

FCC Radio Test Report

FCC ID: 2AUYFRMX3286

This report concerns: Original Grant

Project No.	:	2110C043A
Equipment	:	Mobile Phone
Brand Name	:	realme
Test Model	:	RMX3286
Series Model	:	N/A
Applicant	:	Realme Chongqing Mobile Telecommunications Corp., Ltd.
Address	:	No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing, China
Manufacturer	:	Realme Chongqing Mobile Telecommunications Corp., Ltd.
Address	:	No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing, China
Date of Receipt	:	Oct. 25, 2021
Date of Test	:	Oct. 26, 2021 ~ Nov. 17, 2021
Issued Date	:	Dec. 02, 2021
Report Version	:	R00
Test Sample	:	Engineering Sample No.: DG20211022144 for conducted,
		DG20211022145 for radiated.
Standard(s)	:	FCC CFR Title 47, Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by : Vincent Tan

Chan Ma

Approved by : Ethan Ma

Add: No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China Tel: +86-769-8318-3000 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

REPORT ISSUED HISTORY51. SUMMARY OF TEST RESULTS61.1 TEST FACILITY71.2 MEASUREMENT UNCERTAINTY71.3 TEST ENVIRONMENT CONDITIONS8	Table of Contents	Page
1.1 TEST FACILITY71.2 MEASUREMENT UNCERTAINTY7	REPORT ISSUED HISTORY	5
1.2 MEASUREMENT UNCERTAINTY 7	1. SUMMARY OF TEST RESULTS	6
	1.1 TEST FACILITY	7
1 3 TEST ENVIRONMENT CONDITIONS 8	1.2 MEASUREMENT UNCERTAINTY	7
	1.3 TEST ENVIRONMENT CONDITIONS	8
2. GENERAL INFORMATION 9	2 . GENERAL INFORMATION	9
2.1 GENERAL DESCRIPTION OF EUT 9	2.1 GENERAL DESCRIPTION OF EUT	9
2.2 DESCRIPTION OF TEST MODES 10	2.2 DESCRIPTION OF TEST MODES	10
2.3 PARAMETERS OF TEST SOFTWARE 11	2.3 PARAMETERS OF TEST SOFTWARE	11
2.4 DUTY CYCLE 12	2.4 DUTY CYCLE	12
2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 14	2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	14
2.6 SUPPORT UNITS 14	2.6 SUPPORT UNITS	14
3. AC POWER LINE CONDUCTED EMISSIONS 15	3 . AC POWER LINE CONDUCTED EMISSIONS	15
3.1 LIMIT 15	3.1 LIMIT	15
3.2 TEST PROCEDURE 15	3.2 TEST PROCEDURE	15
3.3 DEVIATION FROM TEST STANDARD 15	3.3 DEVIATION FROM TEST STANDARD	15
3.4 TEST SETUP 16	3.4 TEST SETUP	16
3.5 EUT OPERATION CONDITIONS 16	3.5 EUT OPERATION CONDITIONS	16
3.6 TEST RESULTS 16	3.6 TEST RESULTS	16
4. RADIATED EMISSIONS 17	4 . RADIATED EMISSIONS	17
4.1 LIMIT 17	4.1 LIMIT	17
4.2 TEST PROCEDURE 18	4.2 TEST PROCEDURE	18
4.3 DEVIATION FROM TEST STANDARD 19	4.3 DEVIATION FROM TEST STANDARD	19
4.4 TEST SETUP 19	4.4 TEST SETUP	19
4.5 EUT OPERATION CONDITIONS 20	4.5 EUT OPERATION CONDITIONS	20
4.6 TEST RESULTS - 9 KHZ TO 30 MHZ 20	4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	20
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ 20	4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	20
4.8 TEST RESULTS - ABOVE 1000 MHZ20	4.8 TEST RESULTS - ABOVE 1000 MHZ	20
5. BANDWIDTH 21	5 . BANDWIDTH	21
5.1 LIMIT 21	5.1 LIMIT	21
5.2 TEST PROCEDURE 21	5.2 TEST PROCEDURE	21
5.3 DEVIATION FROM STANDARD21	5.3 DEVIATION FROM STANDARD	21
5.4 TEST SETUP 21	5.4 TEST SETUP	21

Table of Contents	Page
5.5 EUT OPERATION CONDITIONS	21
5.6 TEST RESULTS	21
6 . MAXIMUM OUTPUT POWER	22
6.1 LIMIT	22
6.2 TEST PROCEDURE	22
6.3 DEVIATION FROM STANDARD	22
6.4 TEST SETUP	22
6.5 EUT OPERATION CONDITIONS	22
6.6 TEST RESULTS	22
7 . CONDUCTED SPURIOUS EMISSIONS	23
7.1 LIMIT	23
7.2 TEST PROCEDURE	23
7.3 DEVIATION FROM STANDARD	23
7.4 TEST SETUP	23
7.5 EUT OPERATION CONDITIONS	23
7.6 TEST RESULTS	23
8 . POWER SPECTRAL DENSITY	24
8.1 LIMIT	24
	24
8.3 DEVIATION FROM STANDARD	24
8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS	24 24
8.6 TEST RESULTS	24
9 . MEASUREMENT INSTRUMENTS LIST	25
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	27
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	30
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	35
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ	38
APPENDIX E - BANDWIDTH	123
APPENDIX F - MAXIMUM OUTPUT POWER	128
APPENDIX G - CONDUCTED SPURIOUS EMISSIONS	131
APPENDIX H - POWER SPECTRAL DENSITY	136

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue.	Dec. 02, 2021

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C								
Standard(s) Section	Test Item	Test Result	Judgment	Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	PASS					
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS					
15.247(a)(2)	Bandwidth	APPENDIX E	PASS					
15.247(b)(3)	Maximum Output Power	APPENDIX F	PASS					
15.247(d)	Conducted Spurious Emissions	APPENDIX G	PASS					
15.247(e)	Power Spectral Density	APPENDIX H	PASS					
15.203	Antenna Requirement		PASS	Note(2)				

Note:

(1) "N/A" denotes test is not applicable in this test report.(2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong, People's Republic of China. BTL's Test Firm Registration Number for FCC: 357015 BTL's Designation Number for FCC: CN1240

5

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U, (dB)
DG-C02	CISPR	150kHz ~ 30MHz	2.60

B. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		9kHz ~ 30MHz	-	3.02
		30MHz ~ 200MHz	V	4.36
	CISPR	30MHz ~ 200MHz	Н	3.32
		200MHz ~ 1,000MHz	V	4.08
DG-CB03		200MHz ~ 1,000MHz	Н	3.96
		1GHz ~ 6GHz	-	3.80
		6GHz ~ 18GHz	-	4.82
		18GHz ~ 26.5GHz	-	3.62
		26.5GHz ~ 40GHz	-	4.00

C. Other Measurement:

Test Item	Uncertainty
Bandwidth	±3.8 %
Maximum Output Power	±0.95 dB
Conducted Spurious Emission	±2.71 dB
Power Spectral Density	±0.86 dB
Temperature	±0.08 °C
Humidity	±1.5%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	23°C	65%	AC 120V/60Hz	Aries Tang
Radiated Emissions-9kHz to 30 MHz	25°C	60%	AC 120V/60Hz	Sparrow Liu
Radiated Emissions-30MHz to 1000MHz	24°C	60%	AC 120V/60Hz	Wade Liang
Radiated Emissions-Above 1000MHz	24°C	60%	AC 120V/60Hz	Wade Liang
Bandwidth	23.1°C	47%	DC 3.87V	King Huang
Maximum Output Power	25°C	35%	DC 3.87V	Ansel Yang
Conducted Spurious Emissions	23.1°C	47%	DC 3.87V	King Huang
Power Spectral Density	23.1°C	47%	DC 3.87V	King Huang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone					
Brand Name	realme					
Test Model	RMX3286					
Series Model	N/A					
Model Difference(s)	N/A					
Hardware Version	11					
Software Version	realme UI V2.0					
Power Source	 1# DC voltage supplied from AC adapter. (1) Model: VCB3HDUH (2) Model: VCB3HAUH 2# Supplied from battery. Model: BLP875 3# Supplied from USB port. 					
Power Rating	1# I/P: 100-240V~ 50/60Hz 1.2A O/P: 5V === 2A or 5-11V === 3A Max 2# DC 3.87V, 4880mAh, 18.88Wh 3# DC 5V					
Operation Frequency	2412 MHz ~ 2462 MHz					
Modulation Type	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM					
Bit Rate of Transmitter IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps						
Maximum Peak Output Power	IEEE 802.11g: 25.15 dBm (0.3273 W)					
Maximum Average Output Power	IEEE 802.11b: 18.09 dBm (0.0644 W)					

