

TEST REPORT

No. I21N03262-BLE

for

Realme Chongqing Mobile Telecommunications Corp., Ltd.

Mobile Phone

Model Name: RMX3393

with

Hardware Version: 11

Software Version: ColorOS 12.1

FCC ID: 2AUYFRMX3393

Issued Date: 2021-11-29

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

©Copyright. All rights reserved by SAICT.

CONTENTS

CONTE	ENTS	2
1. SU	JMMARY OF TEST REPORT	3
1.1.	TEST ITEMS	3
1.2.	Test Standards	3
1.3.	TEST RESULT	3
1.4.	TESTING LOCATION	3
1.5.	Project data	3
1.6.	SIGNATURE	3
2. CL	LIENT INFORMATION	4
2.1.	APPLICANT INFORMATION	4
2.2.	Manufacturer Information	4
3. EQ	QUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
3.1.	ABOUT EUT	5
3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
3.4.	GENERAL DESCRIPTION	6
4. RE	EFERENCE DOCUMENTS	7
4.1.	DOCUMENTS SUPPLIED BY APPLICANT	7
4.2.	REFERENCE DOCUMENTS FOR TESTING	7
5. TE	EST RESULTS	8
5.1.	TESTING ENVIRONMENT	8
5.2.	TEST RESULTS	8
5.3.	STATEMENTS	8
6. TE	EST EQUIPMENTS UTILIZED	9
7. LA	ABORATORY ENVIRONMENT	10
	EASUREMENT UNCERTAINTY	
ANNEX	X A: DETAILED TEST RESULTS	12
TEST	Configuration	12
A.0 A	ANTENNA REQUIREMENT	15
	MAXIMUM PEAK OUTPUT POWER	
A.2 P	PEAK POWER SPECTRAL DENSITY	17
	DB BANDWIDTH	
	3AND EDGES COMPLIANCE	
A.5 T	TRANSMITTER SPURIOUS EMISSION - CONDUCTED	28
A.6 T	RANSMITTER SPURIOUS EMISSION - RADIATED	38
A 7 A	C DOWER I DE CONDUCTER ENGRICA	40

1. Summary of Test Report

1.1. Test Items

Product Name Mobile Phone Model Name RMX3393

Applicant's name Realme Chongqing Mobile Telecommunications Corp., Ltd.

Manufacturer's Name Realme Chongqing Mobile Telecommunications Corp., Ltd.

1.2. Test Standards

FCC CFR 47, Part 15, Subpart C 2019

1.3. Test Result

Pass

Please refer to "5.2. Test Results"

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project data

Testing Start Date: 2021-10-26 Testing End Date: 2021-11-25

1.6. Signature

Lin Zechuang

(Prepared this test report)

An Ran

(Reviewed this test report)

Zhang Bojun

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name: Realme Chongqing Mobile Telecommunications Corp., Ltd.

Address: No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing, China.

Contact Person Yang LiangPing
E-Mail ylp@realme.net
Telephone: (86)13798864426

Fax:

2.2. Manufacturer Information

Company Name: Realme Chongqing Mobile Telecommunications Corp., Ltd.

Address: No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing, China.

Contact Person Yang LiangPing
E-Mail ylp@realme.net
Telephone: (86)13798864426

Fax: /

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Product Name Mobile Phone Model Name RMX3393

Frequency Range 2400MHz~2483.5MHz

Type of Modulation GFSK
PHY LE 1M/2M

Number of Channels 40

Antenna Type PIFA antenna Antenna Gain 0.10dBi

Power Supply 3.87V DC by Battery FCC ID 2AUYFRMX3393

Condition of EUT as received No abnormality in appearance

Note: Components list, please refer to documents of the manufacturer; it is also included in the original test record of Shenzhen Academy of Information and Communications Technology.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Receive Date	
LITODA	868912050020558	11	ColorOS 12.1	2024 40 24	
UT03aa	868912050020541	11	C0101OS 12.1	2021-10-21	
UT04aa	868912050020590	11	ColorOS 12.1	2021-10-25	
	868912050020582		C010103 12.1		
UT20aa	868912050020632	11	ColorOS 12.1	2021-10-25	
0120aa	868912050020624	11	C0101O3 12.1	2021-10-25	

^{*}EUT ID: is used to identify the test sample in the lab internally.

UT03aa is used for conduction test, UT04aa is used for radiation test, and UT20aa is used for AC Power line Conducted Emission test.

3.3. Internal Identification of AE used during the test

AE ID*	Description	AE ID*
AE1	Battery	/
AE2	Charger	/
AE3	USB Cable	/
AE4	Headset	/

AE1

Model BLP837

Manufacturer Sunwoda Electronic Co., Ltd.

Capacity 4400mAh Nominal Voltage 3.87V

AE2

Model VCA7JAUH

Manufacturer Huizhou Golden Lake Industrial Co., Ltd.

Specification American Standard Charger

AE3

Model DL129

Manufacturer

AE4

Model MH156

Manufacturer

3.4. General Description

The Equipment under Test (EUT) is a model of Mobile Phone with PIFA antenna and battery. It consists of normal options: Lithium Battery, Charger, USB Cable and Headset.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the client.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15	FCC CFR 47, Part 15, Subpart C:	2019
	15.205 Restricted bands of operation;	
	15.209 Radiated emission limits, general requirements;	
	15.247 Operation within the bands 902–928MHz,	
	2400-2483.5 MHz, and 5725-5850 MHz	
ANSI C63.10	American National Standard of Procedures for Compliance	2013
	Testing of Unlicensed Wireless Devices	

5. Test Results

5.1. <u>Testing Environment</u>

Normal Temperature: 15~35°C Relative Humidity: 20~75%

5.2. Test Results

No	Test cases	Sub-clause of Part 15C	Verdict
0	Antenna Requirement	15.203	Р
1	Maximum Peak Output Power	15.247 (b)	Р
2	Peak Power Spectral Density	15.247 (e)	Р
3	6dB Bandwidth	15.247 (a)	Р
4	Band Edges Compliance	15.247 (d)	Р
5	Transmitter Spurious Emission - Conducted	15.247 (d)	Р
6	Transmitter Spurious Emission - Radiated	15.247, 15.205, 15.209	Р
7	AC Power line Conducted Emission	15.107, 15.207	Р

See **ANNEX** A for details.

5.3. Statements

SAICT has evaluated the test cases requested by the applicant/manufacturer as listed in section 5.2 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in section 4.2.

Disclaimer:

- A. After confirmation with the customer, the sample information provided by the customer may affect the validity of the measurement results in this report, and the impact and consequences arising therefrom shall be borne by the customer.
- B. The samples in this report are provided by the customer, and the test results are only applicable to the samples received.

6. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Vector Signal Analyzer	FSV40	100903	Rohde & Schwarz	2021-12-30	1 year
2	Power Sensor	U2021XA	MY55430013	Agilent	2022-01-13	1 year
3	Data Acquisiton	U2531A	TW55443507	Agilent	/	/
4	RF Control Unit	JS0806-2	21C8060398	Tonscend	2022-05-09	1 year
5	Test Receiver	ESCI	100702	Rohde & Schwarz	2022-01-13	1 year
6	LISN	ENV216	102067	Rohde & Schwarz	2022-07-15	1 year

Radiated test system

	Radiated test system					
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Due date	Calibration Period
1	Loop Antenna	HLA6120	35779	TESEQ	2022-04-25	3 years
2	BiLog Antenna	3142E	0224831	ETS-Lindgren	2024-05-27	3 years
3	Horn Antenna	3117	00066577	ETS-Lindgren	2022-04-02	3 years
4	Horn Antenna	QSH-SL-18 -26-S-20	17013	Q-par	2023-01-06	3 years
5	Test Receiver	ESR7	101676	Rohde & Schwarz	2022-11-24	1 year
6	Spectrum Analyser	FSV40	101192	Rohde & Schwarz	2022-01-13	1 year
7	Chamber	FACT3-2.0	1285	ETS-Lindgren	2023-05-29	2 years

Test software

No.	Equipment	Manufacturer	Version
1	RF Test System	Tonscend	2.6
2	EMC32	Rohde & Schwarz	10.50.40

EUT is engineering software provided by the customer to control the transmitting signal.

The EUT was programmed to be in continuously transmitting mode.

Anechoic chamber

Fully anechoic chamber by ETS-Lindgren

7. Laboratory Environment

Semi-anechoic chamber

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Normalised site attenuation (NSA)	< ±4 dB, 3 m distance, from 30 to 1000 MHz

Shielded room

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-1000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω

Fully-anechoic chamber

Temperature	Min. = 15 $^{\circ}$ C, Max. = 35 $^{\circ}$ C
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz> 60 dB; 1MHz-18000MHz>90 dB
Electrical insulation	> 2MΩ
Ground system resistance	< 4 Ω
Voltage Standing Wave Ratio (VSWR)	≤ 6 dB, from 1 to 18 GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

8. Measurement Uncertainty

Test Name	Uncertain	ty (<i>k</i> =2)
Maximum Peak Output Power	1.32	dB
Peak Power Spectral Density	2.32	dB
3. 6dB Bandwidth	66H	łz
4. Band Edges Compliance	1.92	dB
	30MHz≤f<1GHz	1.41dB
5 Transmitter Spurious Emission Condusted	1GHz≤f<7GHz	1.92dB
5. Transmitter Spurious Emission - Conducted	7GHz≤f<13GHz	2.31dB
	13GHz≤f≤26GHz	2.61dB
	9kHz≤f<30MHz	1.79dB
6 Transmitter Courieus Emission Dedicted	30MHz≤f<1GHz	4.86dB
6. Transmitter Spurious Emission - Radiated	1GHz≤f<18GHz	4.82dB
	18GHz≤f≤40GHz	2.90dB
7. AC Power line Conducted Emission	150kHz≤f≤30MHz	2.62dB

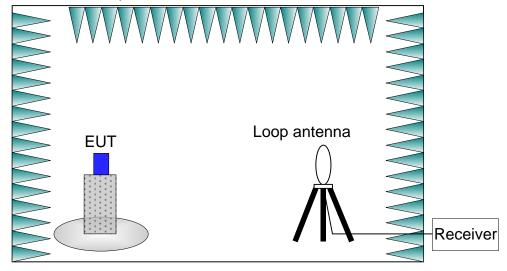
ANNEX A: Detailed Test Results

Test Configuration

The measurement is made according to ANSI C63.10.

1) Conducted Measurements

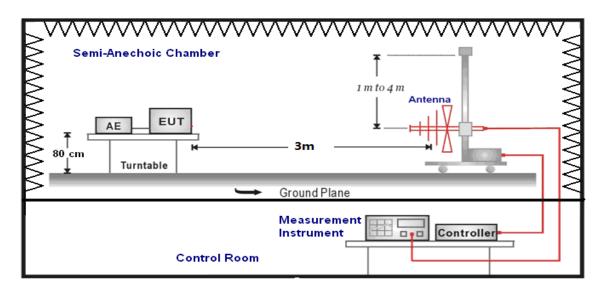
- 1. Connect the EUT to the test system correctly.
- 2. Set the EUT to the required work mode.
- 3. Set the EUT to the required channel.
- 4. Set the spectrum analyzer to start measurement.
- 5. Record the values.



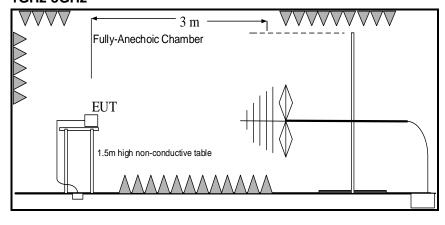
2) Radiated Measurements

Test setup:

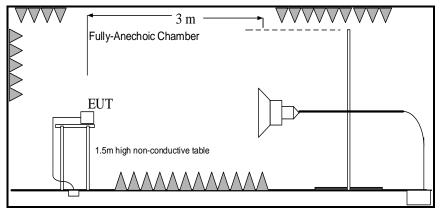
9kHz-30MHz:


The EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.

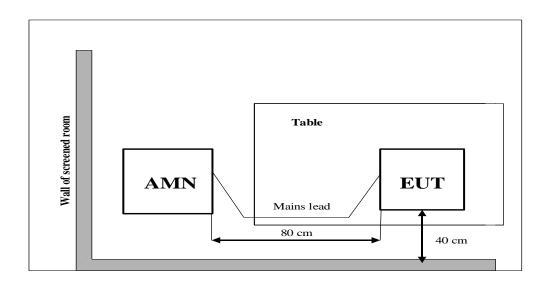
30MHz-1GHz:


The EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving antenna is 1.0 meter to 4.0 meter above the ground. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiver antenna polarization.

Above 1GHz:


EUT was placed on a 1.5 meter high non-conductive table at a 3 meter test distance from the receive antenna. The test setup refers to figure below. Detected emissions were maximized at each frequency by rotating the EUT and adjusting the receiving antenna polarization.

1GHz-3GHz



3GHz-40GHz

3) AC Power line Conducted Emission Measurement

For Bluetooth LE, the EUT is working under test mode. The EUT is commanded to operate at maximum transmitting power.

A.0 Antenna requirement

Measurement Limit:

Standard	Requirement
Standard	Requirement An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical
FCC CRF Part 15.203	connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Conclusion: The Directional gains of antenna used for transmitting is 0.10dBi.

The RF transmitter uses an integrate antenna without connector.

A.1 Maximum Peak Output Power

Method of Measurement: See ANSI C63.10-clause 11.9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter.

