

Fig.101 Conducted Spurious Emission (Center Frequency, 802.11ax-HE20, CH1)

Fig.102 Conducted Spurious Emission (30MHz -1GHz, 802.11ax-HE20, CH1)

Fig.103 Conducted Spurious Emission (1GHz-26.5GHz, 802.11ax-HE20, CH1)

Fig.104 Conducted Spurious Emission (Center Frequency, 802.11ax-HE20, CH6)

IPk View M1[1] -56.17 d 10 dBm 918.5390 h 918.5390 h 0 dBm 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm 10 dBm 10 dBm -20 dBm 10 dBm 10 dBm 10 dBm -30 dBm 10 dBm 10 dBm 10 dBm -20 dBm 10 dBm 10 dBm 10 dBm -20 dBm 10 dBm 10 dBm 10 dBm -30 dBm 10 dBm 10 dBm 10 dBm -50 dBm 10 dBm 10 dBm 10 dBm -50 dBm 10 dBm 10 dBm 10 dBm -50 dBm 10 dBm 10 dBm 10 dBm -70 dBm 10 dBm 10 dBm 10 dBm 10 dBm -70 dBm 10 dBm 10 dBm 10 dBm 10 dBm -70 dBm 10 dBm 10 dBm <	Count 10/	20 de 10	SWI	30.1 ms 🖷	ARM 300 K	HZ Mode	Auto Swee	p		
10 dBm	1Pk View			10		м	1[1]		910	-56.17 dBn
0 dBm	10 dBm	-		-						
-10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -70	0 dBm									
O1 -15.900 dBm Image: Constraint of the const	-10 dBm—								-	
-30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	-20 dBm	D1 -15.900	dBm-	- 1						
-40 dBm -50 dB	-30 dBm			N						
-50 dBm 	-40 dBm—									
	-50 dBm—	-				-				M1
<mark>ունը նուր ավորություն անվար վերա չուս կ</mark> անգույն են ուրչներ մեր ներ նանգերու որ դրանգեր առաջիստեն էլ թանանար վերանու -70 dBm —	60 H8mm	a mangana bay	W Hind, Hander	an level and start	a that fill the state of the first	-	welle known at	- topologically		-
	-70 dBm	A surface the space	waajilaanaa	na ng panguna ka sa	- Participation - And	lannanna ad	UNICE SUPERIOR FOR	almont and the	Alexandro Bernikan	-Theorem

Fig.105 Conducted Spurious Emission (30MHz -1GHz, 802.11ax-HE20, CH6)

Fig.106 Conducted Spurious Emission (1GHz-26.5GHz, 802.11ax-HE20, CH6)

Fig.107 Conducted Spurious Emission (Center Frequency, 802.11ax-HE20, CH11)

Fig.108 Conducted Spurious Emission (30MHz -1GHz, 802.11ax-HE20, CH11)

Fig.109 Conducted Spurious Emission (1GHz-26.5GHz, 802.11ax-HE20, CH11)

Fig.110 Conducted Spurious Emission (Center Frequency, 802.11n-HT40, CH3)

Att	N 20.00 dBn 20 dB	SWT	10.59 dB 🖷 30.1 ms 🖷	VBW 300 k	Hz Hz Mode	Auto Sweep	0		
Count 10/ 1Pk View	10								
					M	1[1]		910	-57.95 dBn 0.8440 MH
10 dBm	-					1			
0 dBm	-				5				
-10 dBm—									
20 d8m-	D1 -20.130	dBm							
-30 dBm			1				1		
-40 dBm—							· · · ·		
-50 d8m—	-								
-60,148,000	a photosome.	with the market area		a star stranday		entra de la competition de la	ing della signa	March Speleta La	histopeone
-70 dBm	and and a start of the start of	han an a	ad-adapteda an	international and the second	et etter en delpe	alaticitation for fore	uanalitika aktivata	1999,024 <mark>-(</mark> 1470-	and hege data and
Start 30.0	MHz			3000	1 nts			Sto	op 1.0 GHz

Fig.111 Conducted Spurious Emission (30MHz -1GHz, 802.11n-HT40, CH3)

Fig.112 Conducted Spurious Emission (1GHz-26.5GHz, 802.11n-HT40, CH3)

Fig.113 Conducted Spurious Emission (Center Frequency, 802.11n-HT40, CH6)

Fig.114 Conducted Spurious Emission (30MHz -1GHz, 802.11n-HT40, CH6)

Fig.115 Conducted Spurious Emission (1GHz-26.5GHz, 802.11n-HT40, CH6)

Fig.116 Conducted Spurious Emission (Center Frequency, 802.11n-HT40, CH9)