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20) CH03 - CH09 for IEEE 802.11n(HT40)								
Channel Frequency (MHz) Frequency Channel Frequency (MHz) Frequency Channel Frequency <								
01	2412	04	2427	07	2442	10	2457	
02	2417	05	2432	08	2447	11	2462	
03	2422	06	2437	09	2452			

3. Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	PIFA	N/A	0.2

Note:The antenna gain is provided by the manufacturer.

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description		
Mode 1	TX B Mode Channel 01/06/11		
Mode 2	TX G Mode Channel 01/06/11		
Mode 3	TX N(HT20) Mode Channel 01/06/11		
Mode 4	K N(HT40) Mode Channel 03/06/09		
Mode 5	TX G Mode Channel 01/06/07/10/11		
Mode 6	TX N(HT20) Mode Channel 01/06/07/09/10/11		
Mode 7	TX N(HT40) Mode Channel 03/04/05/06/07/08/09		
Mode 8	TX G Mode Channel 07		

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test

Final Test Mode	Description
Mode 8	TX G Mode Channel 07

Radiated emissions test - Below 1GHz			
Final Test Mode Description			
Mode 8	TX G Mode Channel 07		

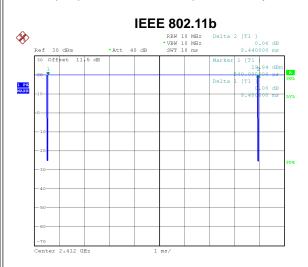
Radiated emissions test- Above 1GHz				
Final Test Mode Description				
Mode 1	TX B Mode Channel 01/06/11			
Mode 5	TX G Mode Channel 01/06/07/10/11			
Mode 6	TX N(HT20) Mode Channel 01/06/07/09/10/11			
Mode 7	TX N(HT40) Mode Channel 03/04/05/06/07/08/09			

Maximum Output Power				
Final Test Mode Description				
Mode 1	B Mode Channel 01/06/11			
Mode 5	TX G Mode Channel 01/06/07/10/11			
Mode 6	TX N(HT20) Mode Channel 01/06/07/09/10/11			
Mode 7	TX N(HT40) Mode Channel 03/04/05/06/07/08/09			

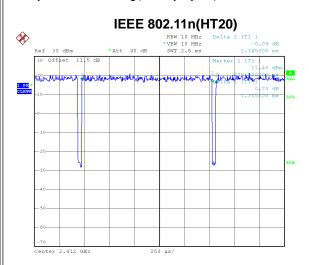
Other Conducted test			
Final Test Mode	Description		
Mode 1	TX B Mode Channel 01/06/11		
Mode 2	TX G Mode Channel 01/06/11		
Mode 3	TX N(HT20) Mode Channel 01/06/11		
Mode 4	TX N(HT40) Mode Channel 03/06/09		

NOTE:

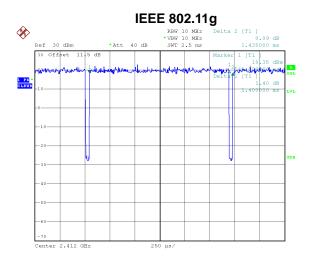
- (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (2) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX G Mode Channel 07 is found to be the worst case and recorded.
- (3) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (4) All adapters had been tested, in this report only recorded thre worst case.


2.3 PARAMETERS OF TEST SOFTWARE

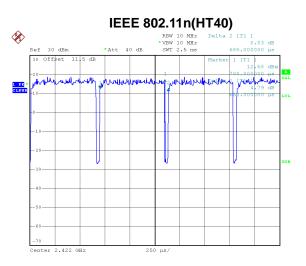
Test Software Version	N/A							
Frequency (MHz)	24	112	2437			2462		
IEEE 802.11b	1	4	18			13.5		
Frequency (MHz)	24	112	2437 2442		2457	2462		
IEEE 802.11g	1	15	17 17		12.5	11.5		
Frequency (MHz)	2412	2437	2442	2452 24		2457	2	462
IEEE 802.11n(HT20)	14	16	16	15 12.		12.5	1	1.5
Frequency (MHz)	2422	2427	2432	24	137	2442	2447	2452
IEEE 802.11n(HT40)	11	12	13	1	3	12	10	10


2.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered. The output power = measured power + duty factor.


Date: 27.0CT.2021 11:05:34

Duty cycle = 8.400 ms / 8.440 ms = 99.53%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.00$


Date: 27.0CT.2021 11:06:38

Duty cycle = 1.305 ms / 1.345 ms = 97.03% Duty Factor = 10 log(1/Duty cycle) = 0.13

Date: 27.0CT.2021 11:07:25

Duty cycle = 1.400 ms / 1.435 ms = 97.56%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.11$

Date: 27.0CT.2021 11:06:55

Duty cycle = 0.650 ms / 0.685 ms = 94.89%Duty Factor = $10 \log(1/\text{Duty cycle}) = 0.23$

NOTE:

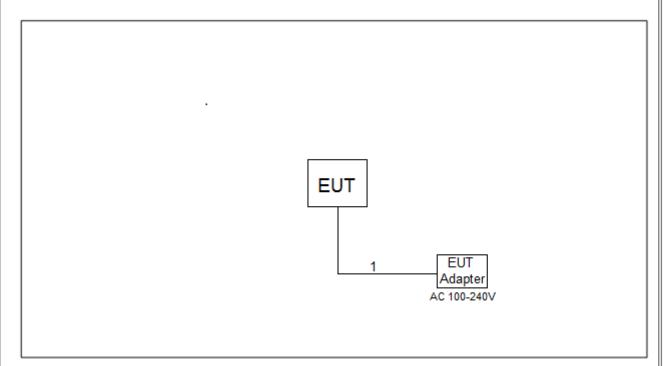
For IEEE 802.11b:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz.

For IEEE 802.11g:

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 714 Hz.

For IEEE 802.11n(HT20):


For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 766 Hz.

For IEEE 802.11n(HT40):

For radiated emissions frequency above 1 GHz, the resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1538 Hz.