Measurement Limit:

Standard	Limit (dBm)
FCC 47 CRF Part 15.247(b)	< 30

Measurement Results:

Mode	Frequency (MHz) RF output power (dBm)		Conclusion		
	2402(CH0)	5.71	Р		
LE 1M	2440(CH19)	6.04	Р		
	2480(CH39)	5.78	Р		
	2402(CH0)	5.64	Р		
LE 2M	2440(CH19)	5.99	Р		
	2480(CH39)	5.70	Р		

Conclusion: Pass

A.2 Peak Power Spectral Density

Method of Measurement: See ANSI C63.10-clause 11.10.2

Measurement Limit:

Standard	Limit (dBm/3 kHz)
FCC 47 CRF Part 15.247(e)	< 8 dBm/3 kHz

Measurement Results:

Mode	Frequency (MHz)	Peak Power Spectral Density (dBm)		Conclusion
	2402(CH0)	Fig.1	-5.22	Р
LE 1M	2440(CH19)	Fig.2	-5.10	Р
	2480(CH39)	Fig.3	-5.23	Р
LE 2M	2402(CH0)	Fig.4	-8.22	Р
	2440(CH19)	Fig.5	-8.84	Р
	2480(CH39)	Fig.6	-8.42	Р

See below for test graphs.

Conclusion: PASS

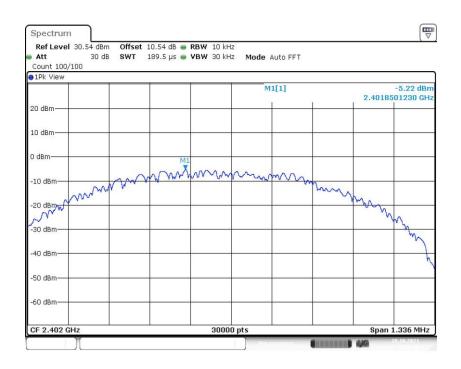


Fig.1 Power Spectral Density (CH0), LE 1M

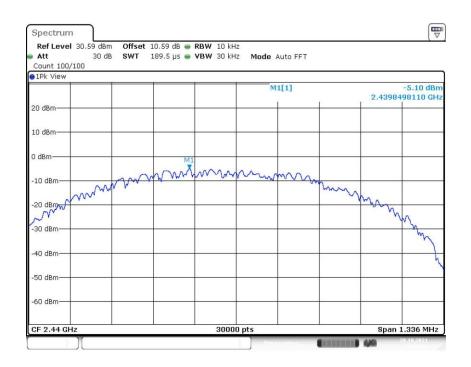


Fig.2 Power Spectral Density (CH19), LE 1M

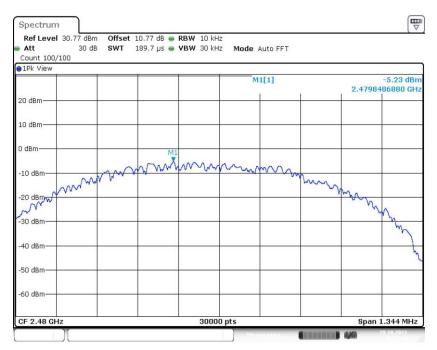


Fig.3 Power Spectral Density (CH39), LE 1M

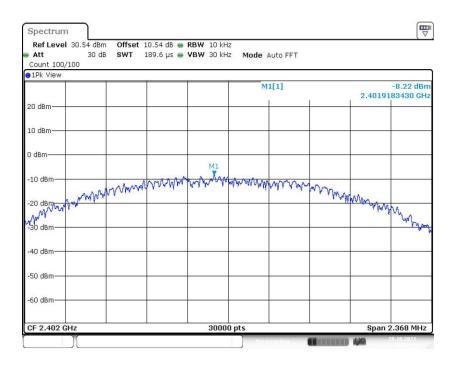


Fig.4 Power Spectral Density (CH0), LE 2M

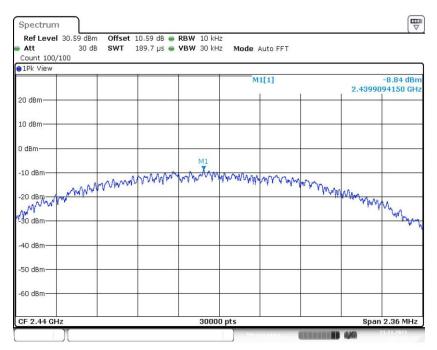


Fig.5 Power Spectral Density (CH19), LE 2M

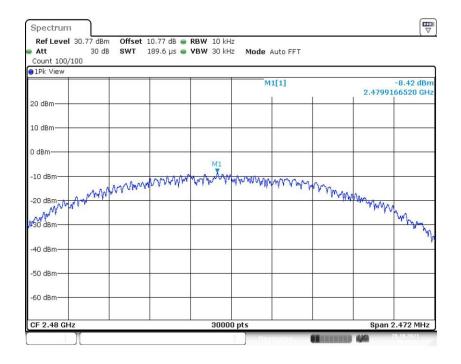


Fig.6 Power Spectral Density (CH39), LE 2M

A.3 6dB Bandwidth

Method of Measurement: See ANSI C63.10-clause 11.8.2

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.247 (a)	≥ 500

Measurement Result:

Mode	Frequency (MHz)	Test Results (kHz)		Conclusion
	2402(CH0)	Fig.7	668.00	Р
LE 1M	2440(CH19)	Fig.8	668.00	Р
	2480(CH39)	Fig.9	672.00	Р
	2402(CH0)	Fig.10	1184.00	Р
LE 2M	2440(CH19)	Fig.11	1180.00	Р
	2480(CH39)	Fig.12	1236.00	Р

See below for test graphs.