Count 10/1	20 ui	5 5W1	30.1 ms 🖷	VBW 300 K	H2 Mode	Auto Swee	9		
1Pk View			10		M	1[1]		36	58.15 dBn
10 dBm	·							/35	.0020 MP
0 dBm	-		-		5				-
-10 dBm									
-20 d8m	D1 -19.560	dBm							
-30 dBm			r.		8		-	-	-
-40 dBm									
-50 dBm			-		-				-
-60.48m	A dia La Mana	and the man		April London	dian the boly state	andraaday	mathilithe	duconde dia the	on ping the street
-70 dBm	anyar Proprinte.	unanya k ista na	ner födlander k	and the second secon	the part of the second s	ang pagpalison (p	a fisial a second	a le foi e constante	alimanin fighter
Ot	MH7			3000	1 nts			Sto	n 1.0 GHz

Fig.117 Conducted Spurious Emission (30MHz -1GHz, 802.11n-HT40, CH9)

Fig.118 Conducted Spurious Emission (1GHz-26.5GHz, 802.11n-HT40, CH9)

Fig.119 Conducted Spurious Emission (Center Frequency, 802.11-VHT40, CH3)

Fig.120 Conducted Spurious Emission (30MHz -1GHz, 802.11-VHT40, CH3)

Fig.121 Conducted Spurious Emission (1GHz-26.5GHz, 802.11-VHT40, CH3)

Fig.122 Conducted Spurious Emission (Center Frequency, 802.11-VHT40, CH6)

Ref Leve	al 20.00 dBm 20 dB	Offset	10.57 dB 🖷	RBW 100 k VBW 300 k	Hz Hz Mode	Auto Sween			
Count 10/	10					nate anteop			
1Pk View	-					1.11			F2 02 d0.
					(M	1[1]		788	.1430 MH
10 dBm	-		-						
0 dBm									
-10 dBm—									
	-D1 -16.380	dBm							
-20 dBm			1						
-30 dBm—									
-40 dBm—									
-50 dBm—									
-60 dBm	all de la Mar	and the state	to the heat of	Andanking	and and and the	-	MI	the photos of the	alun alu
Street and a street of a	and the second second	(and the second	Property and a second second	A.L. PROPERTY	-	antore in the sector	and the second second	reading being	-
-70 dBm—									
Start 20.0	MH7			3000	1 nts			Sto	n 1 0 GHz

Fig.123 Conducted Spurious Emission (30MHz -1GHz, 802.11-VHT40, CH6)

Fig.124 Conducted Spurious Emission (1GHz-26.5GHz, 802.11-VHT40, CH6)

Fig.125 Conducted Spurious Emission (Center Frequency, 802.11-VHT40, CH9)

Fig.126 Conducted Spurious Emission (30MHz -1GHz, 802.11-VHT40, CH9)

Fig.127 Conducted Spurious Emission (1GHz-26.5GHz, 802.11-VHT40, CH9)

Fig.128 Conducted Spurious Emission (Center Frequency, 802.11ax-HE40, CH3)

Att	20 dB	SWT	30.1 ms 🖷	VBW 300 k	Hz Mode	Auto Sweej	P		
1Pk View	10								
	1.		ιė.		M	1[1]		070	58.11 dBn
10 dBm			-	-		l	-	976	.3210 MH
0 d8m									
-10 dBm—									
-20 dBm—	D1 -18.120	dBm							
-30 dBm—			<u>.</u>		-				
-40 dBm									
-50 dBm—									(285
F6D dBm		el lan ell'aire	A 2004 Alts at as	a a The protocol is well	a tillion the further	and the second second	- fortwale at	-	M1.
-70 dBm-	hang parties, and his first	and be a low and	u dan samu san	applezz-denipates a	e ben datum ben har fallen er	by a first free particular	an en	particular second base	lan hanaran
0t+ 00 f	MUT			2000	1 ntc			Pto	n 1 0 CHz

Fig.129 Conducted Spurious Emission (30MHz -1GHz, 802.11ax-HE40, CH3)

Fig.130 Conducted Spurious Emission (1GHz-26.5GHz, 802.11ax-HE40, CH3)

Fig.131 Conducted Spurious Emission (Center Frequency, 802.11ax-HE40, CH6)

Fig.132 Conducted Spurious Emission (30MHz -1GHz, 802.11ax-HE40, CH6)

Fig.133 Conducted Spurious Emission (1GHz-26.5GHz, 802.11ax-HE40, CH6)

Fig.134 Conducted Spurious Emission (Center Frequency, 802.11ax-HE40, CH9)

Att	20.00 dBm 20 dB	SWT	30.1 ms 🖷	VBW 300 k	Hz Mode	Auto Sweej	P		
10/10 Phy View	1								
			10		м	1[1]		0.44	58.27 dBn
10 dBm			-				-	042	12070 MP
0 dBm		-	14		1		-		-
-10 dBm									
-20 dBm (01 -19.800	dBm-							
-30 dBm			Ċ.		ð				
-40 dBm									
-50 dBm									
-60 d8m	daamaanaa	and and the	all far line in the star	-	human	-	and the second started at	MI	All Andrew
-70 dBm	alitetetetetetetetetetetetetetetetetetete	n) Alternation	a seath dalamada	nyanya kanan kapatan	Ang paraticular	and a straight of a	allen entitienten	dalate entrance.	notes not the
Ob + 20.0 A	411-7			2000	1 ntc			Pto	n 1 0 CHz