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
-	-	-	-	-

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1m

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

Frequency of Emission (MHz)	Limit (dBµV)			
Frequency of Emission (MHZ)	Quasi-peak	Average		
0.15 - 0.5	66 to 56*	56 to 46*		
0.5 - 5.0	56	46		
5.0 - 30.0	60	50		

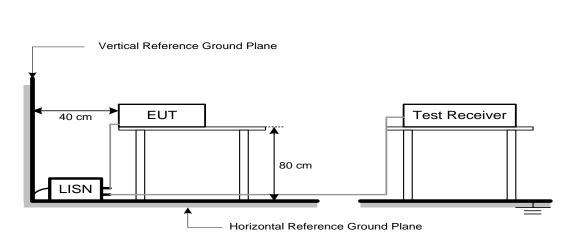
NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBuV/m at 3 m)		
Frequency (wiriz)	Peak	Average	
Above 1000	74	54	

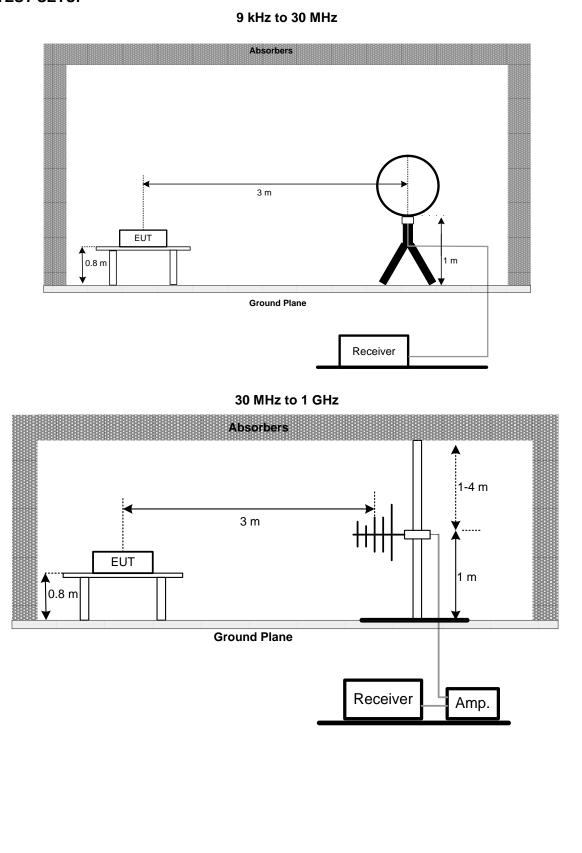
NOTE:

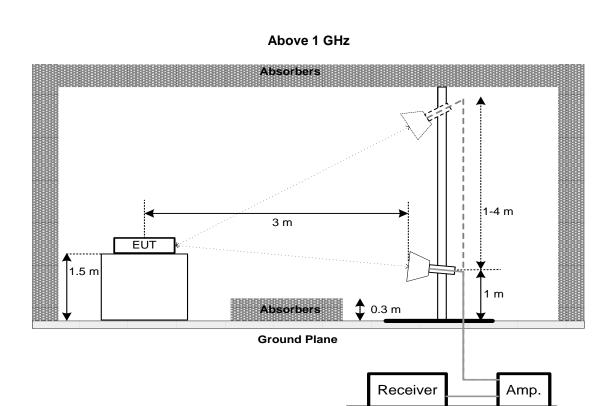
- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


Spectrum Parameters	Setting		
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz		
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz		
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz		
Spectrum Parameters	Setting		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1 MHz / 3 MHz for PK value		
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value		
Receiver Parameters	Setting		
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector		
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector		
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector		
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector		
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector		
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector		


4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

<u>3TL</u>

4.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

4.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH

5.1 LIMIT

Section	Test Item	Limit
FCC 15.247(a)(2)	6 dB Bandwidth	Minimum 500 kHz
	99% Emission Bandwidth	-

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

For 6 dB Bandwidth:

Setting	
> Measurement Bandwidth	
100 kHz	
300 kHz	
Peak	
Max Hold	
Auto	

For 99% Emission Bandwidth:

Spectrum Parameters	Setting	
Span Frequency	Between 1.5 times and 5.0 times the OBW	
RBW	300 kHz For 20MHz 1 MHz For 40MHz	
VBW	1 MHz For 20MHz 3 MHz For 40MHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

6. MAXIMUM OUTPUT POWER

6.1 LIMIT

Section	Test Item	Limit
FCC 15.247(b)(3)	Maximum Output Power	1.0000 Watt or 30.00 dBm

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum conducted output power was performed in accordance with method 11.9.1.3 and 11.9.2.3.1 of ANSI C63.10-2013.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

7. CONDUCTED SPURIOUS EMISSIONS

7.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak Output Power limits. If the transmitter complies with the Output Power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting		
Start Frequency	30 MHz		
Stop Frequency	26.5 GHz		
RBW	100 kHz		
VBW	300 kHz		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX G.

8. POWER SPECTRAL DENSITY

8.1 LIMIT

Section	Test Item Limit	
FCC 15.247(e)	Power Spectral Density (in any 2 kl la)	
1 CC 15.247(e)	Power Specifial Density	(in any 3 kHz)

8.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b. The following table is the setting of the spectrum analyzer:

Spectrum Parameters	Setting	
Span Frequency	25 MHz (20 MHz) / 60 MHz (40 MHz)	
RBW	3 kHz	
VBW	10 kHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX H.

9. MEASUREMENT INSTRUMENTS LIST

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until	
1	EMI Test Receiver	R&S	ESCI	100382	Feb. 28, 2022	
2	LISN	EMCO	3816/2	52765	Feb. 27, 2022	
3	TWO-LINE V-NETWORK	R&S	ENV216	101447	Feb. 27, 2022	
4	50Ω Terminator	SHX	TF5-3	15041305	Feb. 27, 2022	
5	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A	
6	Cable	N/A	RG223	12m	Mar. 09, 2022	
7	643 Shield Room	ETS	6*4*3m	N/A	N/A	

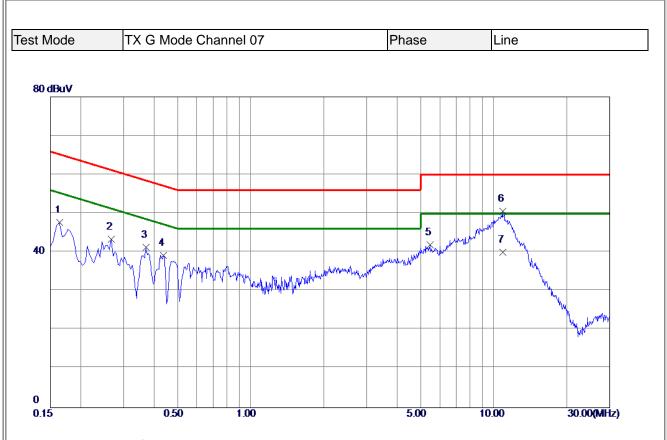
	Radiated Emissions - 9 kHz to 30 MHz				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Loop Antenna	EM	EM-6876-1	230	Apr. 28, 2022
2	Cable	N/A	RG 213/U	N/A	May 27, 2022
3	MXE EMI Receiver	Keysight	N9038A	MY56400091	Feb. 27, 2022
4	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
5	966 Chambe Room	RM	9*6*6m	N/A	Jul. 24, 2022

	Radiated Emissions - 30 MHz to 1 GHz				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarzbeck	VULB9160	9160-3232	Mar. 15, 2022
2	Amplifier	HP	8447D	2944A08742	Feb. 28, 2022
3	Receiver	Agilent	N9038A	MY52130039	Mar. 19, 2022
4	Cable	emci	LMR-400(30MHz-1 GHz)(8m+5m)	N/A	May 20, 2022
5	Controller	СТ	SC100	N/A	N/A
6	Controller	MF	MF-7802	MF780208416	N/A
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
8	966 Chambe Room	RM	9*6*6m	N/A	Jul. 24, 2022

	Radiated Emissions - Above 1 GHz									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Double Ridged Guide Antenna	ETS	3115	75789	May 10, 2022					
2	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Jun. 30, 2022					
3	Amplifier	Agilent	8449B	3008A02584	Jul. 10, 2022					
4	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Feb. 28, 2022					
5	Receiver	Agilent	N9038A	MY52130039	Mar. 19, 2022					
6	Controller	СТ	SC100	N/A	N/A					
7	Controller	MF	MF-7802	MF780208416	N/A					
8	Cable	N/A	EMC104-SM-SM-6 000	N/A	Oct. 15, 2022					
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A					
10	Filter	STI	STI15-9912	N/A	Jul. 10, 2022					
11	966 Chambe Room	RM	9*6*6m	N/A	Jul. 24, 2022					