Conclusion: PASS

Fig.7 6dB Bandwidth (CH0), LE 1M

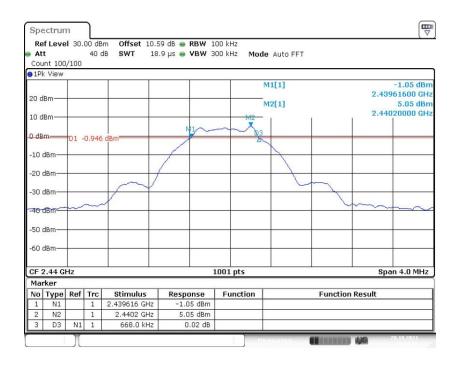


Fig.8 6dB Bandwidth (CH19), LE 1M

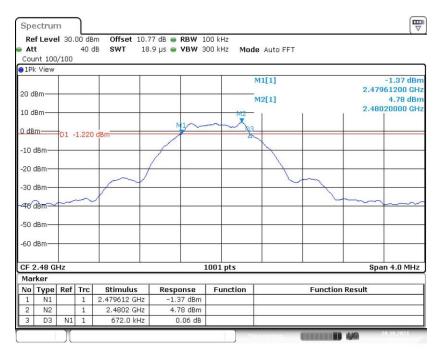


Fig.9 6dB Bandwidth (CH39), LE 1M

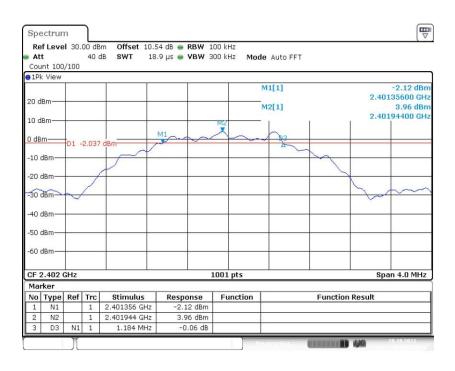


Fig.10 6dB Bandwidth (CH0), LE 2M

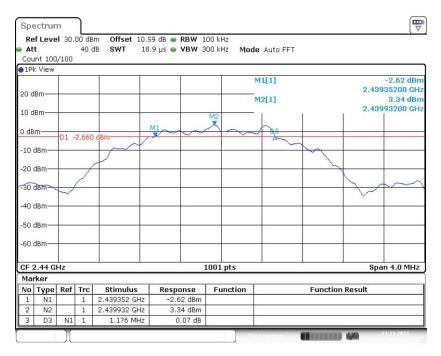


Fig.11 6dB Bandwidth (CH19), LE 2M

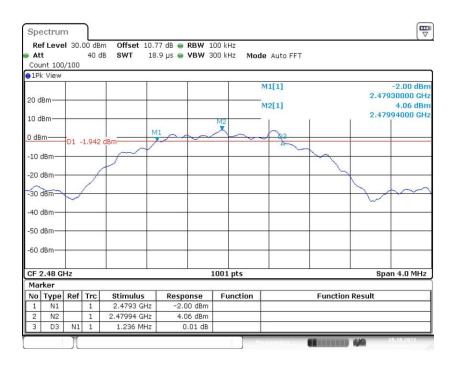


Fig.12 6dB Bandwidth (CH39), LE 2M

A.4 Band Edges Compliance

Method of Measurement: See ANSI C63.10-clause 11.13.3.2

Measurement Limit:

Standard	Limit (dBm)
FCC 47 CFR Part 15.247 (d)	> 20

Measurement Result:

Mode	Frequency (MHz)	Test Results (dBm)		Conclusion
LE 1M	2402(CH0)	Fig.13	51.13	Р
	2480(CH39)	Fig.14	50.70	Р
LE 2M	2402(CH0)	Fig.15	31.45	Р
	2480(CH39)	Fig.16	50.44	Р

See below for test graphs.

Conclusion: PASS

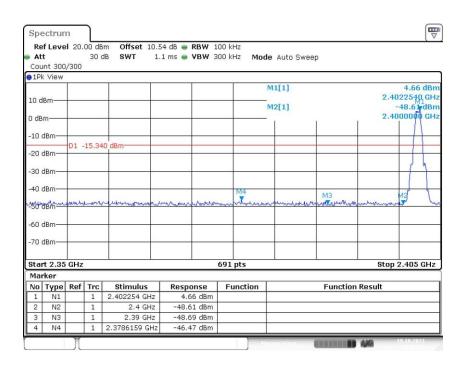


Fig.13 Band Edges (CH0), LE 1M

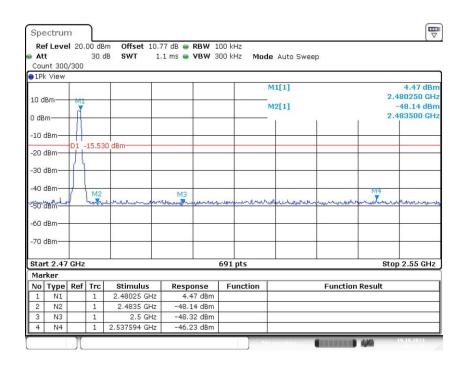


Fig.14 Band Edges (CH39), LE 1M

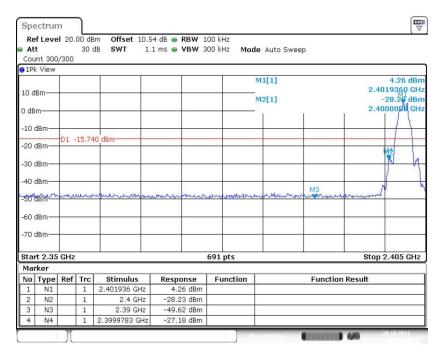


Fig.15 Band Edges (CH0), LE 2M

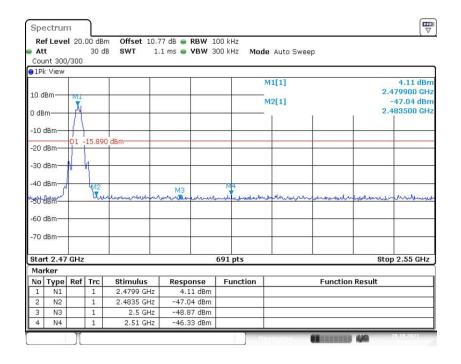


Fig.16 Band Edges (CH39), LE 2M

A.5 Transmitter Spurious Emission - Conducted

Method of Measurement: See ANSI C63.10-clause 11.11

Measurement Limit:

Standard	Limit (dBm)	
FCC 47 CFR Part 15.247 (d)	20dBm below peak output power in 100 kHz	
FCC 47 CFR Pait 15.247 (u)	bandwidth	

Measurement Results:

MODE	Channel	Frequency Range	Test Results	Conclusion
		2.402 GHz	Fig.17	Р
	0	30MHz -1GHz	Fig.18	Р
		1GHz-26.5GHz	Fig.19	Р
		2.440 GHz	Fig.20	Р
LE 1M	19	30MHz -1GHz	Fig.21	Р
		1GHz-26.5GHz	Fig.22	Р
		2.480 GHz	Fig.23	Р
	39	30MHz -1GHz	Fig.24	Р
		1GHz-26.5GHz	Fig.25	Р
		2.402 GHz	Fig.26	Р
	0	30MHz -1GHz	Fig.27	Р
		1GHz-26.5GHz	Fig.28	Р
		2.440 GHz	Fig.29	Р
LE 2M	19	30MHz -1GHz	Fig.30	Р
		1GHz-26.5GHz	Fig.31	Р
	39	2.480 GHz	Fig.32	Р
		30MHz -1GHz	Fig.33	Р
		1GHz-26.5GHz	Fig.34	Р

See below for test graphs.