Fig.135 Conducted Spurious Emission (30MHz -1GHz, 802.11ax-HE40, CH9)

Fig.136 Conducted Spurious Emission (1GHz-26.5GHz, 802.11ax-HE40, CH9)

A.6 Radiated Emission

Method of Measurement: See ANSI C63.10-clause 11.11&11.12

Measurement Limit:

Standard	Limit (dBm)
FCC 47 CFR Part 15.247, 15.205, 15.209	20dBm below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength(µV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note:

According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band below 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic.

The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

SISO:

Mode	Channel	Frequency Range	Test Results	Conclusion
	CH 1	1 GHz ~18 GHz	Fig.137	Р
	CH 6	1 GHz ~18 GHz	Fig.138	Р
802.11b	CH 11	1 GHz ~18 GHz	Fig.139	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.140	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.141	Р
	CH 1	1 GHz ~18 GHz	Fig.142	Р
	CH 6	1 GHz ~18 GHz	Fig.143	Р
802.11g	CH 11	1 GHz ~18 GHz	Fig.144	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.145	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.146	Р
	CH 1	1 GHz ~18 GHz	Fig.147	Р
000 44.	CH 6	1 GHz ~18 GHz	Fig.148	Р
HT20	CH 11	1 GHz ~18 GHz	Fig.149	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.150	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.151	Р
	CH 1	1 GHz ~18 GHz	Fig.152	Р
000.44	CH 6	1 GHz ~18 GHz	Fig.153	Р
VHT20	CH 11	1 GHz ~18 GHz	Fig.154	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.155	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.156	Р
	CH 1	1 GHz ~18 GHz	Fig.157	Р
802 11ov	CH 6	1 GHz ~18 GHz	Fig.158	Р
002.11ax	CH 11	1 GHz ~18 GHz	Fig.159	Р
-HE20	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.160	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.161	Р
	CH 3	1 GHz ~18 GHz	Fig.162	Р
000 11m	CH 6	1 GHz ~18 GHz	Fig.163	Р
002.111- UT40	CH 9	1 GHz ~18 GHz	Fig.164	Р
11140	Restricted Band (CH3)	2.38 GHz ~ 2.45 GHz	Fig.165	Р
	Restricted Band (CH9)	2.45 GHz ~ 2.5 GHz	Fig.166	Р
	CH 3	1 GHz ~18 GHz	Fig.167	Р
802 11	CH 6	1 GHz ~18 GHz	Fig.168	Р
802.11- VHT40	CH 9	1 GHz ~18 GHz	Fig.169	Р
	Restricted Band (CH3)	2.38 GHz ~ 2.45 GHz	Fig.170	Р
	Restricted Band (CH9)	2.45 GHz ~ 2.5 GHz	Fig.171	Р
	CH 3	1 GHz ~18 GHz	Fig.172	Р
802 11ov	CH 6	1 GHz ~18 GHz	Fig.173	Р
_HE10	CH 9	1 GHz ~18 GHz	Fig.174	Р
-11240	Restricted Band (CH3)	2.38 GHz ~ 2.45 GHz	Fig.175	Р
	Restricted Band (CH9)	2.45 GHz ~ 2.5 GHz	Fig.176	Р

©Copyright. All rights reserved by SAICT.

		9 kHz ~30 MHz	Fig.177	Р
1	All Channels	30 MHz ~1 GHz	Fig.178	Р
		18 GHz ~26.5 GHz	Fig.179	Р

MIMO:

Mode	Channel	Frequency Range	Test Results	Conclusion
	CH 1	1 GHz ~18 GHz	Fig.180	Р
000 11-	CH 6	1 GHz ~18 GHz	Fig.181	Р
002.1111- UT20	CH 11	1 GHz ~18 GHz	Fig.182	Р
H120	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.183	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.184	Р
	CH 1	1 GHz ~18 GHz	Fig.185	Р
002.11	CH 6	1 GHz ~18 GHz	Fig.186	Р
802.11-	CH 11	1 GHz ~18 GHz	Fig.187	Р
VHIZU	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.188	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.189	Р
	CH 1	1 GHz ~18 GHz	Fig.190	Р
802.11ax -HE20	CH 6	1 GHz ~18 GHz	Fig.191	Р
	CH 11	1 GHz ~18 GHz	Fig.192	Р
	Restricted Band (CH1)	2.38 GHz ~ 2.45 GHz	Fig.193	Р
	Restricted Band (CH11)	2.45 GHz ~ 2.5 GHz	Fig.194	Р
802.11n- HT40	CH 3	1 GHz ~18 GHz	Fig.195	Р
	CH 6	1 GHz ~18 GHz	Fig.196	Р
	CH 9	1 GHz ~18 GHz	Fig.197	Р
	Restricted Band (CH3)	2.38 GHz ~ 2.45 GHz	Fig.198	Р
	Restricted Band (CH9)	2.45 GHz ~ 2.5 GHz	Fig.199	Р
	CH 3	1 GHz ~18 GHz	Fig.200	Р
002.11	CH 6	1 GHz ~18 GHz	Fig.201	Р
002.11- VUT40	CH 9	1 GHz ~18 GHz	Fig.202	Р
VIII40	Restricted Band (CH3)	2.38 GHz ~ 2.45 GHz	Fig.203	Р
	Restricted Band (CH9)	2.45 GHz ~ 2.5 GHz	Fig.204	Р
	CH 3	1 GHz ~18 GHz	Fig.205	Р
802.11ax -HE40	CH 6	1 GHz ~18 GHz	Fig.206	Р
	CH 9	1 GHz ~18 GHz	Fig.207	Р
	Restricted Band (CH3)	2.38 GHz ~ 2.45 GHz	Fig.208	Р
	Restricted Band (CH9)	2.45 GHz ~ 2.5 GHz	Fig.209	Р
		9 kHz ~30 MHz	Fig.210	Р
/	All Channels	30 MHz ~1 GHz	Fig.211	Р
		18 GHz ~26.5 GHz	Fig.212	Р

Worst-Case Result:

SISO:

802.11b CH11 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2940.800000	45.3	74.0	28.7	Н	8.8
3859.500000	36.6	74.0	37.4	Н	-12.8
5819.100000	39.8	74.0	34.2	Н	-7.2
8678.400000	43.9	74.0	30.1	Н	-1.9
14765.200000	51.0	74.0	23.0	Н	6.1
17978.400000	54.4	74.0	19.6	Н	14.3

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2940.800000	33.5	54.0	20.5	Н	8.8
3859.500000	23.0	54.0	31.0	Н	-12.8
5819.100000	27.4	54.0	26.6	Н	-7.2
8678.400000	31.5	54.0	22.5	Н	-1.9
14765.200000	38.1	54.0	15.9	Н	6.1
17978.400000	42.6	54.0	11.4	Н	14.3

802.11g CH1 (1GHz-18GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2926.400000	45.2	74.0	28.8	Н	8.6
3598.500000	36.2	74.0	37.8	Н	-13.2
4970.700000	38.4	74.0	35.6	Н	-8.9
7299.600000	43.9	74.0	30.1	Н	-1.5
14803.600000	51.2	74.0	22.8	V	6.5
17981.200000	55.2	74.0	18.8	Н	14.2

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2926.400000	33.2	54.0	20.8	Н	8.6
3598.500000	23.7	54.0	30.3	Н	-13.2
4970.700000	25.8	54.0	28.2	Н	-8.9
7299.600000	31.6	54.0	22.4	Н	-1.5
14803.600000	38.9	54.0	15.1	V	6.5
17981.200000	43.0	54.0	11.0	Н	14.2

802.11n-HT20 CH1 (1GHz-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB/m)
2941.200000	45.1	74.0	28.9	Н	8.8
3853.500000	35.5	74.0	38.5	V	-12.8
5895.000000	39.5	74.0	34.5	Н	-7.1
8890.800000	45.1	74.0	28.9	Н	-1.7
14790.400000	50.6	74.0	23.4	Н	6.4
17985.200000	55.4	74.0	18.6	V	14.1

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2941.200000	33.6	54.0	20.4	Н	8.8
3853.500000	22.5	54.0	31.5	V	-12.8
5895.000000	26.8	54.0	27.2	Н	-7.1
8890.800000	31.9	54.0	22.1	Н	-1.7
14790.400000	38.9	54.0	15.1	Н	6.4
17985.200000	43.5	54.0	10.5	V	14.1

802.11-VHT20 CH1 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2944.000000	45.6	74.0	28.4	V	8.8
3914.400000	36.5	74.0	37.5	V	-12.4
5559.000000	39.2	74.0	34.8	V	-8.0
10132.000000	46.6	74.0	27.4	Н	0.0
14819.600000	51.4	74.0	22.6	V	6.4
17972.000000	54.7	74.0	19.3	V	14.4

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2944.000000	33.2	54.0	20.8	V	8.8
3914.400000	23.2	54.0	30.8	V	-12.4
5559.000000	26.1	54.0	27.9	V	-8.0
10132.000000	33.2	54.0	20.8	Н	0.0
14819.600000	38.6	54.0	15.4	V	6.4
17972.000000	42.3	54.0	11.7	V	14.4

802.11ax-HE20 CH6 (1GHz-18GHz)

