200760A		ese e c	
111	(View	<u> </u>		1 1		1	M1[1]		6.56 dBr
10 d	8m								2.4049600 GH
							M2[1]		-48.57 dBr
) dB	m						с Г	1	2.4000000 CH
10	dBm						_		
		D1 -	13.44	0 dBm			-		
20 (dBm								
30	dBm						_		
									ſ
40	dBm			Ma	27.21			M3	MZ
50	18HA	nerle	when	munidownline	non where	manument	magniting	regenternew	monor
	le.								
-6U I	dBm				17 13				
-70	dBm	-							
Star	t 2.35	GHz				691 pts			Stop 2.405 GHz
	ker								
	Туре	Ref		Stimulus	Response	Function		Function	Result
1	N1 N2		1	2.40496 GHz 2.4 GHz	6.56 dBm -48.57 dBm				
3	NZ N3		1	2.39 GHz	-48.57 UBm		-		
~	N4		1	2.3660217 GHz	-45.89 dBm	2	St		

Fig. 7 Band Edges (π /4 DQPSK, CH0, Hopping ON)

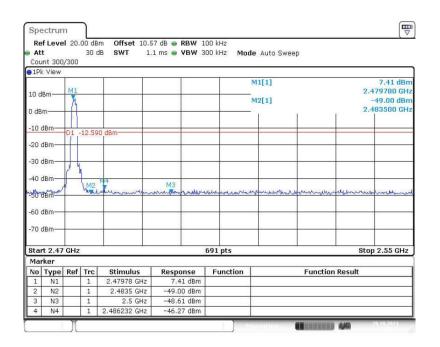

At	f Leve t int 300		00 dBr 30 dI		1 dB 👄 RBW 1 ms 👄 VBW		le Auto Swee	р	
1 1 P	(View						M1[1]		7.31 dBi 2.473990 GF
	hursh	M					M2[1]		-48.68 dBi 2.483500 GF
-10 (dBm	D1 -	12.690) dBm			_		
-20 (dBm						-		
-30 (dBm						_		
-40 (dBm	1	M2		M3		-		M4
-50 (dBm		Uniter	maumound	meet the must	manuflimment	mound	however	unerent margine and
-60 (dBm						-		
-70 (dBm						-		
Star	t 2.47	GHz				691 pts			Stop 2.55 GHz
	rker		-	Stimulus			r	Function	n li
1	Type N1	Ker	1	2,47399 GHz	Response 7.31 dBm	Function		Function	Kesuit
2	N2		1	2.4835 GHz	-48.68 dBm				
3	NЗ		1	2.5 GHz	-48.05 dBm	1			
4	N4		1	2.547333 GHz	-46.63 dBm	6			

Fig. 8 Band Edges (π/4 DQPSK, CH78, Hopping ON)

At	8		00 dB 30 (4 dB 👄 RBW 1 . ms 👄 VBW 3		de Auto Sw	reep		
	nt 300 View	/300								
10 d							M1[1] M2[1]		8.10 2.4020950 -44.48	GH dBn
0 dB					a c		1	1	2.4000000	GH
	dBm	D1 -	11.90	10 dBm	200	-				-
20	dBm									
30	dBm						-		W I	4
-40	dBm						-	M3	Net I	1
501	dBA	agun	comb	wanner market	manna	monder	mohuman	monthingues	waterwald	
-60	dBm—	~								
-70	dBm									
_	t 2.35	GHz	(691 pts			Stop 2.405 0	GHz
	rker		-	att 1 - 1					n	
1	Type N1	Ref	Trc 1	Stimulus 2,402095 GHz	Response 8.10 dBm	Function		Function	n Result	
2	N2		1	2.4 GHz	-44.48 dBm					
3	NЗ		1	2.39 GHz	-48.32 dBm					
4	N4		1	2.3996594 GHz	-43.69 dBm					

At	f Leve	1 20.	00 dB 30 c		9 dB 👄 RBW 1 1 ms 👄 VBW 3		de Auto Swi	pon	
0.000	nt 300	/300	50 0	.0 3441 1.			ue Auto SWI	eep	
1P	(View								
							M1[1]		7.79 dBr
10 d	Bm—	-		-					2.4031300 CH
							M2[1]		-49.26 dBr 2.4000000 dF
0 dB	m						- T	1 1	2.4000000 01
-10	dBm	D.t	10.01	0 dBm					
		101 -	12.21	U UBIII					
-20 (dBm								
-30	dBm						_	_	
									rv .
-40	dBm				M4	2	-	M3	Lab
Sm	dBm ^{ett}	hone	unine	multingengenon	rearington	wanter	manna	montmenn	mannent
-60	dBm	-			12 12		-		
70	dBm								
-/0	ubm								
Star	t 2.35	GHz		1	J3	691 pts	1		Stop 2.405 GHz
Mai	rker								
No	Туре	Ref	Trc	Stimulus	Response	Function		Function	Result
1	N1		1	2.40313 GHz	7.79 dBm				
2	N2		1	2.4 GHz	-49.26 dBm				
3	NЗ	_	1	2.39 GHz	-48.85 dBm				

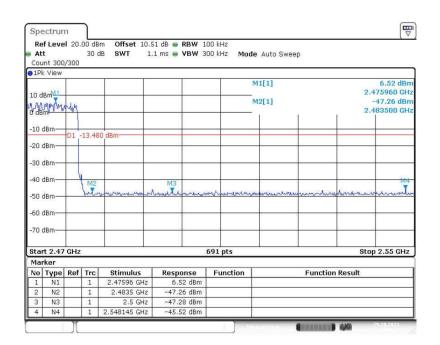


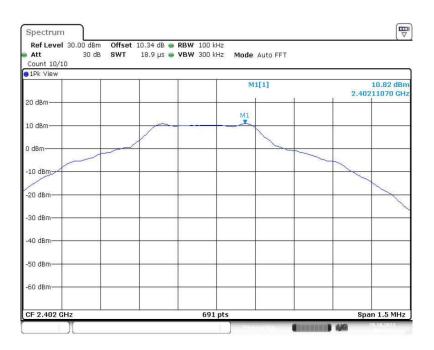
Fig. 12 Band Edges (8DPSK, CH78, Hopping ON)

A.3 Conducted Emission

Method of Measurement: See ANSI C63.10-clause 7.8.8.