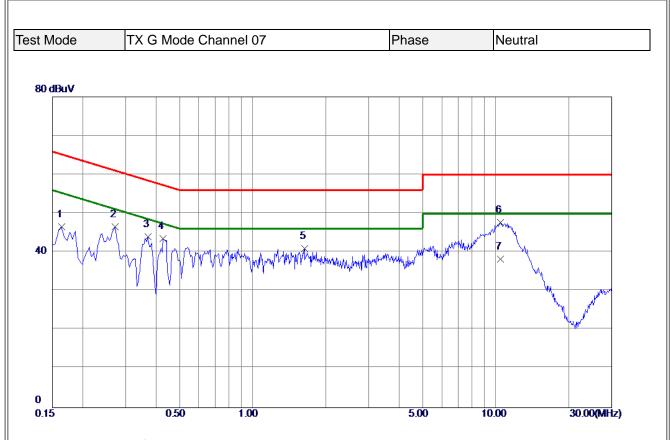
Bandwidth & Conducted Spurious Emissions & Power Spectral Density									
Item	m Kind of Equipment Manufacturer Type No. Serial No. Calibrated until								
1	Spectrum Analyzer	R&S	FSP40	100185	Jul. 10, 2022				
2	Attenuator	WOKEN	6SM3502	VAS1214NL	Feb. 07, 2022				
3	RF Cable	Tongkaichuan	N/A	N/A	N/A				
4									

	Maximum Output Power									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Peak Power Analyzer	Keysight	8990B	MY51000506	Jul. 10, 2022					
2	Wideband power sensor	Keysight	N1923A	MY58310004	Jul. 10, 2022					
3	Attenuator	WOKEN	6SM3502	VAS1214NL	Feb. 07, 2022					
4	RF Cable	Tongkaichuan	N/A	N/A	N/A					


Remark: "N/A" denotes no model name, serial no. or calibration specified.

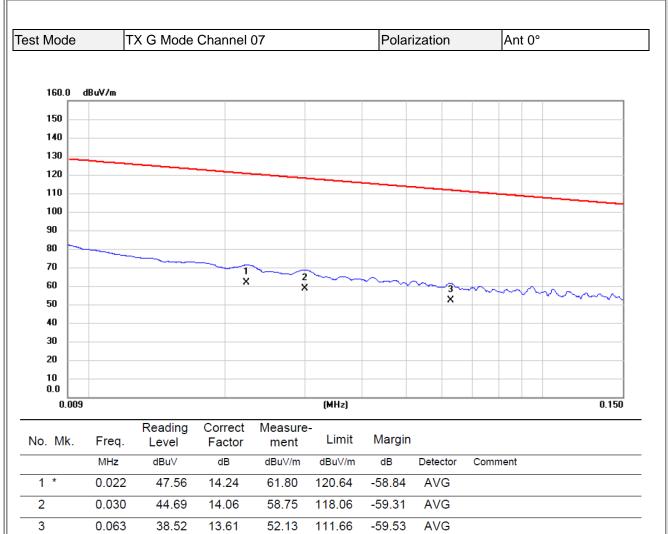
All calibration period of equipment list is one year.

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

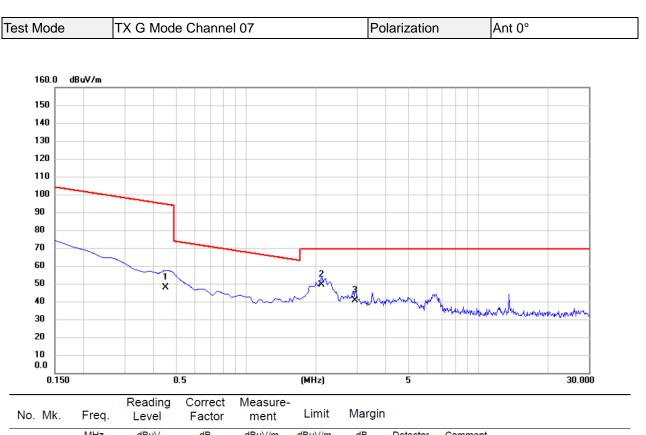


No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1635	37.94	9.77	47.71	65.28	-17.57	Peak	
2	0.2670	33. 52	9.87	43.39	61.21	-17.82	Peak	
3	0.3704	31.36	9.90	41.26	58.49	-17.23	Peak	
4	0. 4380	29.26	9.91	39.17	57.10	-17. 93	Peak	
5	5. 4780	31.55	10.31	41.86	60.00	-18.14	Peak	
6 *	10.8825	39.83	10.69	50. 52	60.00	- 9. 4 8	Peak	
7	10.8825	29.30	10.69	39.99	50.00	-10.01	AVG	

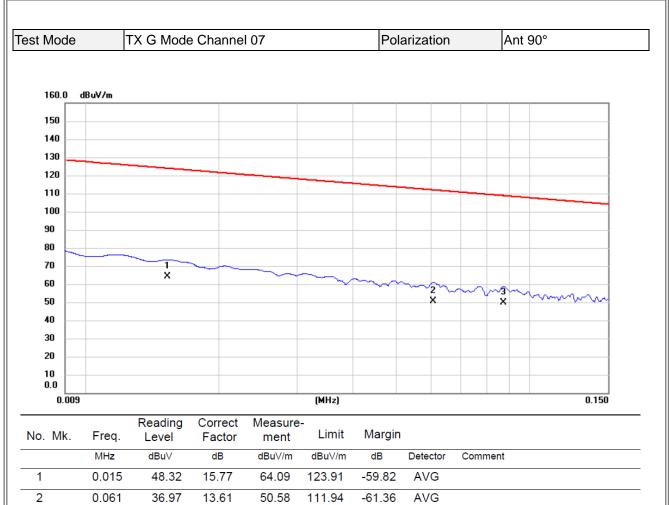
- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.


	D					
MHz dBuV dl	IR (dBuV	dBuV	dB	Detector	Comment
1 0.1635 36.73 9.	. 85 4	46. 58	65.28	-18. 70	Peak	
2 0. 2714 36. 53 9.	. 99 4	46. 52	61. 07	-14. 55	Peak	
3 0.3704 33.90 1	0.05	43. 95	58. 49	-14. 54	Peak	
4 0.4290 33.39 1	0.08	43. 47	57.27	-13.80	Peak	
5 1.6350 30.64 1	0.34	40. 9 8	56. 00	-15. 0 2	Peak	
6 10. 4865 36. 73 1	1.02	47. 75	60. 00	-12.25	Peak	
7 * 10. 4865 27. 20 1	1.02	38. 22	50.00	-11. 78	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.