Frequency (MHz)	MaxPeak (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB/m)
2987.200000	45.1	74.0	28.9	V	8.9
3781.500000	36.1	74.0	37.9	Н	-12.5
5490.600000	39.2	74.0	34.8	Н	-8.0
7794.800000	43.5	74.0	30.5	Н	-2.5
14798.800000	52.1	74.0	21.9	Н	6.5
17985.200000	54.8	74.0	19.2	V	14.1

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2987.200000	33.6	54.0	20.4	V	8.9
3781.500000	22.5	54.0	31.5	Н	-12.5
5490.600000	26.9	54.0	27.1	Н	-8.0
7794.800000	30.4	54.0	23.6	Н	-2.5
14798.800000	39.0	54.0	15.0	Н	6.5
17985.200000	43.4	54.0	10.6	V	14.1

802.11n-HT40 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2954.400000	45.0	74.0	29.0	V	9.0
3566.100000	36.3	74.0	37.7	V	-13.1
5488.200000	39.6	74.0	34.4	V	-8.0
8579.600000	44.4	74.0	29.6	V	-1.9
14859.200000	52.0	74.0	22.0	V	6.1
17976.400000	54.7	74.0	19.3	Н	14.3

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2954.400000	34.1	54.0	19.9	V	9.0
3566.100000	23.4	54.0	30.6	V	-13.1
5488.200000	26.7	54.0	27.3	V	-8.0
8579.600000	31.4	54.0	22.6	V	-1.9
14859.200000	37.9	54.0	16.1	V	6.1
17976.400000	42.8	54.0	11.2	Н	14.3

802.11-VHT40 CH6 (1GHz-18GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2953.600000	44.7	74.0	29.3	Н	9.0
3587.700000	35.7	74.0	38.3	Н	-13.2
5000.100000	38.6	74.0	35.4	V	-8.6
9735.200000	46.0	74.0	28.0	V	-0.8
14794.400000	50.7	74.0	23.3	Н	6.5
17986.000000	54.8	74.0	19.2	Н	14.1

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2953.600000	33.6	54.0	20.4	Н	9.0
3587.700000	23.8	54.0	30.2	Н	-13.2
5000.100000	26.1	54.0	27.9	V	-8.6
9735.200000	32.9	54.0	21.1	V	-0.8
14794.400000	38.8	54.0	15.2	Н	6.5
17986.000000	43.4	54.0	10.6	Н	14.1

802.11ax-HE40 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2974.400000	44.5	74.0	29.5	V	9.0
3585.300000	36.0	74.0	38.0	V	-13.2
4766.100000	38.3	74.0	35.7	Н	-9.4
7302.000000	43.0	74.0	31.0	V	-1.6
14815.600000	50.5	74.0	23.5	Н	6.5
17988.400000	55.3	74.0	18.7	Н	14.1

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2974.400000	32.9	54.0	21.1	V	9.0
3585.300000	23.6	54.0	30.4	V	-13.2
4766.100000	25.6	54.0	28.4	Н	-9.4
7302.000000	31.6	54.0	22.4	V	-1.6
14815.600000	38.9	54.0	15.1	Н	6.5
17988.400000	43.0	54.0	11.0	Н	14.1

MIMO: 802.11n-HT20 CH6 (1GHz-18GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2970.400000	45.7	74.0	28.3	Н	9.0
4031.100000	36.8	74.0	37.2	V	-11.8
5505.900000	38.5	74.0	35.5	V	-8.0
7637.200000	43.9	74.0	30.1	V	-2.1
10960.000000	47.3	74.0	26.7	Н	1.6
17986.400000	54.8	74.0	19.2	V	14.1

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	FOI	(dB/m)
2970.400000	33.8	54.0	20.2	Н	9.0
4031.100000	24.0	54.0	30.0	V	-11.8
5505.900000	26.7	54.0	27.3	V	-8.0
7637.200000	30.9	54.0	23.1	V	-2.1
10960.000000	34.6	54.0	19.4	Н	1.6
17986.400000	43.2	54.0	10.8	V	14.1

802.11-VHT20 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2968.400000	45.0	74.0	29.0	V	9.0
3590.400000	35.9	74.0	38.1	Н	-13.2
5531.400000	39.2	74.0	34.8	Н	-8.0
9018.000000	44.4	74.0	29.6	V	-1.7
14836.800000	51.6	74.0	22.4	V	6.3
17978.800000	54.5	74.0	19.5	V	14.2

Frequency (MHz)	Average (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol	Corr. (dB/m)
2968 400000	33.1	54 0	20.9	V	9.0
2300.400000	55.1	54.0	20.3	v	3.0
3590.400000	23.8	54.0	30.2	Н	-13.2
5531.400000	26.4	54.0	27.6	Н	-8.0
9018.000000	31.9	54.0	22.1	V	-1.7
14836.800000	38.3	54.0	15.7	V	6.3
17978.800000	42.9	54.0	11.1	V	14.2