Measurement Limit:

Standard	Limit (dBm)
FCC 47 CEB Dort 15 247 (d)	20dBm below peak output power in 100kHz
FCC 47 CFR Part 15.247 (d)	bandwidth


Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.13	Р
	0	30MHz -1GHz	Fig.14	Р
		1GHz-26.5GHz	Fig.15	Р
-		2.441 GHz	Fig.16	Р
GFSK	39	30MHz -1GHz	Fig.17	Р
		1GHz-26.5GHz	Fig.18	Р
-		2.480 GHz	Fig.19	Р
	78	30MHz -1GHz	Fig.20	Р
		1GHz-26.5GHz	Fig.21	Р
		2.402 GHz	Fig.22	Р
	0	30MHz -1GHz	Fig.23	Р
		1GHz-26.5GHz	Fig.24	Р
—(4		2.441 GHz	Fig.25	Р
π/4 DQPSK	39	30MHz -1GHz	Fig.26	Р
DQPSK		1GHz-26.5GHz	Fig.27	Р
-		2.480 GHz	Fig.28	Р
	78	30MHz -1GHz	Fig.29	Р
		1GHz-26.5GHz	Fig.30	Р
		2.402 GHz	Fig.31	Р
	0	30MHz -1GHz	Fig.32	Р
		1GHz-26.5GHz	Fig.33	Р
-		2.441 GHz	Fig.34	Р
8DPSK	39	30MHz -1GHz	Fig.35	Р
		1GHz-26.5GHz	Fig.36	Р
		2.480 GHz	Fig.37	Р
	78	30MHz -1GHz	Fig.38	Р
		1GHz-26.5GHz	Fig.39	Р

See below for test graphs.

Conclusion: Pass

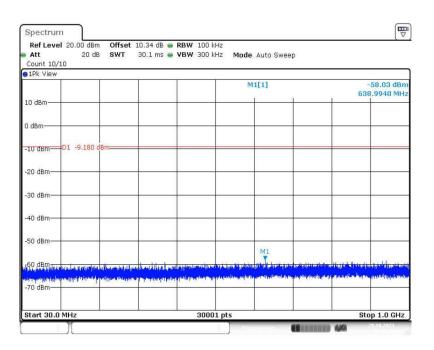
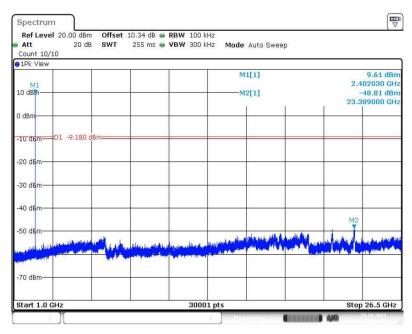



Fig. 14 Conducted Spurious Emission (GFSK, CH0, 30MHz -1GHz)

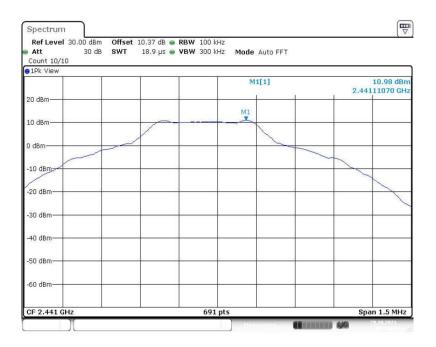


Fig. 16 Conducted Spurious Emission (GFSK, CH39, 2.441GHz)

		T		M1[1]			58.18 dBr
0 dBm	_				-	75.	5.0350 MH
l dBm							
10 dBm-01 -9.02	0 dBm						
20 dBm							
30 dBm				e-			
40 dBm							
50 dBm	-						
60 dBm			_		M1		

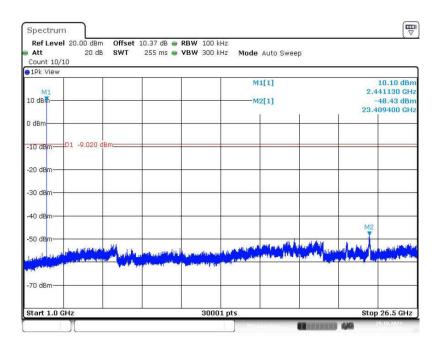
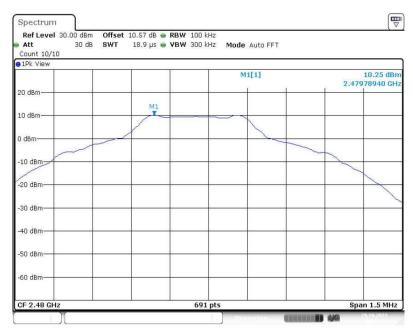



Fig. 18 Conducted Spurious Emission (GFSK, CH39, 1GHz-26.5GHz)

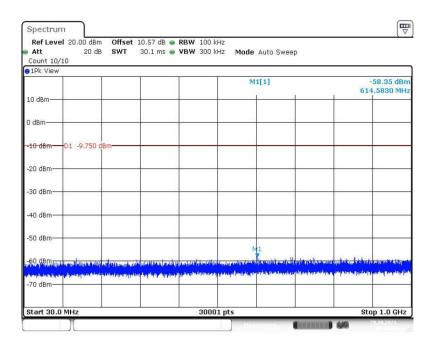


Fig. 20 Conducted Spurious Emission (GFSK, CH78, 30MHz -1GHz)

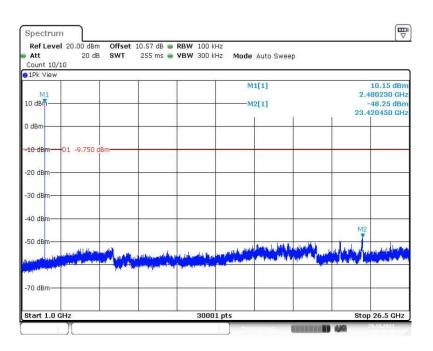


Fig. 21 Conducted Spurious Emission (GFSK, CH78, 1GHz-26.5GHz)

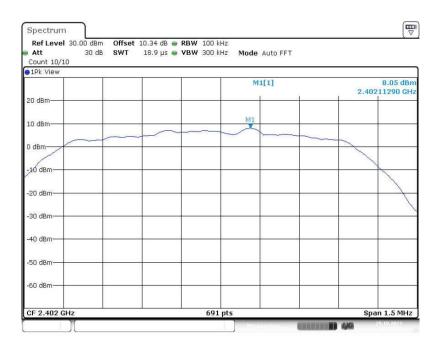


Fig. 22 Conducted Spurious Emission (π/4 DQPSK, CH0, 2.402GHz)

					M	1[1]			58.59 dB
0 dBm								939	.8460 MI
dBm				-					
10 dBm-01	-11.950 dB	Im		2					
20 dBm									
30 dBm			<u>.</u>	1		Q.6			
40 dBm									
50 dBm									M1
							and an instantion of the last		-

Fig. 23 Conducted Spurious Emission (π/4 DQPSK, CH0, 30MHz -1GHz)