Conclusion: Pass

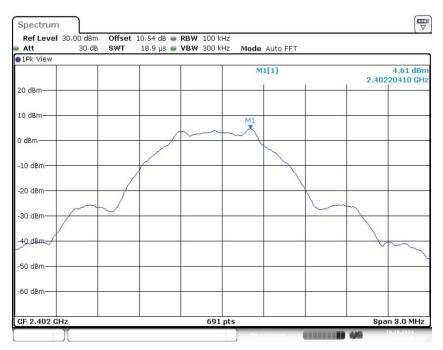


Fig.17 Conducted Spurious Emission (CH0, Center Frequency), LE 1M

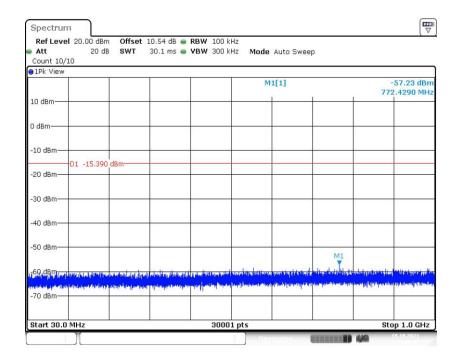


Fig.18 Conducted Spurious Emission (CH0, 30MHz -1GHz), LE 1M

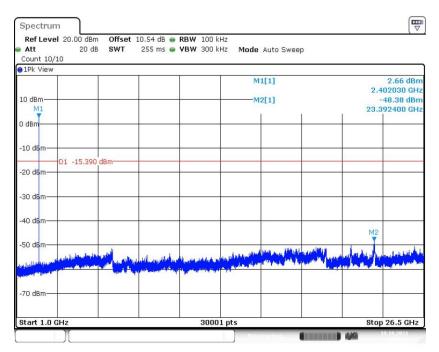


Fig.19 Conducted Spurious Emission (CH0, 1GHz-26.5GHz), LE 1M

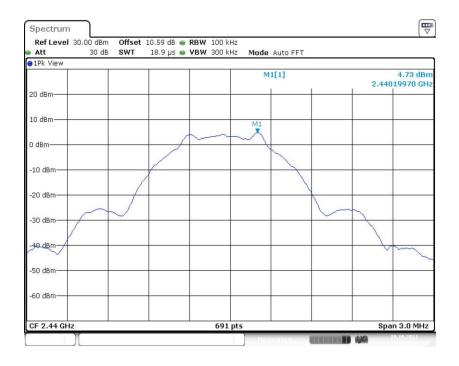


Fig.20 Conducted Spurious Emission (CH19, Center Frequency), LE 1M

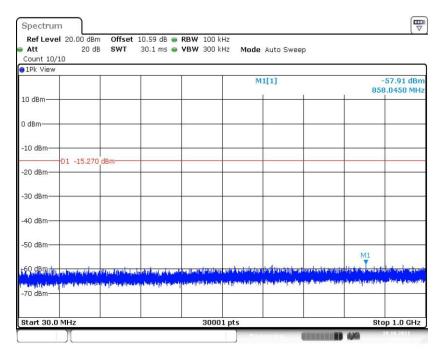


Fig.21 Conducted Spurious Emission (CH19, 30MHz -1GHz), LE 1M

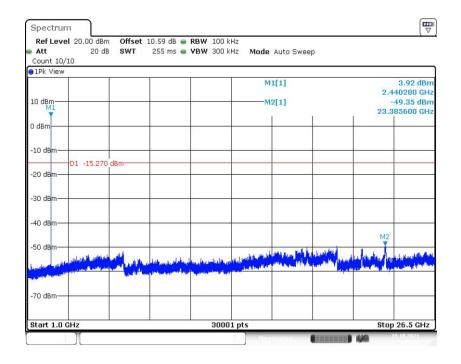


Fig.22 Conducted Spurious Emission (CH19, 1GHz-26.5GHz), LE 1M

Fig.23 Conducted Spurious Emission (CH39, Center Frequency), LE 1M

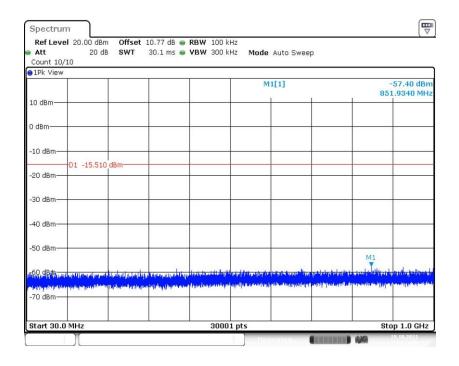


Fig.24 Conducted Spurious Emission (CH39, 30MHz -1GHz), LE 1M

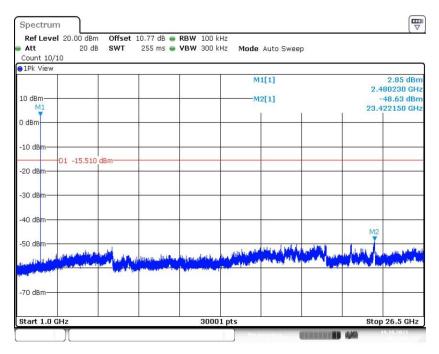


Fig.25 Conducted Spurious Emission (CH39, 1GHz-26.5GHz), LE 1M

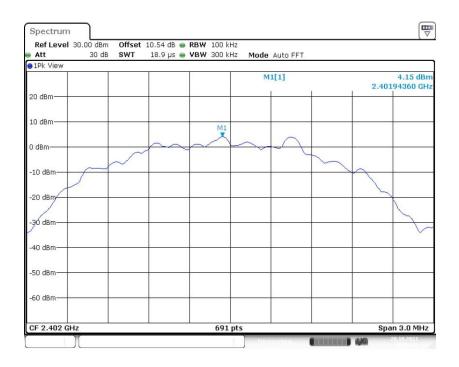


Fig.26 Conducted Spurious Emission (CH0, Center Frequency), LE 2M

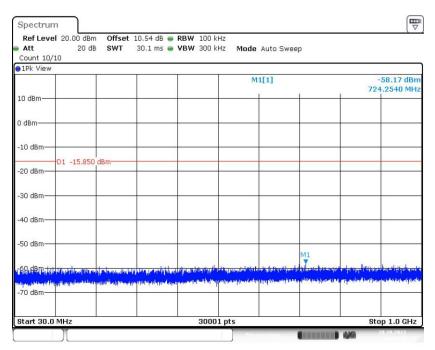


Fig.27 Conducted Spurious Emission (CH0, 30MHz -1GHz), LE 2M

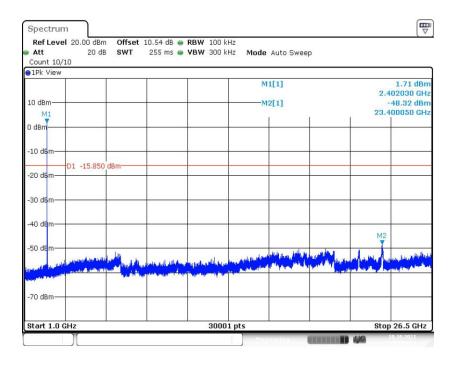


Fig.28 Conducted Spurious Emission (CH0, 1GHz-26.5GHz), LE 2M

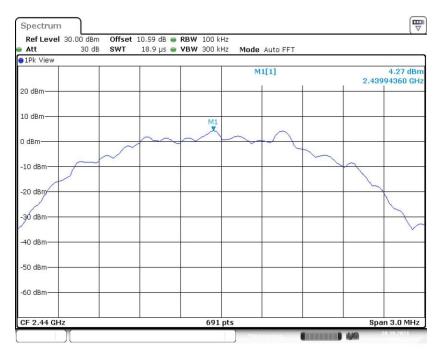


Fig.29 Conducted Spurious Emission (CH19, Center Frequency), LE 2M

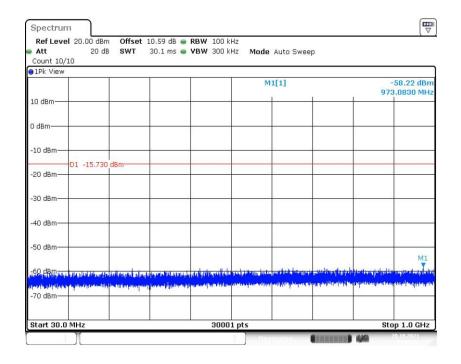


Fig.30 Conducted Spurious Emission (CH19, 30MHz -1GHz), LE 2M

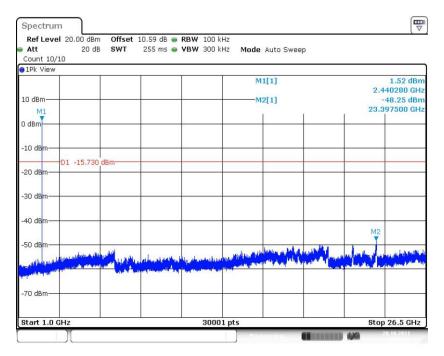


Fig.31 Conducted Spurious Emission (CH19, 1GHz-26.5GHz), LE 2M

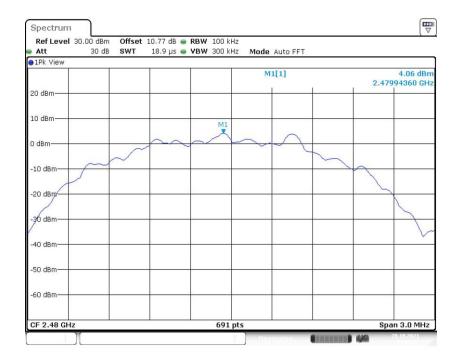


Fig.32 Conducted Spurious Emission (CH39, Center Frequency), LE 2M

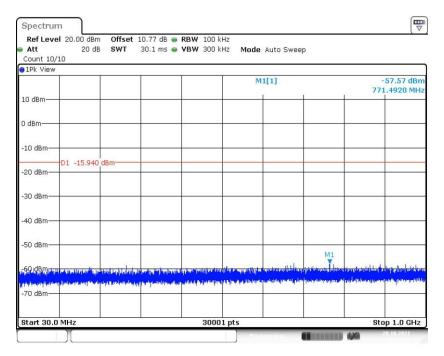


Fig.33 Conducted Spurious Emission (CH39, 30MHz -1GHz), LE 2M

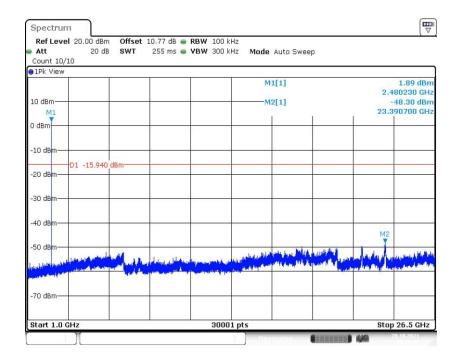


Fig.34 Conducted Spurious Emission (CH39, 1GHz-26.5GHz), LE 2M

A.6 Transmitter Spurious Emission - Radiated

Method of Measurement: See ANSI C63.10-clause 11.12

Measurement Limit:

Standard	Limit (dBm)	