802.11ax-HE20 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(11112)	(ubµv/iii)	(ασμν/π)	(ub)		(ub/iii)
2962.000000	45.5	74.0	28.5	V	9.0
3918.000000	36.6	74.0	37.4	V	-12.4
6075.600000	39.9	74.0	34.1	Н	-6.4
8121.200000	43.8	74.0	30.2	V	-2.1
13658.000000	50.7	74.0	23.3	Н	3.9
17975.200000	54.9	74.0	19.1	Н	14.3

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2962.000000	33.3	54.0	20.7	V	9.0
3918.000000	24.0	54.0	30.0	V	-12.4
6075.600000	27.1	54.0	26.9	Н	-6.4
8121.200000	30.9	54.0	23.1	V	-2.1
13658.000000	36.4	54.0	17.6	Н	3.9
17975.200000	42.6	54.0	11.4	Н	14.3

802.11n-HT40 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2922.400000	44.5	74.0	29.5	V	8.6
3434.400000	36.0	74.0	38.0	V	-13.9
4976.700000	38.7	74.0	35.3	Н	-8.8
7193.600000	43.3	74.0	30.7	Н	-2.6
14794.000000	50.5	74.0	23.5	V	6.5
17973.600000	54.6	74.0	19.4	Н	14.3

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB/m)
2922.400000	33.4	54.0	20.6	V	8.6
3434.400000	22.6	54.0	31.4	V	-13.9
4976.700000	26.0	54.0	28.0	Н	-8.8
7193.600000	29.9	54.0	24.1	Н	-2.6
14794.000000	38.9	54.0	15.1	V	6.5
17973.600000	42.5	54.0	11.5	Н	14.3

802.11-VHT40 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	POI	(dB/m)
2998.000000	44.7	74.0	29.3	V	8.8
3584.400000	36.5	74.0	37.5	V	-13.2
5676.600000	38.8	74.0	35.2	Н	-7.4
8090.400000	44.2	74.0	29.8	V	-2.0
14794.000000	50.3	74.0	23.7	Н	6.5
17976.400000	54.9	74.0	19.1	V	14.3

Frequency	Average	Limit	Margin	Dol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	FOI	(dB/m)
2998.000000	33.4	54.0	20.6	V	8.8
3584.400000	23.6	54.0	30.4	V	-13.2
5676.600000	26.5	54.0	27.5	Н	-7.4
8090.400000	31.1	54.0	22.9	V	-2.0
14794.000000	38.8	54.0	15.2	Н	6.5
17976.400000	42.9	54.0	11.1	V	14.3

802.11ax-HE40 CH6 (1GHz-18GHz)

Frequency	MaxPeak	Limit	Margin	Dol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	POI	(dB/m)
2949.200000	45.5	74.0	28.5	V	9.0
3594.300000	35.9	74.0	38.1	Н	-13.2
5093.700000	38.4	74.0	35.6	Н	-9.1
7264.000000	43.5	74.0	30.5	Н	-2.1
14456.400000	51.0	74.0	23.0	Н	5.9
17976.800000	53.9	74.0	20.1	V	14.3

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2949.200000	33.7	54.0	20.3	V	9.0
3594.300000	23.4	54.0	30.6	Н	-13.2
5093.700000	25.7	54.0	28.3	Н	-9.1
7264.000000	30.5	54.0	23.5	Н	-2.1
14456.400000	37.6	54.0	16.4	Н	5.9
17976.800000	42.8	54.0	11.2	V	14.3

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument. The measurement results are obtained as described below:

Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.

See below for test graphs.

Conclusion: PASS

©Copyright. All rights reserved by SAICT.

Fig.137 Radiated Spurious Emission (802.11b, CH1, 1 GHz-18GHz)

Fig.138 Radiated Spurious Emission (802.11b, CH6, 1 GHz-18GHz)

Fig.139 Radiated Spurious Emission (802.11b, CH11, 1 GHz-18GHz)

Fig.140 Radiated Restricted Band (802.11b, CH1, 2.38GHz~2.45GHz)

Fig.141 Radiated Restricted Band (802.11b, CH11, 2.45GHz~2.5GHz)

Fig.142 Radiated Spurious Emission (802.11g, CH1, 1 GHz-18 GHz)

Fig.143 Radiated Spurious Emission (802.11g, CH6, 1 GHz-18 GHz)

Fig.144 Radiated Spurious Emission (802.11g, CH11, 1 GHz-18 GHz)

Fig.145 Radiated Restricted Band (802.11g, CH1, 2.38GHz~2.45GHz)

Fig.146 Radiated Restricted Band (802.11g, CH11, 2.45GHz~2.5GHz)

Fig.147 Radiated Spurious Emission (802.11n-HT20, CH1, 1 GHz-18 GHz)

Fig.148 Radiated Spurious Emission (802.11n-HT20, CH6, 1 GHz-18 GHz)

Fig.149 Radiated Spurious Emission (802.11n-HT20, CH11, 1 GHz-18 GHz)