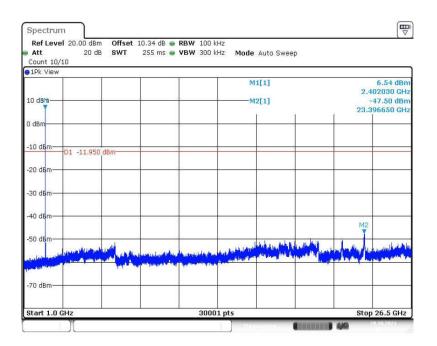
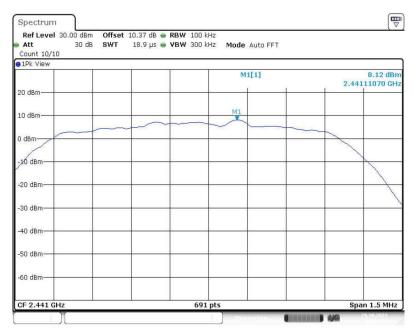



Fig. 24 Conducted Spurious Emission (π/4 DQPSK, CH0, 1GHz-26.5GHz)

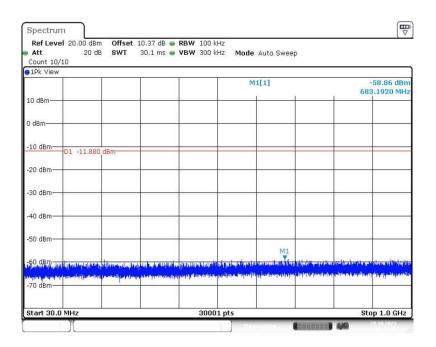


Fig. 26 Conducted Spurious Emission (π/4 DQPSK, CH39, 30MHz -1GHz)

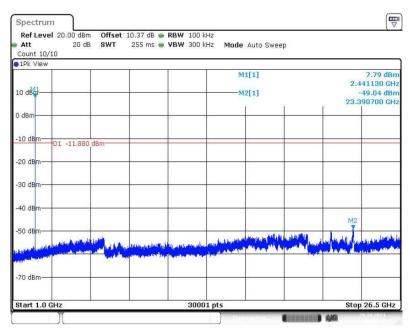


Fig. 27 Conducted Spurious Emission (π/4 DQPSK, CH39, 1GHz-26.5GHz)

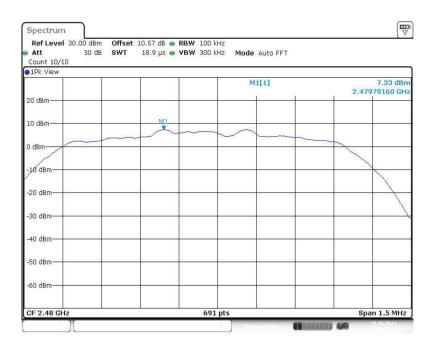


Fig. 28 Conducted Spurious Emission (π/4 DQPSK, CH78, 2.480GHz)

			Ĩ	M1[1]	-58.24 dB		
0 dBm				1	906.86	/U MF	
dBm		-					
10 dBm-01	-12.670_dBm						
20 dBm							
30 dBm							
40 dBm		-					
50 dBm							
		a	and the state		terror dis all discount		

Fig. 29 Conducted Spurious Emission (π/4 DQPSK, CH78, 30MHz -1GHz)

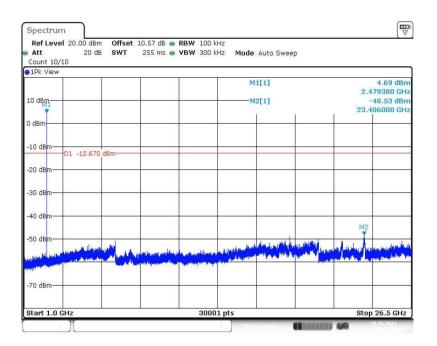
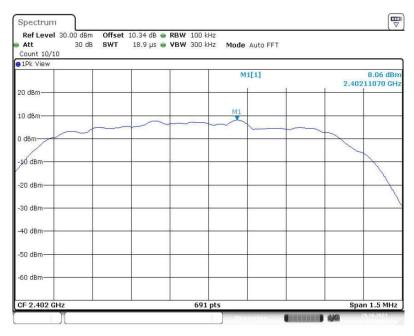



Fig. 30 Conducted Spurious Emission (π/4 DQPSK, CH78, 1GHz-26.5GHz)

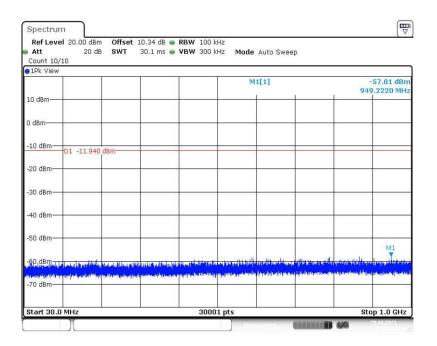
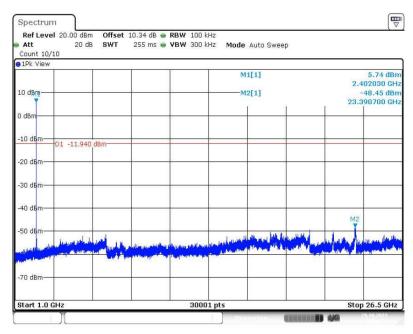



Fig. 32 Conducted Spurious Emission (8DPSK, CH0, 30MHz -1GHz)



Fig. 34 Conducted Spurious Emission (8DPSK, CH39, 2.441GHz)

I					IV	11[1]		-57.59 dB		
0 dBm								69	1.6960 MI	
dBm			-							
	01 -11.880	dBm							-	
20 dBm										
30 dBm				4 a		1 ²				
10 dBm										
50 dBm			_							
_				10.00		M1				
						AND IN CONTRACTOR				

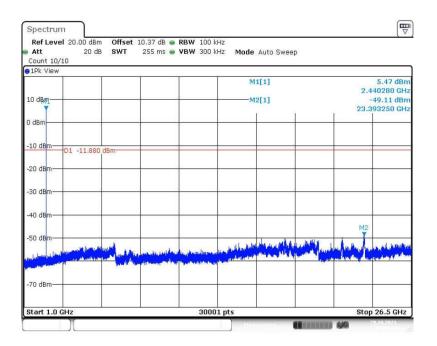
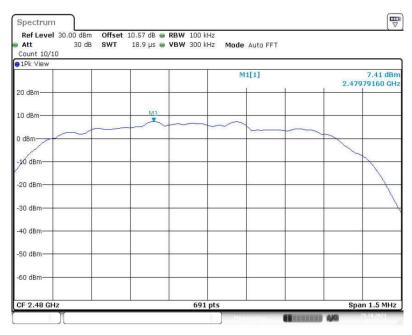



Fig. 36 Conducted Spurious Emission (8DPSK, CH39, 1GHz-26.5GHz)