FCC 47 CFR Part 15.247, 15.205, 15.209	20dBm below peak output power	

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength(µV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz. Therefore, the measurement starts from 30MHz to tenth harmonic. The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~18 GHz	Fig.35	Р
	19	1 GHz ~18 GHz	Fig.36	Р
	39	1 GHz ~18 GHz	Fig.37	Р
LE 1M	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.38	Р
LE IIVI	Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.39	Р
		9 kHz ~30 MHz	Fig.40	Р
	All channels	30 MHz ~1 GHz	Fig.41	Р
		18 GHz ~ 26.5 GHz	Fig.42	Р
	0	1 GHz ~18 GHz	Fig.43	Р
	19	1 GHz ~18 GHz	Fig.44	Р
	39	1 GHz ~18 GHz	Fig.45	Р
LE 2M	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.46	Р
LE ZIVI	Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.47	Р
		9 kHz ~30 MHz	Fig.48	Р
	All channels	30 MHz ~1 GHz	Fig.49	Р
		18 GHz ~ 26.5 GHz	Fig.50	Р

Worst Case Result

For LE 1M:

CH19 (1-18GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
,	,	,			,
2954.400000	45.6	74.0	28.4	H	9.0
3533.100000	36.6	74.0	37.4	V	-13.2
4678.800000	38.4	74.0	35.6	Н	-9.6
7070.800000	42.8	74.0	31.2	Н	-2.6
9301.200000	45.9	74.0	28.1	V	-0.9
17986.400000	55.1	74.0	18.9	Н	14.1

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2954.400000	33.9	54.0	20.1	Н	9.0
3533.100000	23.3	54.0	30.7	V	-13.2
4678.800000	25.7	54.0	28.3	Н	-9.6
7070.800000	30.5	54.0	23.5	Н	-2.6
9301.200000	32.8	54.0	21.2	V	-0.9
17986.400000	43.3	54.0	10.7	Н	14.1

For LE 2M: CH19 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Poi	(dB/m)
2964.400000	45.8	74.0	28.2	V	9.0
4080.300000	36.7	74.0	37.3	Н	-11.8
6182.800000	40.2	74.0	33.8	V	-6.5
8542.800000	44.1	74.0	29.9	V	-2.1
13678.000000	50.9	74.0	23.1	Н	4.1
17971.600000	53.0	74.0	21.0	Н	14.4

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
2964.400000	33.7	54.0	20.3	V	9.0
4080.300000	23.3	54.0	30.7	Н	-11.8
6182.800000	27.6	54.0	26.4	V	-6.5
8542.800000	31.0	54.0	23.0	V	-2.1
13678.000000	36.9	54.0	17.1	Н	4.1
17971.600000	41.8	54.0	12.2	Н	14.4

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument.