INO. IVIK.	Freq.	Level	Factor	ment	LIIIII	maryin		
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	0.449	34.58	13.40	47.98	94.57	-46.59	AVG	
2 *	2.120	37.42	12.04	49.46	69.54	-20.08	QP	
3	2.956	28.95	11.73	40.68	69.54	-28.86	QP	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

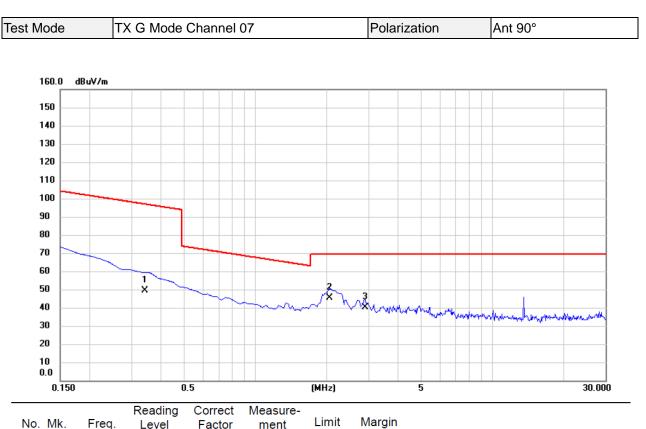
3 *

0.087

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

36.25

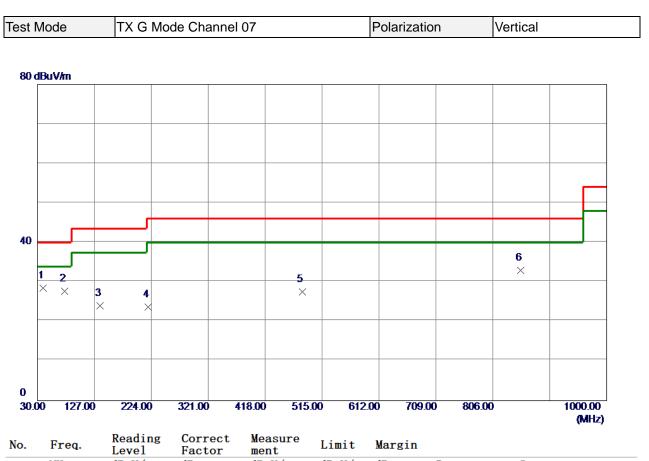
13.64


49.89

108.80

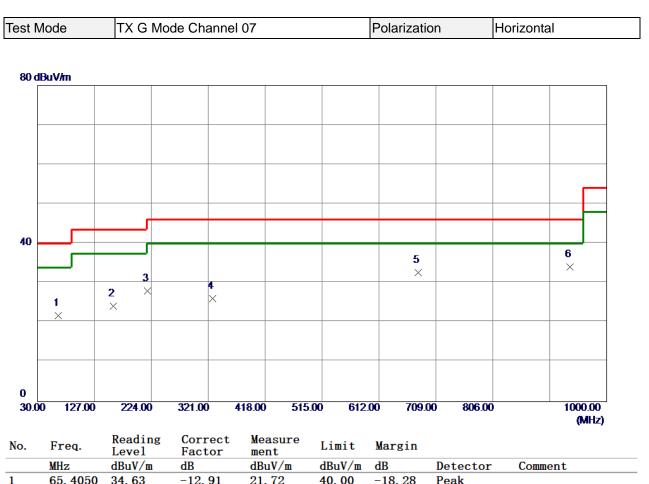
-58.91

AVG


No. Mk.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	0.343	35.96	13.51	49.47	96.90	-47.43	AVG		
2 *	2.060	33.48	12.07	45.55	69.54	-23.99	QP		
3	2.896	28.41	11.75	40.16	69.54	-29.38	QP		

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

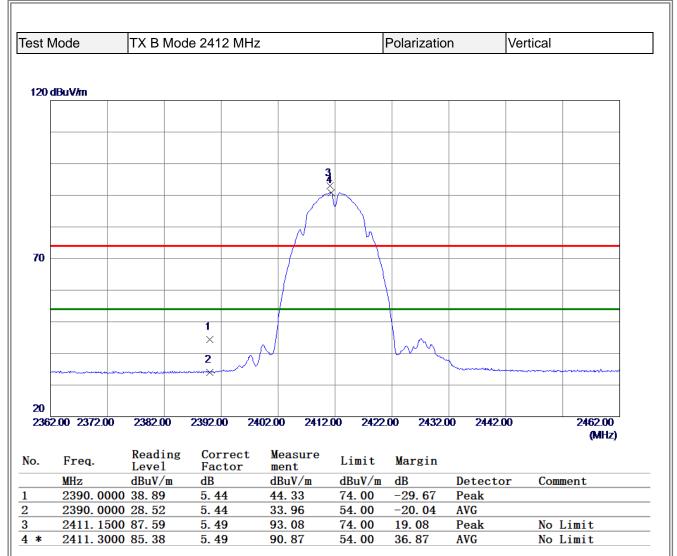
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ


BIL

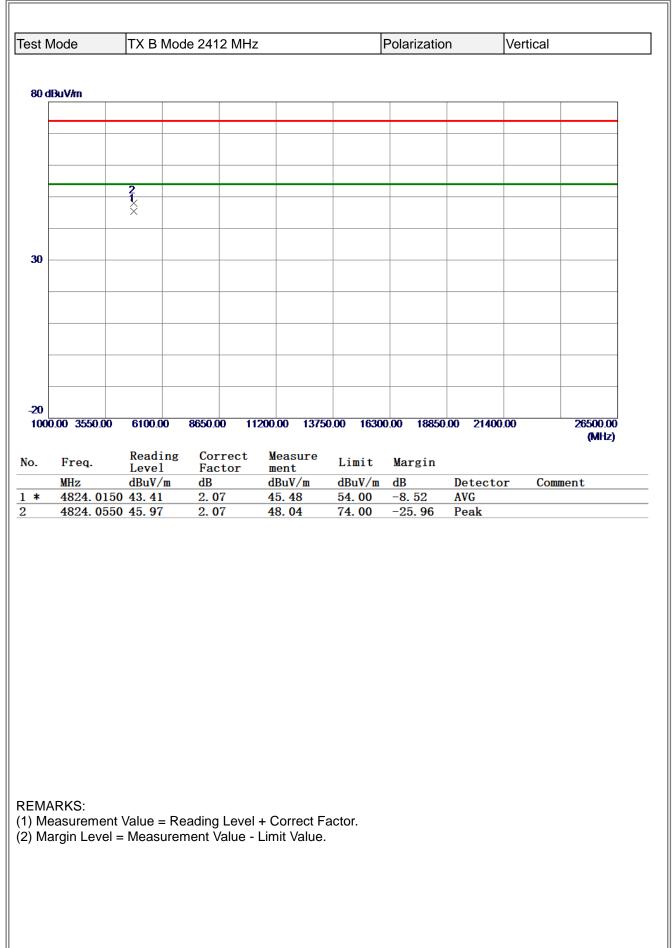
		Level	Factor	ment	21210			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1 *	39. 7000	40.63	-12. 19	28.44	40.00	-11. 56	Peak	
2	76. 5600	42.99	-15.31	27.68	40.00	-12.32	Peak	
3	137. 1850	36.48	-12.44	24.04	43.50	-19.46	Peak	
4	218.6650	38.84	-15.14	23.70	46.00	-22. 30	Peak	
5	481.0500	34.66	-7.18	27.48	46.00	-18.52	Peak	
6	853. 5300	33.95	-0.95	33.00	46.00	-13.00	Peak	

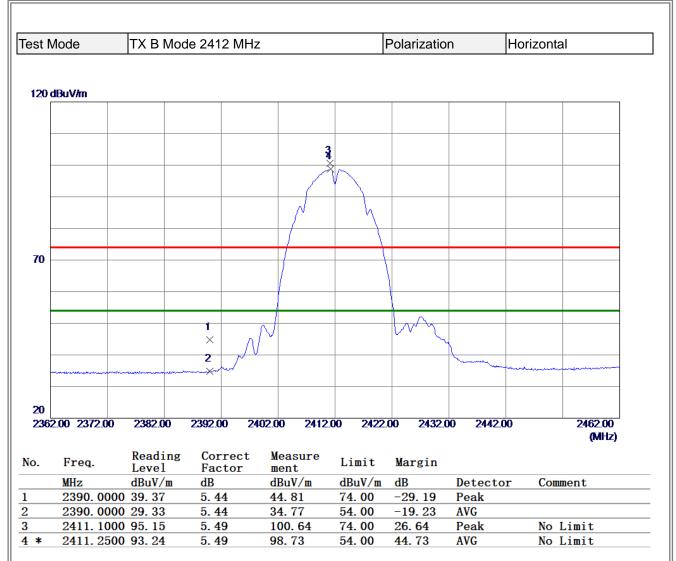
REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