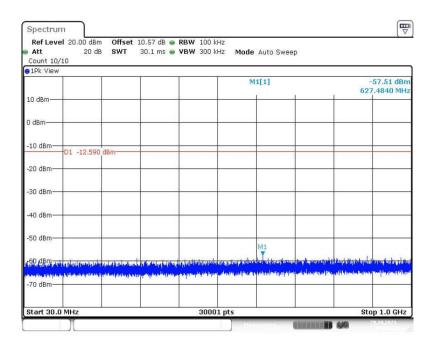


Fig. 38 Conducted Spurious Emission (8DPSK, CH78, 30MHz -1GHz)

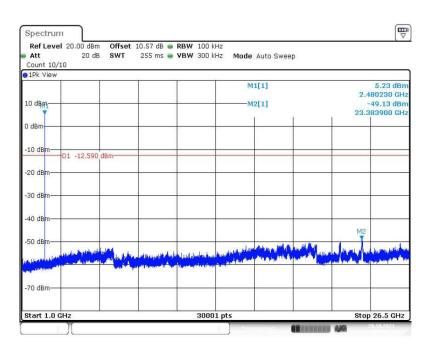


Fig. 39 Conducted Spurious Emission (8DPSK, CH78, 1GHz-26.5GHz)

A.4 Radiated Emission

Method of Measurement: See ANSI C63.10-clause 6.3.

Measurement Limit:

Standard	Limit (dBm)	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dBm below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Frequency of emission (MHz)	Field strength(µV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Limit in restricted band:

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~18 GHz	Fig.40	Р
	39	1 GHz ~18 GHz	Fig.41	Р
GFSK	78	1 GHz ~18 GHz	Fig.42	Р
	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.43	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.44	Р
	0	1 GHz ~18 GHz	Fig.45	Р
π/4	39	1 GHz ~18 GHz	Fig.46	Р
DQPSK	78	1 GHz ~18 GHz	Fig.47	Р
DQFSN	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.48	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.49	Р
	0	1 GHz ~18 GHz	Fig.50	Р
	39	1 GHz ~18 GHz	Fig.51	Р
8DPSK	78	1 GHz ~18 GHz	Fig.52	Р
	Restricted Band (CH0)	2.38 GHz ~ 2.45 GHz	Fig.53	Р
	Restricted Band (CH78)	2.45 GHz ~ 2.5 GHz	Fig.54	Р
		9 kHz ~30 MHz	Fig.55	Р
/	All channels	30 MHz ~1 GHz	Fig.56	Р
		18 GHz ~26.5 GHz	Fig.57	Р

Worst Case Result GFSK CH39 (1-18GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2966.000000	45.5	74.0	28.5	Н	9.0
5022.000000	39.0	74.0	35.0	Н	-8.9
7291.200000	45.2	74.0	28.8	V	-1.7
11379.600000	47.4	74.0	26.6	V	1.5
14817.200000	51.1	74.0	22.9	Н	6.4
17985.200000	54.4	74.0	19.6	Н	14.1

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2966.000000	32.6	54.0	21.4	Н	9.0
5022.000000	26.0	54.0	28.0	Н	-8.9
7291.200000	32.1	54.0	21.9	V	-1.7
11379.600000	34.4	54.0	19.6	V	1.5
14817.200000	38.6	54.0	15.4	Н	6.4
17985.200000	42.9	54.0	11.1	Н	14.1

π/4 DQPSK CH39 (1-18GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
. ,	,	,	. ,		
2951.200000	45.5	74.0	28.5	Н	9.0
3920.100000	36.3	74.0	37.7	V	-12.4
4996.200000	38.5	74.0	35.5	V	-8.6
7319.200000	43.3	74.0	30.7	V	-1.7
14424.800000	49.4	74.0	24.6	V	5.6
17976.800000	54.4	74.0	19.6	Н	14.3

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2951.200000	34.1	54.0	19.9	Н	9.0
3920.100000	23.6	54.0	30.4	V	-12.4
4996.200000	25.9	54.0	28.1	V	-8.6
7319.200000	31.5	54.0	22.5	V	-1.7
14424.800000	37.8	54.0	16.2	V	5.6
17976.800000	42.7	54.0	11.3	Н	14.3

8DPSK CH39 (1-18GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2956.000000	45.1	74.0	28.9	Н	9.0
3912.900000	36.0	74.0	38.0	Н	-12.5
4717.200000	38.3	74.0	35.7	Н	-9.3
6256.000000	40.5	74.0	33.5	V	-6.0
14807.600000	51.6	74.0	22.4	V	6.5
17988.400000	54.9	74.0	19.1	V	14.1

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2956.000000	33.3	54.0	20.7	Н	9.0
3912.900000	23.4	54.0	30.6	Н	-12.5
4717.200000	25.2	54.0	28.8	Н	-9.3
6256.000000	27.5	54.0	26.5	V	-6.0
14807.600000	39.3	54.0	14.7	V	6.5
17988.400000	42.8	54.0	11.2	V	14.1

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument. The measurement results are obtained as described below:

Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.

See below for test graphs.

Conclusion: Pass

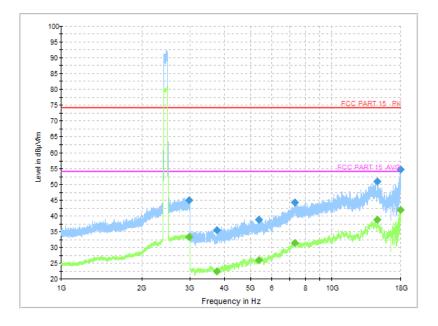


Fig. 40 Radiated Spurious Emission (GFSK, CH0, 1 GHz ~18 GHz)

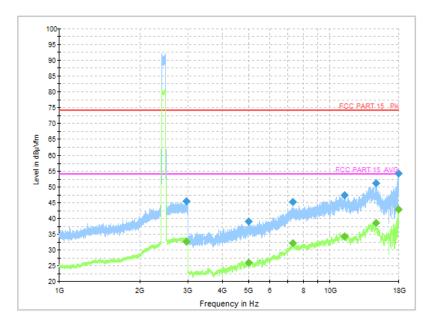


Fig. 41 Radiated Spurious Emission (GFSK, CH39, 1 GHz ~18 GHz)

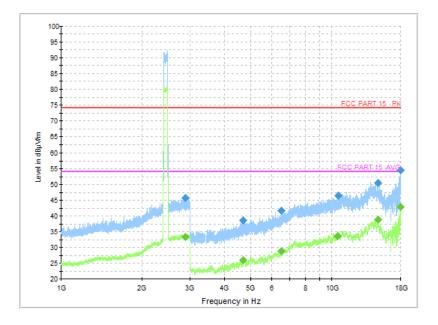


Fig. 42 Radiated Spurious Emission (GFSK, CH78, 1 GHz ~18 GHz)