Fig.150 Radiated Restricted Band (802.11n-HT20, CH1, 2.38GHz~2.45GHz)

Fig.151 Radiated Restricted Band (802.11n-HT20, CH11, 2.45GHz~2.5GHz)

Fig.152 Radiated Spurious Emission (802.11-VHT20, CH1, 1 GHz-18 GHz)

Fig.153 Radiated Spurious Emission (802.11-VHT20, CH6, 1 GHz-18 GHz)

Fig.154 Radiated Spurious Emission (802.11-VHT20, CH11, 1 GHz-18 GHz)

Fig.155 Radiated Restricted Band (802.11-VHT20, CH1, 2.38GHz~2.45GHz)

Fig.156 Radiated Restricted Band (802.11-VHT20, CH11, 2.45GHz~2.5GHz)

Fig.157 Radiated Spurious Emission (802.11ax-HE20, CH1, 1 GHz-18 GHz)

Fig.158 Radiated Spurious Emission (802.11ax-HE20, CH6, 1 GHz-18 GHz)

Fig.159 Radiated Spurious Emission (802.11ax-HE20, CH11, 1 GHz-18 GHz)

Fig.160 Radiated Restricted Band (802.11ax-HE20, CH1, 2.38GHz~2.45GHz)

Fig.161 Radiated Restricted Band (802.11ax-HE20, CH11, 2.45GHz~2.5GHz)

Fig.162 Radiated Spurious Emission (802.11n-HT40, CH3, 1 GHz-18 GHz)

Fig.163 Radiated Spurious Emission (802.11n-HT40, CH6, 1 GHz-18 GHz)

Fig.164 Radiated Spurious Emission (802.11n-HT40, CH9, 1 GHz-18 GHz)

Fig.165 Radiated Restricted Band (802.11n-HT40, CH3, 2.38GHz~2.45GHz)

Fig.166 Radiated Restricted Band (802.11n-HT40, CH9, 2.45GHz~2.5GHz)

Fig.167 Radiated Spurious Emission (802.11-VHT40, CH3, 1 GHz-18 GHz)

Fig.168 Radiated Spurious Emission (802.11-VHT40, CH6, 1 GHz-18 GHz)

Fig.169 Radiated Spurious Emission (802.11-VHT40, CH9, 1 GHz-18 GHz)

Fig.170 Radiated Restricted Band (802.11-VHT40, CH3, 2.38GHz~2.45GHz)

Fig.171 Radiated Restricted Band (802.11-VHT40, CH9, 2.45GHz~2.5GHz)

Fig.172 Radiated Spurious Emission (802.11ax-HE40, CH3, 1 GHz-18 GHz)

Fig.173 Radiated Spurious Emission (802.11ax-HE40, CH6, 1 GHz-18 GHz)

Fig.174 Radiated Spurious Emission (802.11ax-HE40, CH9, 1 GHz-18 GHz)

Fig.175 Radiated Restricted Band (802.11ax-HE40, CH3, 2.38GHz~2.45GHz)

Fig.176 Radiated Restricted Band (802.11ax-HE40, CH9, 2.45GHz~2.5GHz)

Fig.177 Radiated Spurious Emission (All Channels, 9 kHz-30 MHz)

Fig.178 Radiated Spurious Emission (All Channels, 30MHz-1 GHz)

Fig.179 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz)

Fig.180 Radiated Spurious Emission (802.11n-HT20, CH1, 1 GHz-18 GHz, MIMO)

Fig.181 Radiated Spurious Emission (802.11n-HT20, CH6, 1 GHz-18 GHz, MIMO)

Fig.182 Radiated Spurious Emission (802.11n-HT20, CH11, 1 GHz-18 GHz, MIMO)

Fig.183 Radiated Restricted Band (802.11n-HT20, CH1, 2.38GHz~2.45GHz, MIMO)

Fig.184 Radiated Restricted Band (802.11n-HT20, CH11, 2.45GHz~2.5GHz, MIMO)

Fig.185 Radiated Spurious Emission (802.11-VHT20, CH1, 1 GHz-18 GHz, MIMO)

Fig.186 Radiated Spurious Emission (802.11-VHT20, CH6, 1 GHz-18 GHz, MIMO)

Fig.187 Radiated Spurious Emission (802.11-VHT20, CH11, 1 GHz-18 GHz, MIMO)

Fig.188 Radiated Restricted Band (802.11-VHT20, CH1, 2.38GHz~2.45GHz, MIMO)

Fig.189 Radiated Restricted Band (802.11-VHT20, CH11, 2.45GHz~2.5GHz, MIMO)

Fig.190 Radiated Spurious Emission (802.11ax-HE20, CH1, 1 GHz-18 GHz, MIMO)

Fig.191 Radiated Spurious Emission (802.11ax-HE20, CH6, 1 GHz-18 GHz, MIMO)

Fig.192 Radiated Spurious Emission (802.11ax-HE20, CH11, 1 GHz-18 GHz, MIMO)