The measurement results are obtained as described below:

Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.

See below for test graphs.

Conclusion: Pass



Fig.35 Radiated Spurious Emission (CH0, 1 GHz ~18 GHz), LE 1M

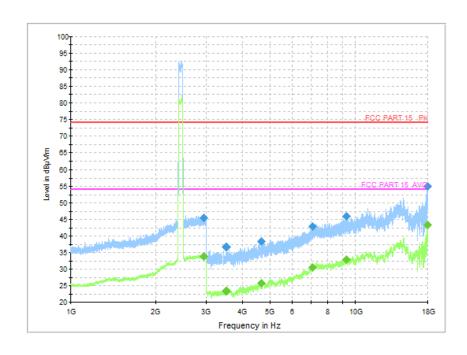


Fig.36 Radiated Spurious Emission (CH19, 1 GHz ~18 GHz), LE 1M

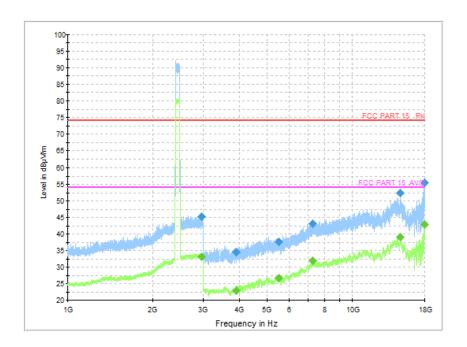


Fig.37 Radiated Spurious Emission (CH39, 1 GHz ~18 GHz), LE 1M

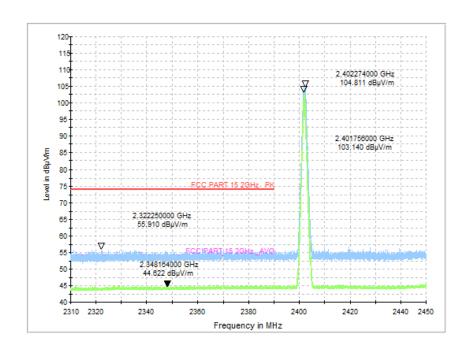


Fig.38 Radiated Band Edges (CH0, 2380GHz~2450GHz), LE 1M

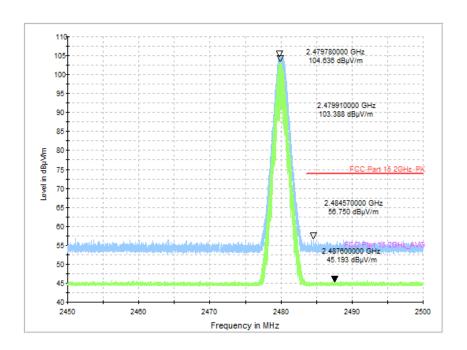


Fig.39 Radiated Band Edges (CH39, 2450GHz~2500GHz), LE 1M

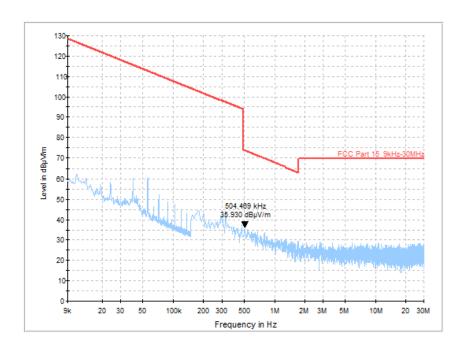


Fig.40 Radiated Spurious Emission (All Channels, 9 kHz-30 MHz), LE 1M

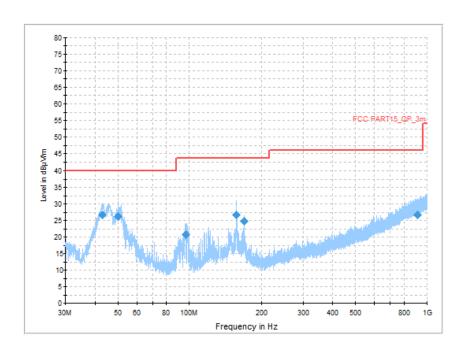


Fig.41 Radiated Spurious Emission (All Channels, 30 MHz-1 GHz), LE 1M

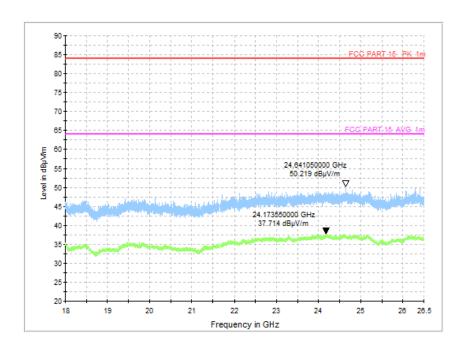


Fig.42 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz), LE 1M

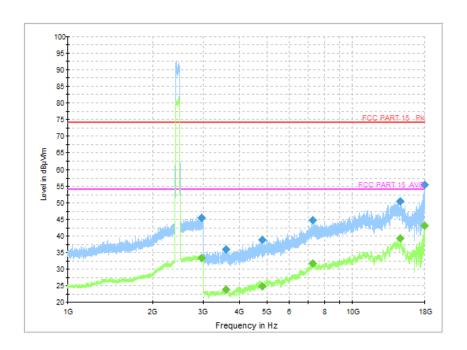


Fig.43 Radiated Spurious Emission (CH0, 1 GHz ~18 GHz), LE 2M

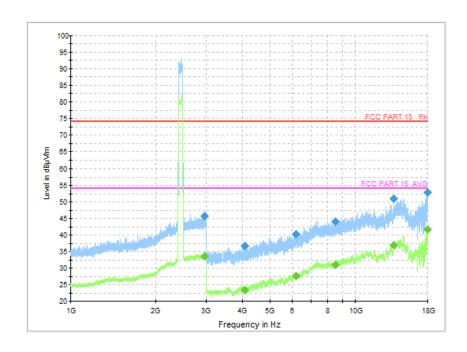


Fig.44 Radiated Spurious Emission (CH19, 1 GHz ~18 GHz), LE 2M

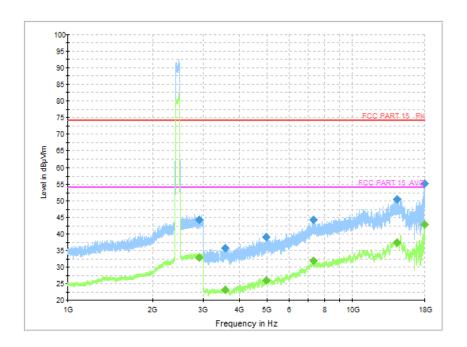


Fig.45 Radiated Spurious Emission (CH39, 1 GHz ~18 GHz), LE 2M

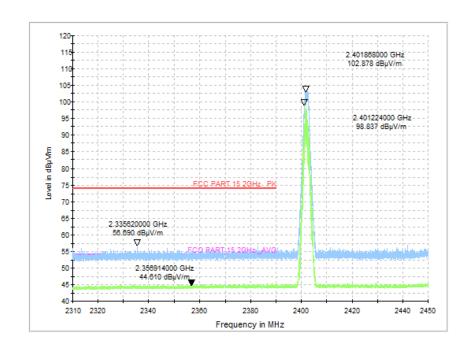


Fig.46 Radiated Band Edges (CH0, 2380GHz~2450GHz), LE 2M

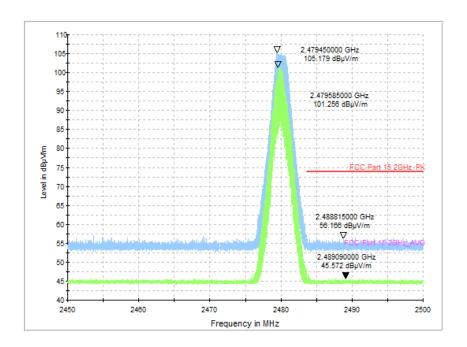


Fig.47 Radiated Band Edges (CH39, 2450GHz~2500GHz), LE 2M

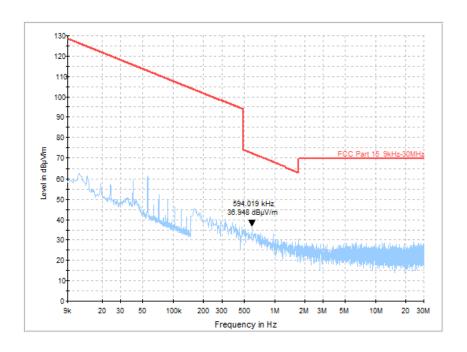


Fig.48 Radiated Spurious Emission (All Channels, 9 kHz-30 MHz), LE 2M

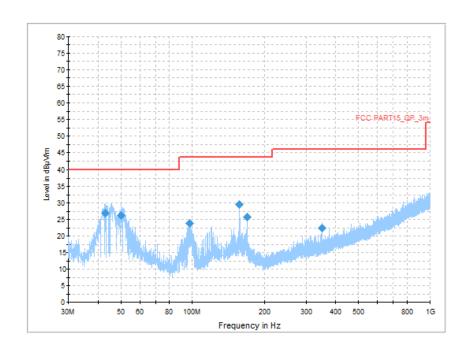


Fig.49 Radiated Spurious Emission (All Channels, 30 MHz-1 GHz), LE 2M

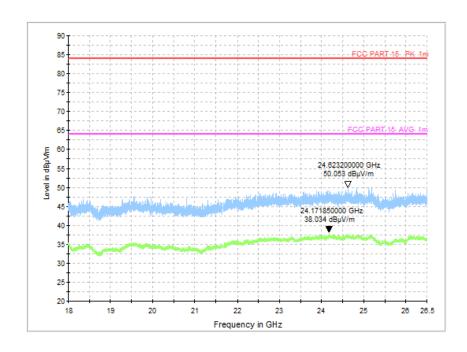


Fig.50 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz), LE 2M

A.7 AC Power line Conducted Emission

Method of Measurement: See ANSI C63.10-clause 6.2