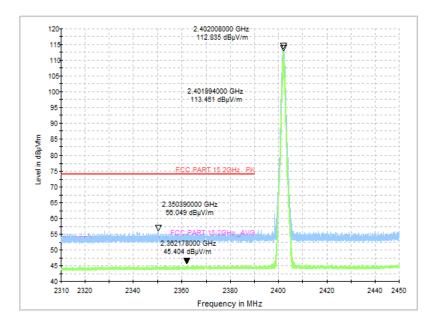


Fig. 43 Radiated Band Edges (GFSK, CH0, 2380GHz~2450GHz)

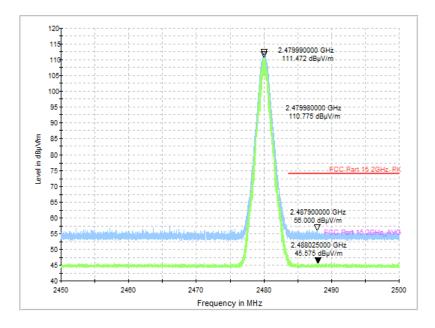


Fig. 44 Radiated Band Edges (GFSK, CH78, 2450GHz~2500GHz)

Fig. 45 Radiated Spurious Emission (π/4 DQPSK, CH0, 1 GHz ~18 GHz)

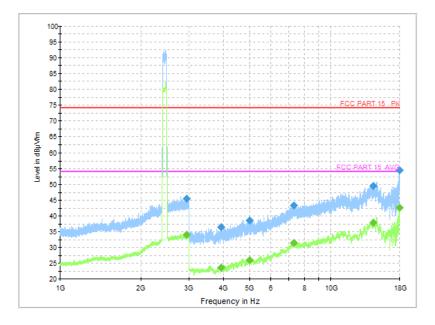


Fig. 46 Radiated Spurious Emission (π/4 DQPSK, CH39, 1 GHz ~18 GHz)

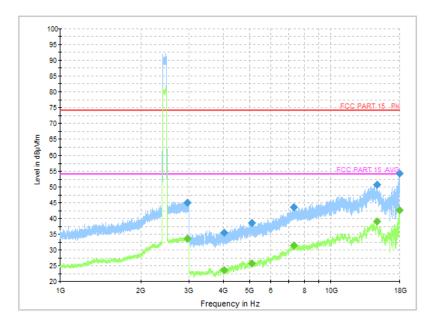


Fig. 47 Radiated Spurious Emission (π/4 DQPSK, CH78, 1 GHz ~18 GHz)

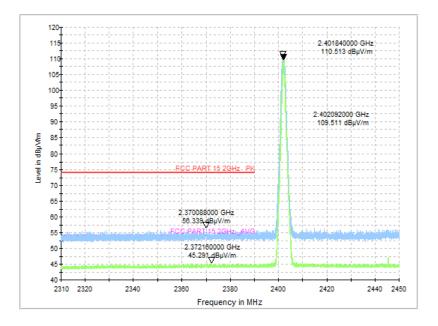


Fig. 48 Radiated Band Edges (π/4 DQPSK, CH0, 2380GHz~2450GHz)

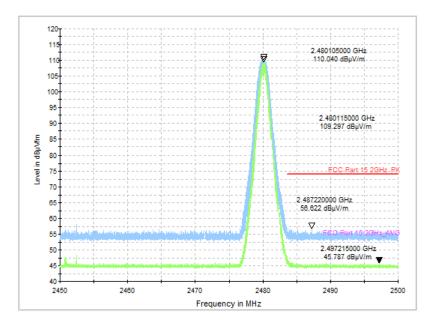


Fig. 49 Radiated Band Edges (π/4 DQPSK, CH78, 2450GHz~2500GHz)

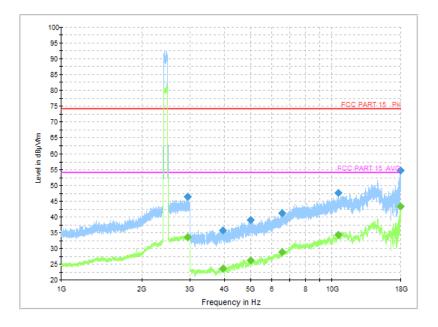


Fig. 50 Radiated Spurious Emission (8DPSK, CH0, 1 GHz ~18 GHz)

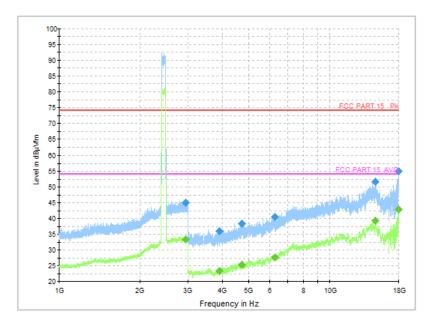


Fig. 51 Radiated Spurious Emission (8DPSK, CH39, 1 GHz ~18 GHz)

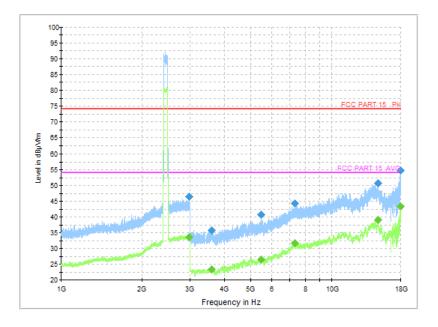


Fig. 52 Radiated Spurious Emission (8DPSK, CH78, 1 GHz ~18 GHz)

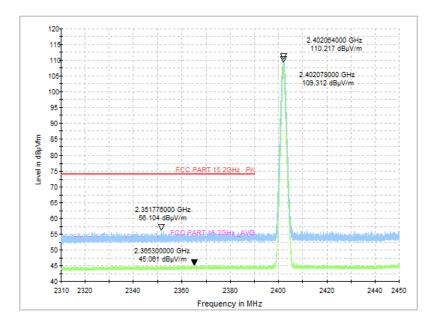


Fig. 53 Radiated Band Edges (8DPSK, CH0, 2380GHz~2450GHz)

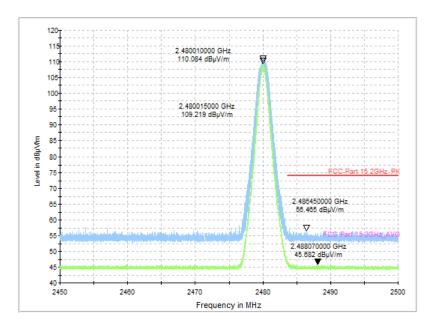


Fig. 54 Radiated Band Edges (8DPSK, CH78, 2450GHz~2500GHz)

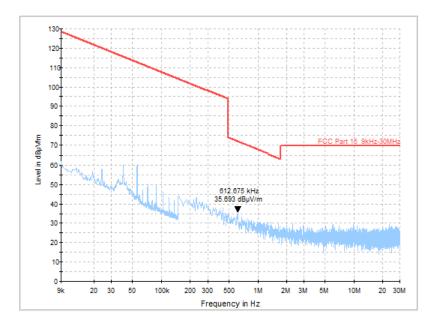


Fig. 55 Radiated Spurious Emission (All Channels, 9 kHz ~30 MHz)