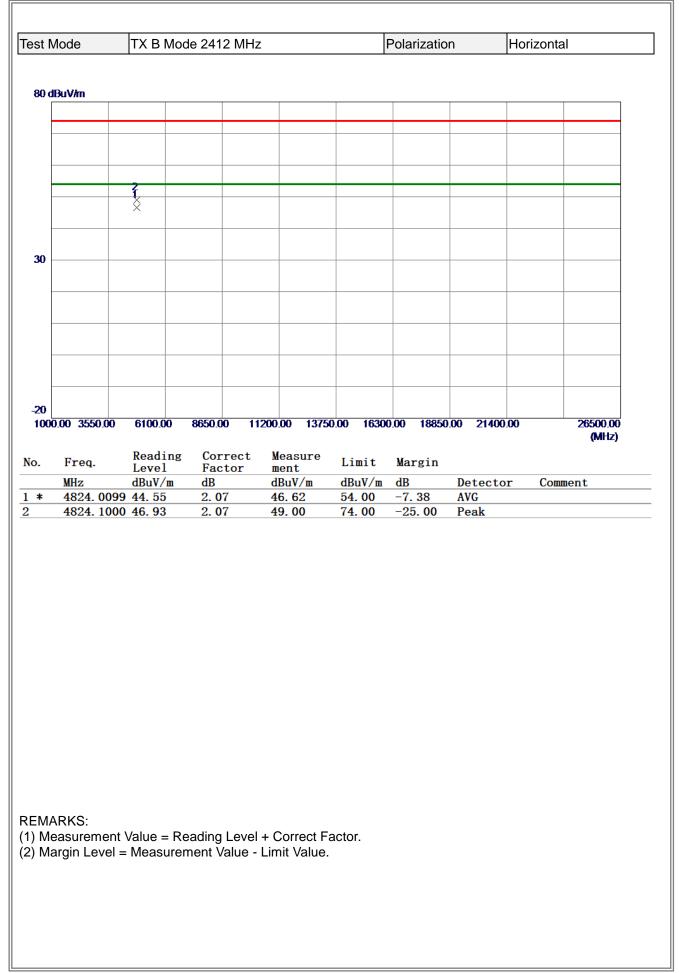


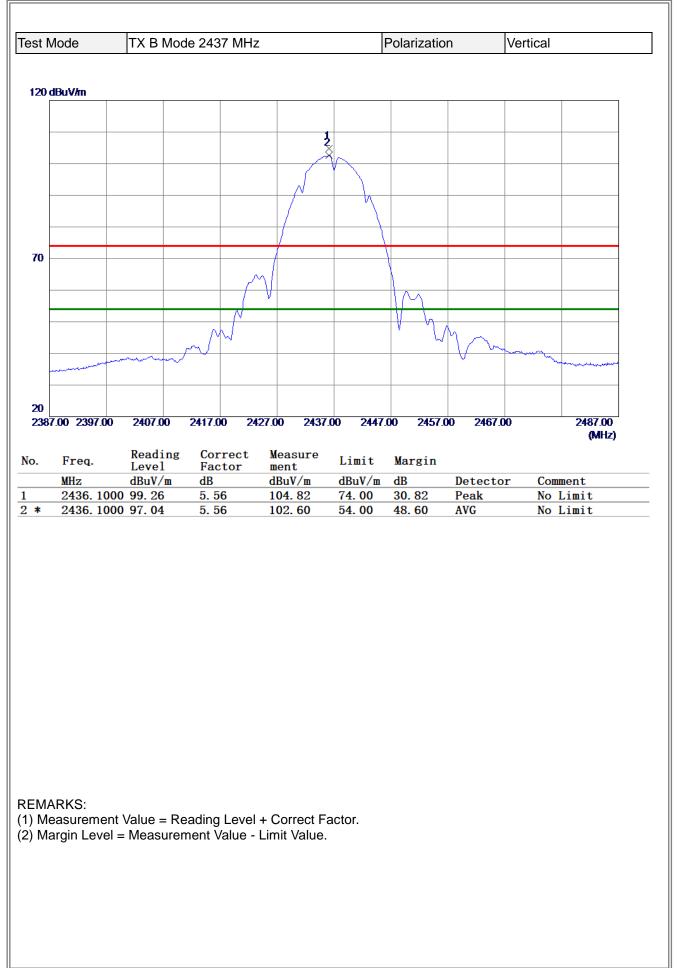
1	65. 40 50 34. 63	-12. 91	21.72	40.00	-18.28	Peak	
2	159.4950 35.87	-11.65	24.22	43. 50	-19.28	Peak	
3	217.6950 43.18	-15. 13	28.05	46.00	-17.95	Peak	
4	328.7600 36.57	-10. 53	26.04	46.00	-19.96	Peak	
5	678.4450 35.93	-3.31	32.62	46.00	-13.38	Peak	
6 *	937. 4350 34. 48	-0.39	34.09	46.00	-11. 91	Peak	