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

BLE -AE2, AE3, AE4

Frequency range	Quasi-peak	Average-peak	Result (dBμV)		Conclusion
(MHz)	Limit (dBμV)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	66 to 56	56 to 46			
0.5 to 5	56	46	Fig.51	Fig.52	Р
5 to 30	60	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Note: The measurement results include the L1 and N measurements.

See below for test graphs.

Conclusion: Pass

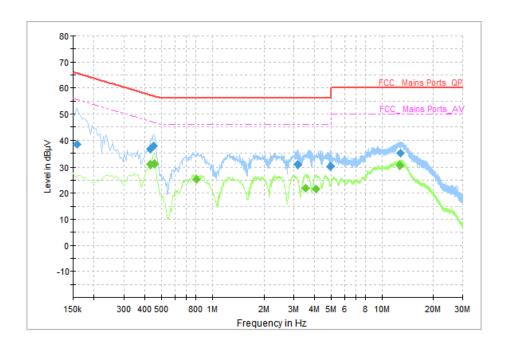


Fig.51 AC Power line Conducted Emission (Traffic), LE 1M

Measurement Results: Quasi Peak

Frequency	Quasi Peak	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)		riilei	(dB)
0.158000	38.45	65.57	27.11	N	ON	10
0.430000	36.48	57.25	20.77	L1	ON	10
0.450000	37.76	56.88	19.11	N	ON	10
3.174000	30.68	56.00	25.32	L1	ON	10
4.942000	30.16	56.00	25.84	L1	ON	10
12.810000	35.03	60.00	24.97	L1	ON	10

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)	Line	riilei	(dB)
0.430000	30.88	47.25	16.37	L1	ON	10
0.454000	30.96	46.80	15.84	N	ON	10
0.806000	25.13	46.00	20.87	L1	ON	10
3.530000	21.77	46.00	24.23	N	ON	10
4.090000	21.50	46.00	24.50	N	ON	10
12.742000	30.33	50.00	19.67	N	ON	10

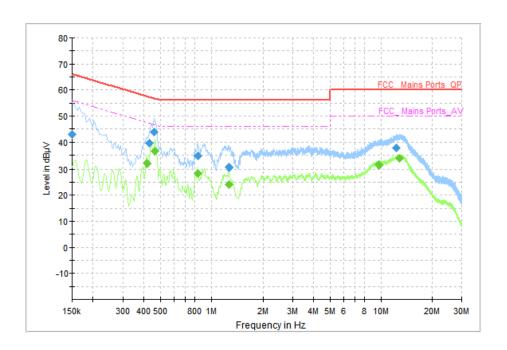


Fig.52 AC Power line Conducted Emission (Idle), LE 1M

Measurement Results: Quasi Peak

Frequency	Quasi Peak	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.150000	42.93	66.00	23.07	L1	ON	10
0.430000	39.53	57.25	17.72	N	ON	10
0.458000	43.89	56.73	12.84	L1	ON	10
0.830000	34.71	56.00	21.29	L1	ON	10
1.274000	30.48	56.00	25.52	N	ON	10
12.338000	37.94	60.00	22.06	N	ON	10

Measurement Results: Average

Frequency	Average	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)			(dB)
0.414000	31.88	47.57	15.69	L1	ON	10
0.466000	36.66	46.59	9.93	N	ON	10
0.834000	28.29	46.00	17.71	L1	ON	10
1.270000	24.11	46.00	21.89	L1	ON	10
9.714000	31.28	50.00	18.72	N	ON	10
12.842000	33.93	50.00	16.07	N	ON	10

^{***}END OF REPORT***