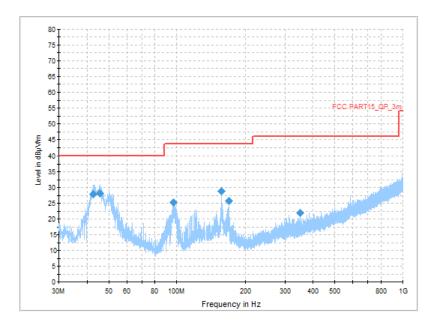


Fig. 56 Radiated Spurious Emission (All Channels, 30 MHz ~1 GHz)

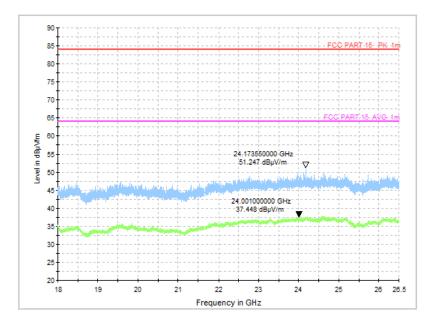


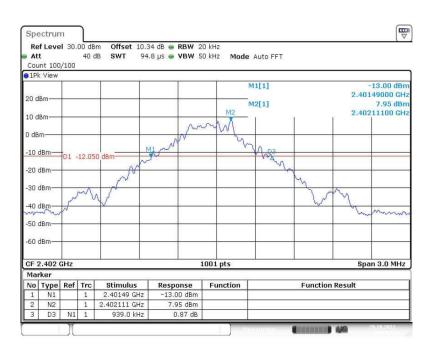
Fig. 57 Radiated Spurious Emission (All Channels, 18 GHz ~26.5 GHz)

A.5 20dB Bandwidth

Method of Measurement: See ANSI C63.10-clause 7.8.7.

Measurement Limit:

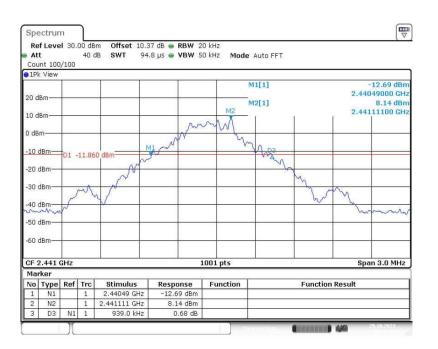
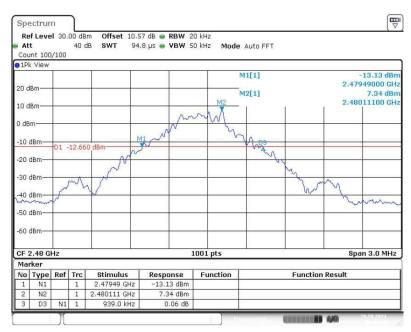
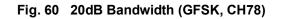
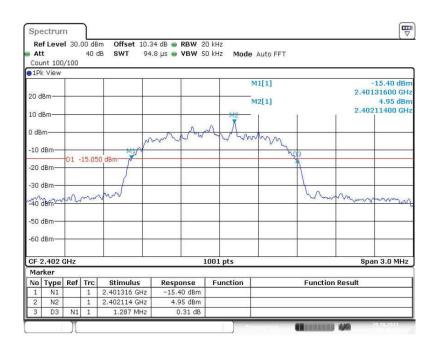
Standard	Limit (kHz)	
FCC 47 CFR Part 15.247 (a)	/	

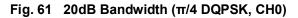

Measurement Result:

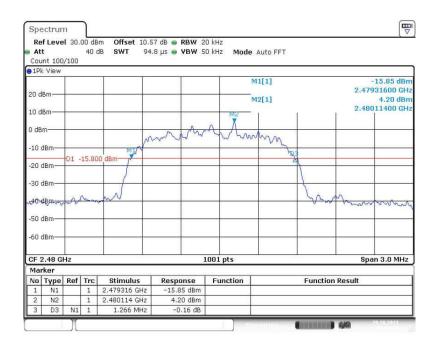
Mode	Channel	20dB Bandwidth (kHz)		Conclusion
	0	Fig.58	940.00	
GFSK	39	Fig.59	940.00	/
	78	Fig.60	940.00	
	0	Fig.61	1290.00	
π/4 DQPSK	39	Fig.62	1290.00	/
	78	Fig.63	1270.00	
	0	Fig.64	1270.00	
8DPSK	39	Fig.65	1270.00	/
	78	Fig.66	1270.00	

See below for test graphs.

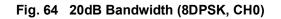
Conclusion: PASS


Fig. 59 20dB Bandwidth (GFSK, CH39)



At	f Leve t nt 100		00 dB 40 d		7 dB 👄 RBW 21 8 µs 👄 VBW 51		Auto FFT		(Ę
20 d							M1[1] M2[1]		-15.34 dB 2.44031600 GF 5.00 dB 2.44111400 GF
0 dB				~	man.	A A	M		
-10 d		D1 -	15.00	IO dBm			103		
	lBm−−− Ĵ <mark>Brn∿∽∽</mark>	m	r~r	m				m	Lannan
-50 d	dBm	-							
-60 0	dBm	-							
-	2.441 (GHz			1	001 pts			Span 3.0 MH:
Mar	ker Type	Ref	Trc	Stimulus	Response	Function	FI	unction Re	sult
1	N1		1	2.440316 GHz	-15.34 dBm				
2	N2		1	2.441114 GHz	5.00 dBm				
3	D3	N1	1	1.287 MHz	0.31 dB				



At	f Leve t nt 100		00 dB 40 d		34 dB 💿 RBW 21 4.8 µs 💿 VBW 51		e Auto FFT	
) 1 P	: View	1		1 1	1	1	M1[1]	-15.49 dE
	2						WILII	2,40130700 G
20 d	Bm					_	M2[1]	5.01 dE
10 d	8m					M2		2.40211400 G
						X		
0 dB	m			+ +	A	hardling	m	
	10			5	much	4.40	myn	
10 0	dBm	DI	14.00	0 dBm			03	
20 (dBm	DT -	14.99				4	
							N N	
-30 (iBm—							
AV	íBm-	no	nh	mm			v.	mann
10 1								
-50 (dBm	-						
-60 (10.00							
-60 (ism							
CF 2	.402 (GHz			1	.001 pts		Span 3.0 MH
Mar								
No	Туре	Ref	Trc	Stimulus	Response	Function	Fu	nction Result
1	N1		1	2.401307 GHz	-15.49 dBm			
2	N2		1	2.402114 GHz	5.01 dBm			
3	D3	N1	1	1.272 MHz	0.35 dB			



Fig. 65 20dB Bandwidth (8DPSK, CH39)