Fig.193 Radiated Restricted Band (802.11ax-HE20, CH1, 2.38GHz~2.45GHz, MIMO)

Fig.194 Radiated Restricted Band (802.11ax-HE20, CH11, 2.45GHz~2.5GHz, MIMO)

Fig.195 Radiated Spurious Emission (802.11n-HT40, CH3, 1 GHz-18 GHz, MIMO)

Fig.196 Radiated Spurious Emission (802.11n-HT40, CH6, 1 GHz-18 GHz, MIMO)

Fig.197 Radiated Spurious Emission (802.11n-HT40, CH9, 1 GHz-18 GHz, MIMO)

Fig.198 Radiated Restricted Band (802.11n-HT40, CH3, 2.38GHz~2.45GHz, MIMO)

Fig.199 Radiated Restricted Band (802.11n-HT40, CH9, 2.45GHz~2.5GHz, MIMO)

Fig.200 Radiated Spurious Emission (802.11-VHT40, CH3, 1 GHz-18 GHz, MIMO)

Fig.201 Radiated Spurious Emission (802.11-VHT40, CH6, 1 GHz-18 GHz, MIMO)

Fig.202 Radiated Spurious Emission (802.11-VHT40, CH9, 1 GHz-18 GHz, MIMO)

Fig.203 Radiated Restricted Band (802.11-VHT40, CH3, 2.38GHz~2.45GHz, MIMO)

Fig.204 Radiated Restricted Band (802.11-VHT40, CH9, 2.45GHz~2.5GHz, MIMO)

Fig.205 Radiated Spurious Emission (802.11ax-HE40, CH3, 1 GHz-18 GHz, MIMO)

Fig.206 Radiated Spurious Emission (802.11ax-HE40, CH6, 1 GHz-18 GHz, MIMO)

Fig.207 Radiated Spurious Emission (802.11ax-HE40, CH9, 1 GHz-18 GHz, MIMO)

Fig.208 Radiated Restricted Band (802.11ax-HE40, CH3, 2.38GHz~2.45GHz, MIMO)

Fig.209 Radiated Restricted Band (802.11ax-HE40, CH9, 2.45GHz~2.5GHz, MIMO)

Fig.210 Radiated Spurious Emission (All Channels, 9 kHz-30 MHz, MIMO)

Fig.211 Radiated Spurious Emission (All Channels, 30MHz-1 GHz, MIMO)

Fig.212 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz, MIMO)

A.7 AC Power line Conducted Emission

Method of Measurement: See ANSI C63.10-clause 6.2

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

WLAN - AE2, AE3, AE4

Frequency range	Quasi-peak	Average-peak	Result	Result (dBμV)	
(MHz)	Limit (dBµV)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	66 to 56	56 to 46		Fig.214	
0.5 to 5	56	46	Fig.213		Р
5 to 30	60	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note: The measurement results include the L1 and N measurements.

See below for test graphs. Conclusion: PASS

Fig.213 AC Power line Conducted Emission (Traffic)

Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000	46.41	66.00	19.59	N	ON	10
0.430000	36.69	57.25	20.56	L1	ON	10
0.454000	36.79	56.80	20.02	Ν	ON	10
0.758000	29.76	56.00	26.24	Ν	ON	10
5.346000	28.89	60.00	31.11	Ν	ON	10
12.882000	35.09	60.00	24.91	L1	ON	10

Measurement Results: Quasi Peak

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	μν) (αΒ)			(dB)
0.430000	30.85	47.25	16.41	L1	ON	10
0.454000	31.09	46.80	15.71	N	ON	10
0.802000	24.66	46.00	21.34	L1	ON	10
3.458000	28.93	46.00	17.07	N	ON	10
5.426000	23.30	50.00	26.70	N	ON	10
12.978000	30.28	50.00	19.72	N	ON	10

Fig.214 AC Power line Conducted Emission (Idle)

Frequency	Quasi Peak	Limit	Margin	Line	Lino	Eiltor	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)		Filler	(dB)	
0.402000	35.07	57.81	22.74	L1	ON	10	
0.442000	39.73	57.02	17.29	L1	ON	10	
2.014000	33.58	56.00	22.42	L1	ON	10	
3.558000	34.53	56.00	21.47	N	ON	10	
4.918000	36.45	56.00	19.55	N	ON	10	
8.950000	39.61	60.00	20.39	N	ON	10	

Measurement Results: Quasi Peak

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Lino	Eiltor	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)		Filler	(dB)	
0.402000	40.94	47.81	6.87	L1	ON	10	
0.478000	35.05	46.37	11.32	L1	ON	10	
0.858000	28.62	46.00	17.38	N	ON	10	
3.578000	27.60	46.00	18.40	N	ON	10	
4.954000	29.48	46.00	16.52	N	ON	10	
8.450000	35.00	50.00	15.00	N	ON	10	

END OF REPORT