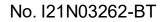
At	f Leve t nt 100		00 dB 40 d		7 dB 👄 RBW 2 8 µs 👄 VBW 5		Auto FFT	
	View	, 100				2		
						-	M1[1]	-15.67 dB/ 2.47930700 GF
20 d	Bm—	-					M2[1]	4.49 dB
10 d	Des						and and	2.48011100 GH
10 0	0111					1012	1 1	
0 dB	m				A	AA	4.0	
				A	man	m	unda	
-10 (dBm—			MAN	-	-	12 Martin	
	10	D1 -	15.51	0 dBm			2	
-20 (dBm						1	
-30 (dBm	_						
			~	m			1	0
-40-1	BRD-Th	w	Don	n n n				Most more more more more more more more more
100000								
-50 (aBm							
-60.	dBm							
CF 2	2.48 G	Hz			1	001 pts	-	Span 3.0 MH:
Mai	ker							
No	Туре	Ref	Trc	Stimulus	Response	Function	Fur	nction Result
1	N1		1	2.479307 GHz	-15.67 dBm			
2	N2		1	2.480111 GHz	4.49 dBm			
		N1	1	1.269 MHz	-0.20 dB			

Fig. 66 20dB Bandwidth (8DPSK, CH78)

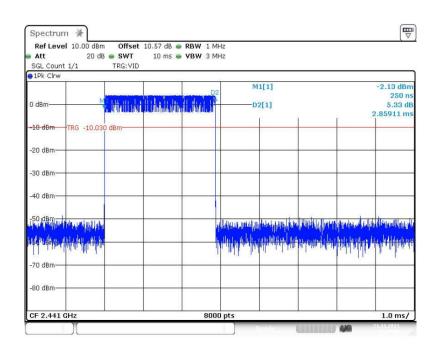
A.6 Time of Occupancy (Dwell Time)

Method of Measurement: See ANSI C63.10-clause 7.8.4.

Measurement Limit:


Standard	Limit (ms)			
FCC 47 CFR Part 15.247(a)	< 400			

Measurement Results:


Mode	Channel	Packet	Burst (m		Total (Nu	•	Result (ms)	Conclusion
GFSK	39	DH5	Fig.67	2.86	Fig.68	120	343.00	Р
π/4 DQPSK	39	2-DH5	Fig.69	2.87	Fig.70	120	344.00	Р
8DPSK	39	3-DH5	Fig.71	2.87	Fig.72	80	229.00	Р

See below for test graphs.

Conclusion: Pass

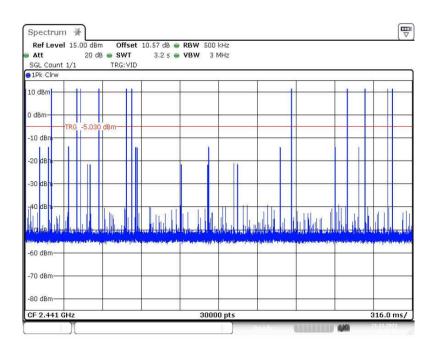


Fig. 68 Number of Burst in Observation Period (Dwell Time) (GFSK, CH39)

11[1] 2[1]	-2.02 dB -1.00 j
2[1]	-1.00 h
	1.32 0
~[~]	2.86911 n
Hole in the second with	at tables of a state
	and dam'r, ffi d ffi siry f
P. C.	
	1 1
	n fan fan fan fan fan fan fan fan fan fa

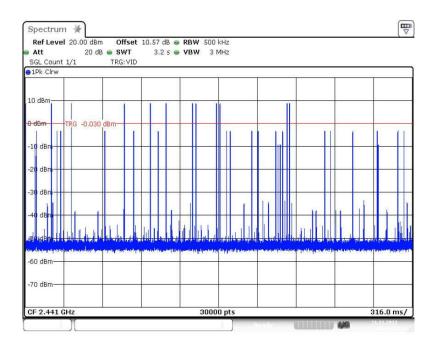
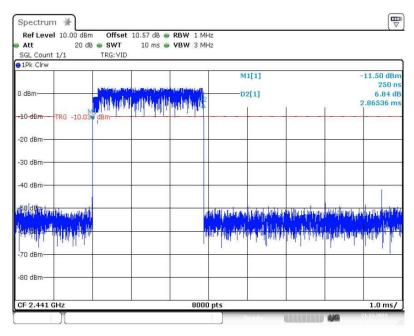



Fig. 70 Number of Burst in Observation Period (Dwell Time) (π /4 DQPSK, CH39)

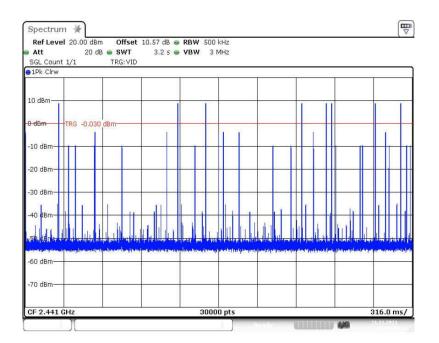


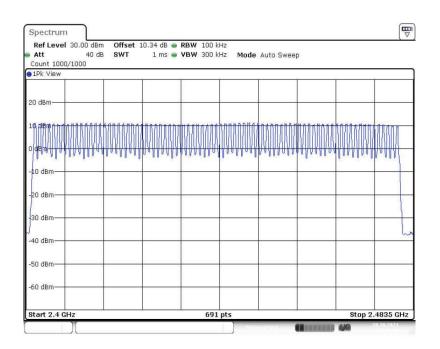
Fig. 72 Number of Burst in Observation Period (Dwell Time) (8DPSK, CH39)

A.7 Number of Hopping Channels

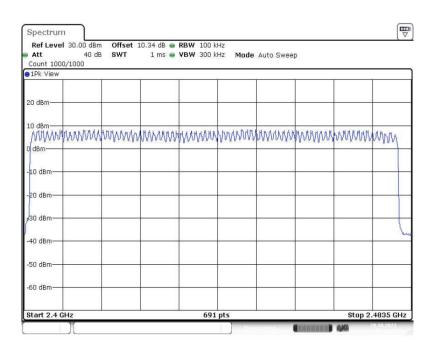
Method of Measurement: See ANSI C63.10-clause 7.8.3.

Measurement Limit:

Standard	Limit (Num)		
FCC 47 CFR Part 15.247(a)	At least 15 non-overlapping channels		


Measurement Results:

Mode	Packet	Number of Hopping Channels	Test results (Num)	Conclusion
GFSK	DH5	Fig.73	79	Р
π/4 DQPSK	2-DH5	Fig.74	79	Р
8DPSK	3-DH5	Fig.75	79	Р


See below for test graphs.

Conclusion: Pass

		.0.34 dB 🖷	RBW 100	(Hz					T I
	SWT	1 ms 👄	VBW 300 I	Hz Mode	Auto Swee	р			
71000		-		205		×.		~	-
									_
			~						_
WHMH.	winner	unun	HARAM	www.wr	ULWULV	mmm	MMMM	MANAN	
		-						94.1	-
									-
									4
									_
								<u> </u>	
Hz			(01				010	1005.01	
	40 de	40 dB SWT 1/1000 WUWUU, WUWWW	40 dB SWT 1 ms • 1/1000 WUWUU WUWUU WUWUU	40 dB SWT 1 ms • VBW 300 l 1 ms • VBW 300 l WUWUU WUUUU WUUUU WUUU	40 dB SWT 1 ms • VBW 300 kHz Mode 1/1000	40 dB SWT 1 ms VBW 300 kHz Mode Auto Swee //1000	40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep //1000	40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep //1000	40 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep //1000

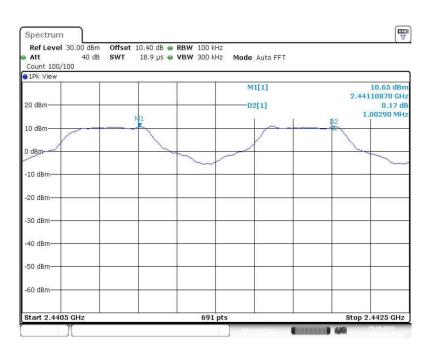
Fig. 75 Number of Hopping Channels (8DPSK, Hopping)

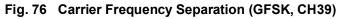
A.8 Carrier Frequency Separation

Method of Measurement: See ANSI C63.10-clause 7.8.2.

Measurement Limit:

Standard	Limit
	By a minimum of 25 kHz or two-thirds of the 20 dB
FCC 47 CFR Part 15.247(a)	bandwidth of the hopping channel, whichever is
	greater


Measurement Results:


Mode	Channel	Packet	Separation of hopping channels	Test result (kHz)	Conclusion
GFSK	39	DH5	Fig.76	1003.00	Р
π/4 DQPSK	39	2-DH5	Fig.77	1000.00	Р
8DPSK	39	3-DH5	Fig.78	1000.00	Р

See below for test graphs.

Conclusion: Pass

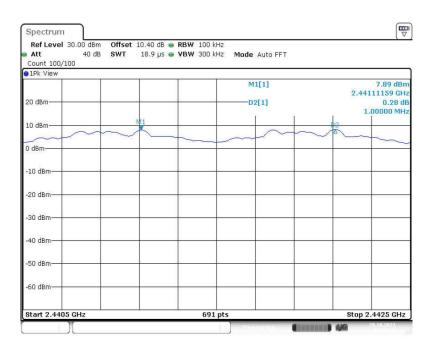


Fig. 77 Carrier Frequency Separation ($\pi/4$ DQPSK, CH39)

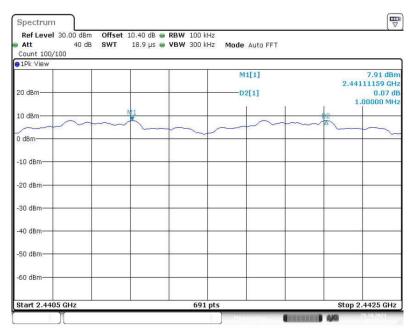


Fig. 78 Carrier Frequency Separation (8DPSK, CH39)

A.9 AC Power line Conducted Emission

Method of Measurement: See ANSI C63.10-clause 6.2

Test Condition:

Voltage (V)	Frequency (Hz)		
120	60		

Measurement Result and limit:

BT-AE2, AE3, AE4

Frequency range	Quasi-peak	Average-peak	Result (dBµV) Traffic Idle		Conclusion		
(MHz)	Limit (dBμV)	Limit (dBμV)					
0.15 to 0.5	66 to 56	56 to 46					
0.5 to 5	56	46	Fig.79	Fig.80	Р		
5 to 30	60	50					
NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15							
MHz to 0.5 MHz.							

Note: The measurement results include the L1 and N measurements.

See below for test graphs. Conclusion: Pass

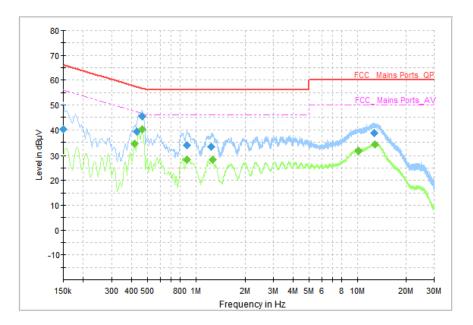


Fig. 79 AC Power line Conducted Emission (Traffic)

Frequency	Quasi Peak	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)	Line		(dB)
0.150000	40.24	66.00	25.76	L1	ON	10
0.430000	39.35	57.25	17.90	N	ON	10
0.466000	45.39	56.59	11.20	L1	ON	10
0.878000	33.81	56.00	22.19	L1	ON	10
1.250000	33.19	56.00	22.81	L1	ON	10
12.674000	38.61	60.00	21.39	Ν	ON	10

Measurement Results: Quasi Peak

Measurement Results: Average

Frequency (MHz)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.414000	34.57	47.57	13.00	L1	ON	10
0.462000	40.26	46.66	6.40	Ν	ON	10
0.882000	28.28	46.00	17.72	Ν	ON	10
1.270000	28.38	46.00	17.62	L1	ON	10
10.102000	31.60	50.00	18.40	Ν	ON	10
12.906000	34.21	50.00	15.79	L1	ON	10

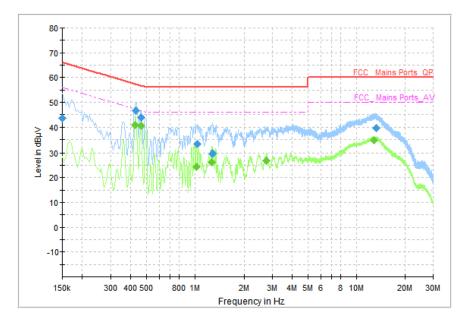


Fig. 80 AC Power line Conducted Emission (Idle)

Frequency	Quasi Peak	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)	Line		(dB)
0.150000	43.73	66.00	22.27	N	ON	10
0.430000	46.55	57.25	10.70	L1	ON	10
0.434000	43.85	57.18	13.32	L1	ON	10
1.034000	33.27	56.00	22.73	L1	ON	10
1.286000	29.50	56.00	26.50	L1	ON	10
13.326000	39.78	60.00	20.22	Ν	ON	10

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	ne Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.426000	41.00	47.33	6.33	Ν	ON	10
0.462000	40.45	46.66	6.21	L1	ON	10
1.022000	24.29	46.00	21.71	Ν	ON	10
1.278000	26.16	46.00	19.84	Ν	ON	10
2.758000	26.93	46.00	19.07	Ν	ON	10
12.898000	34.77	50.00	15.23	Ν	ON	10

END OF REPORT