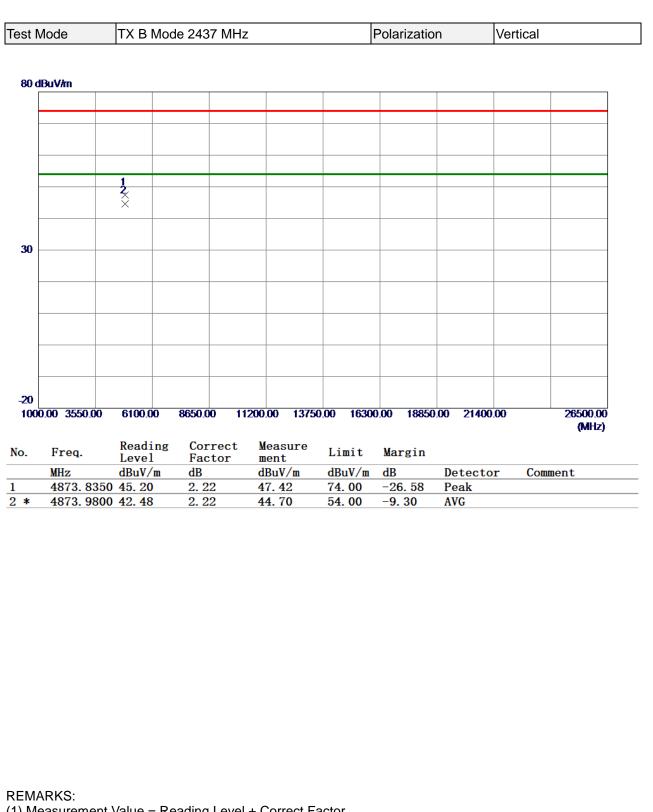

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

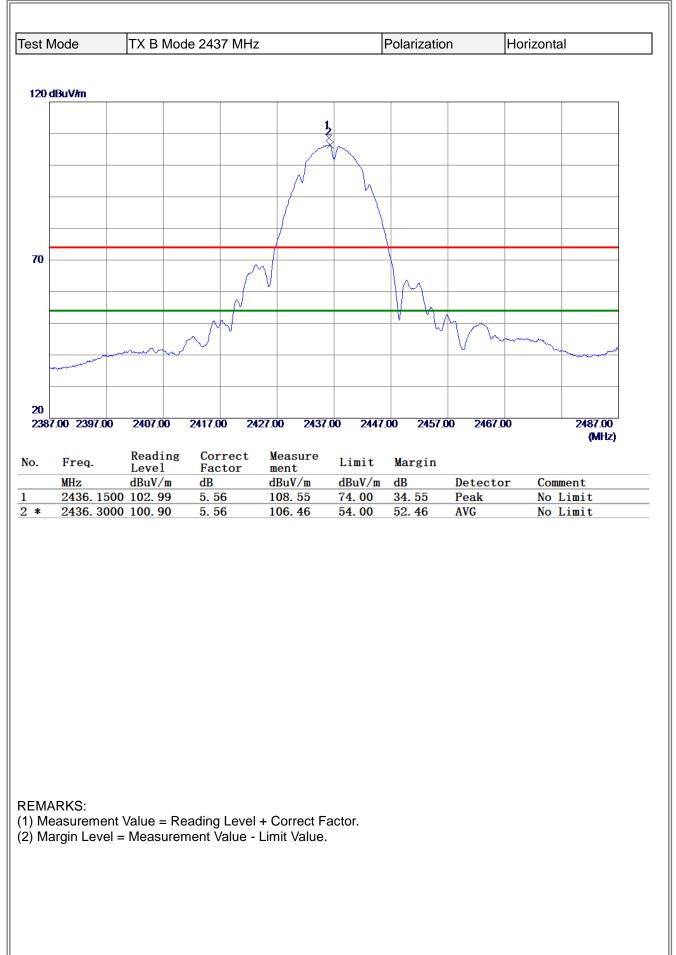


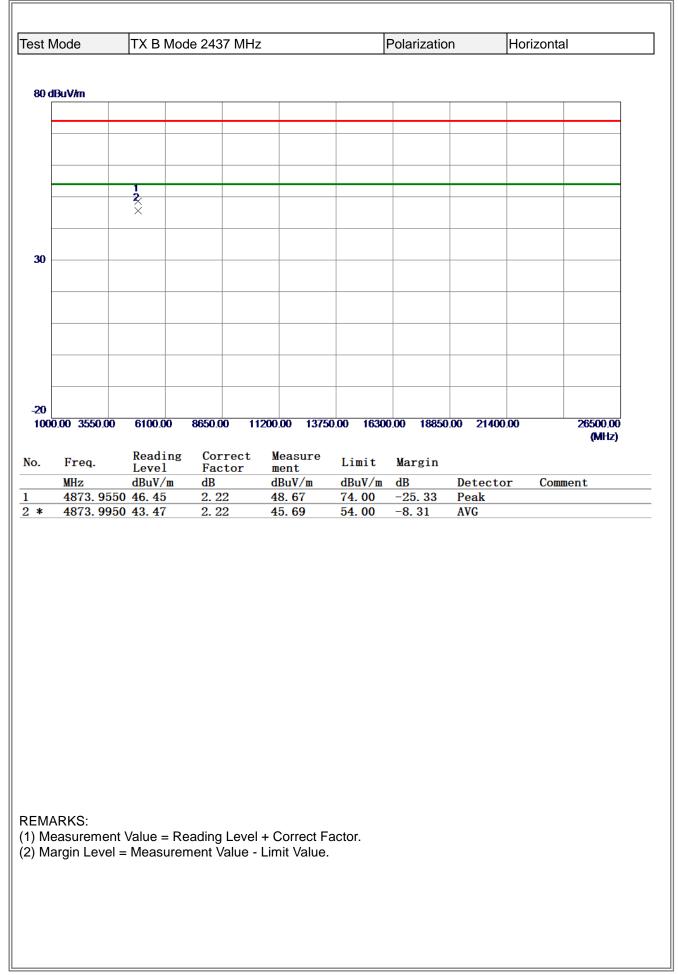
APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ

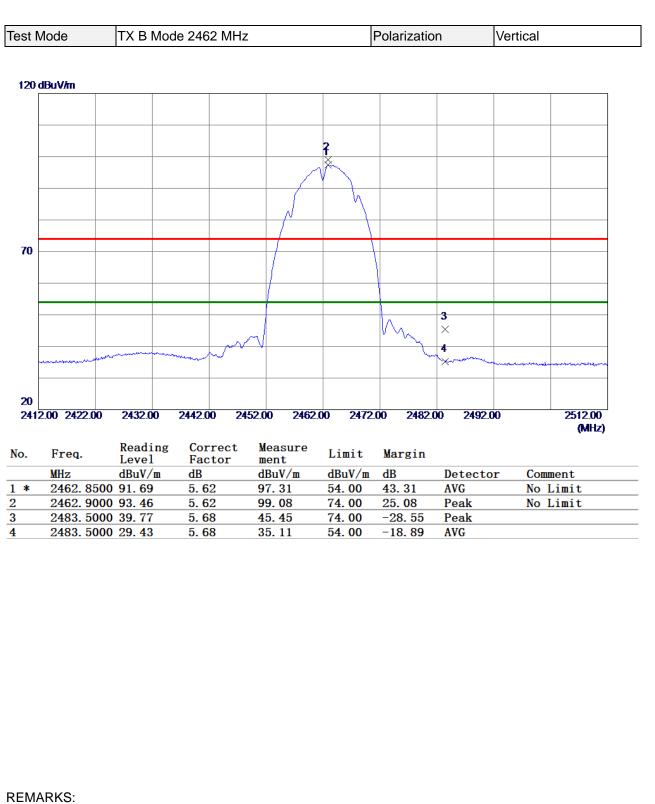


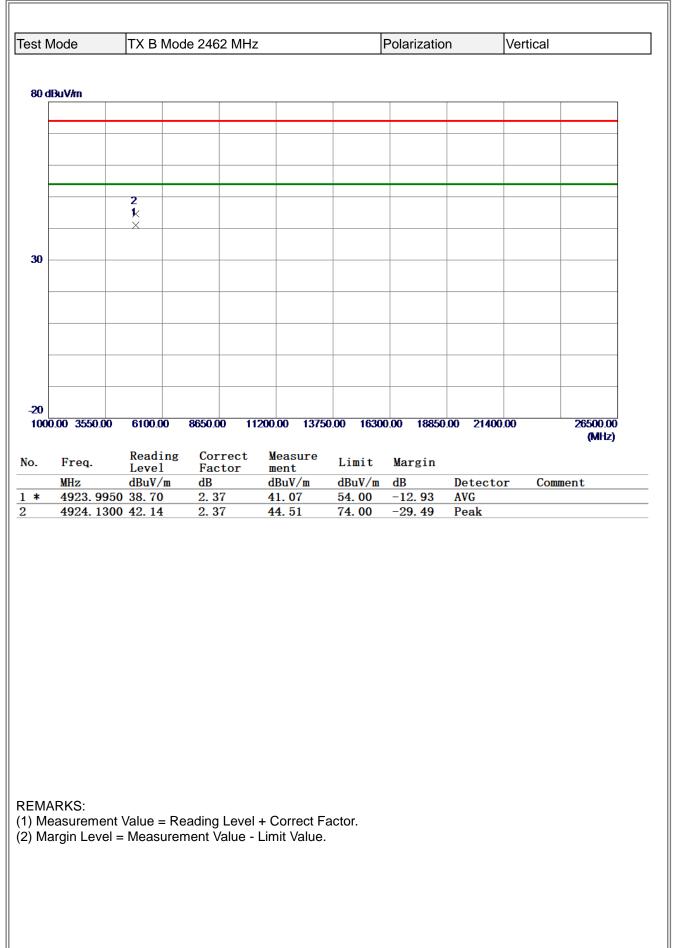

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

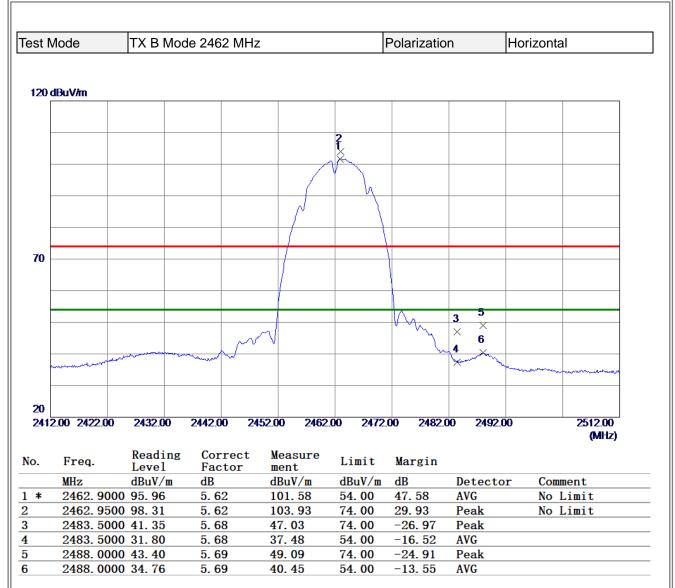


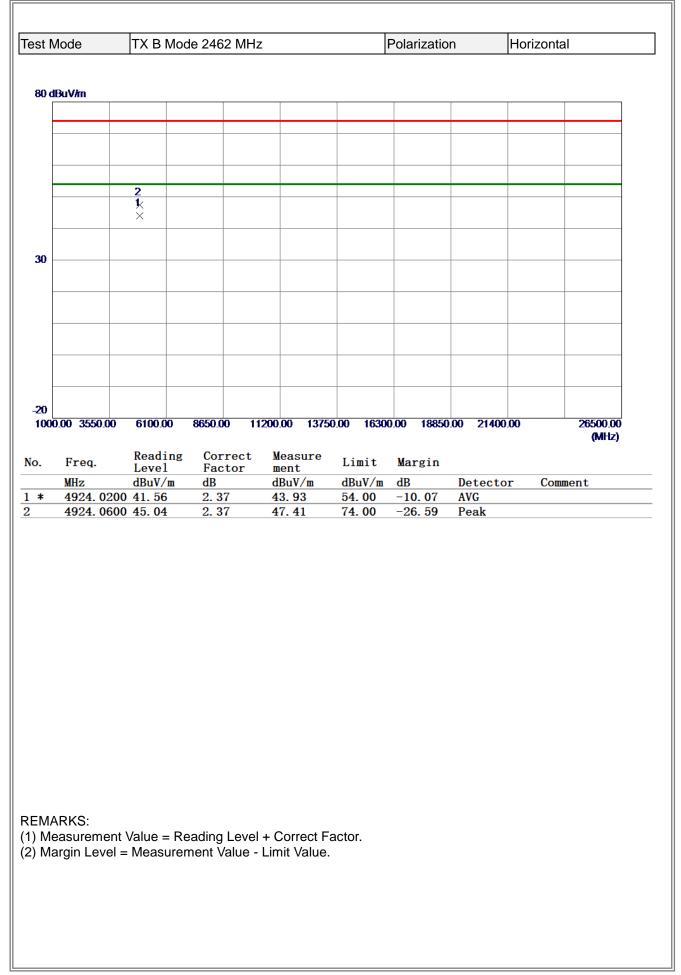

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

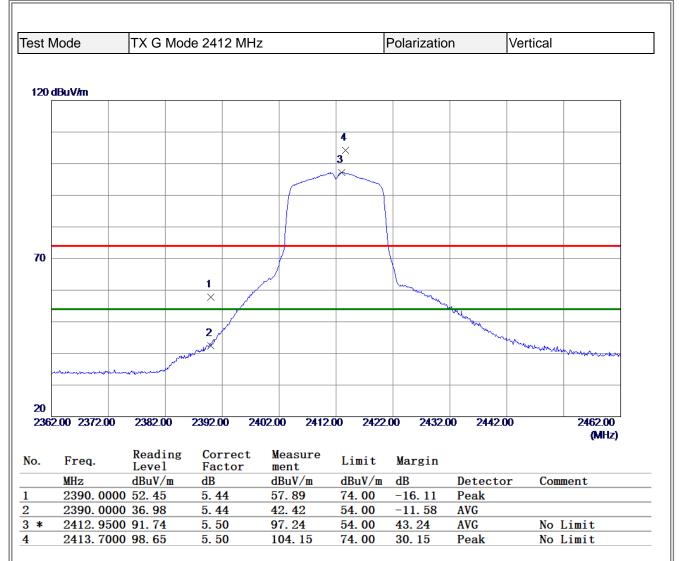


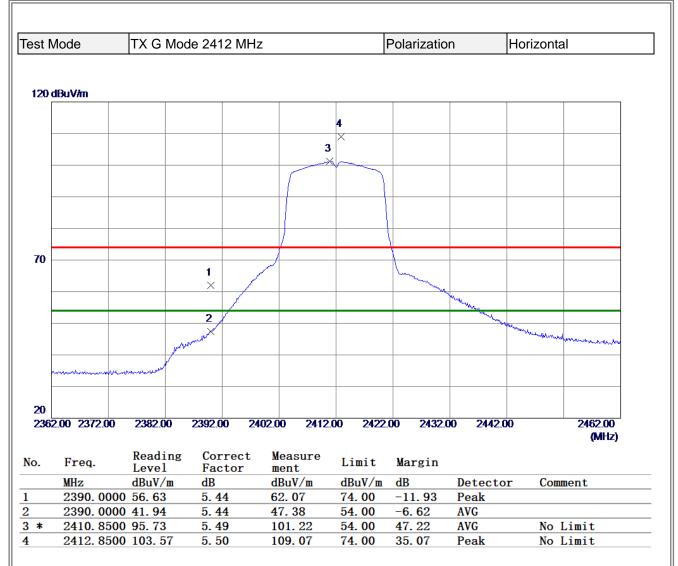


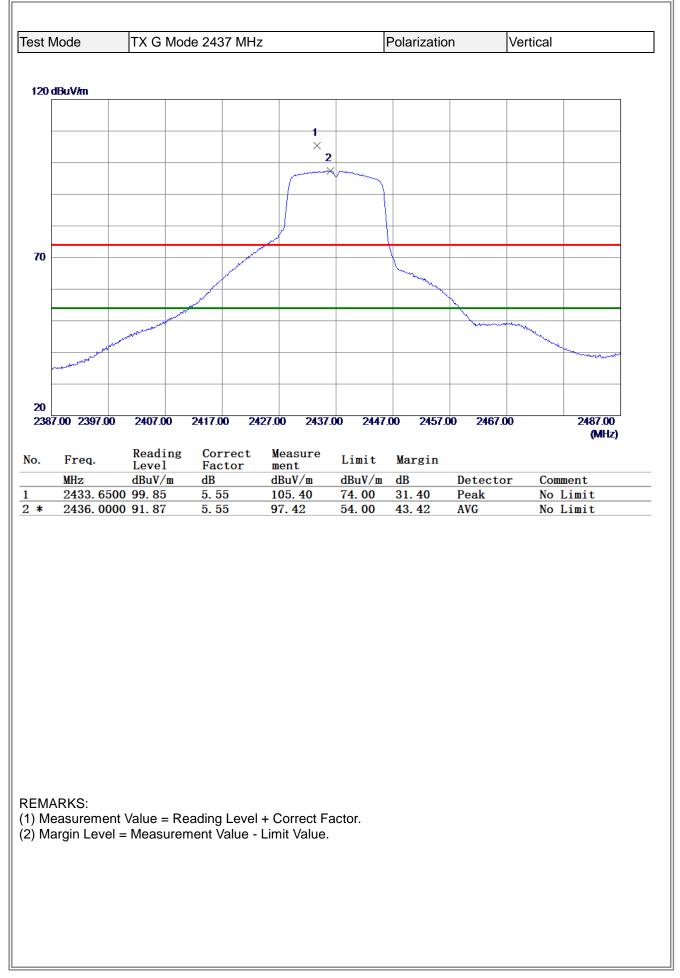

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

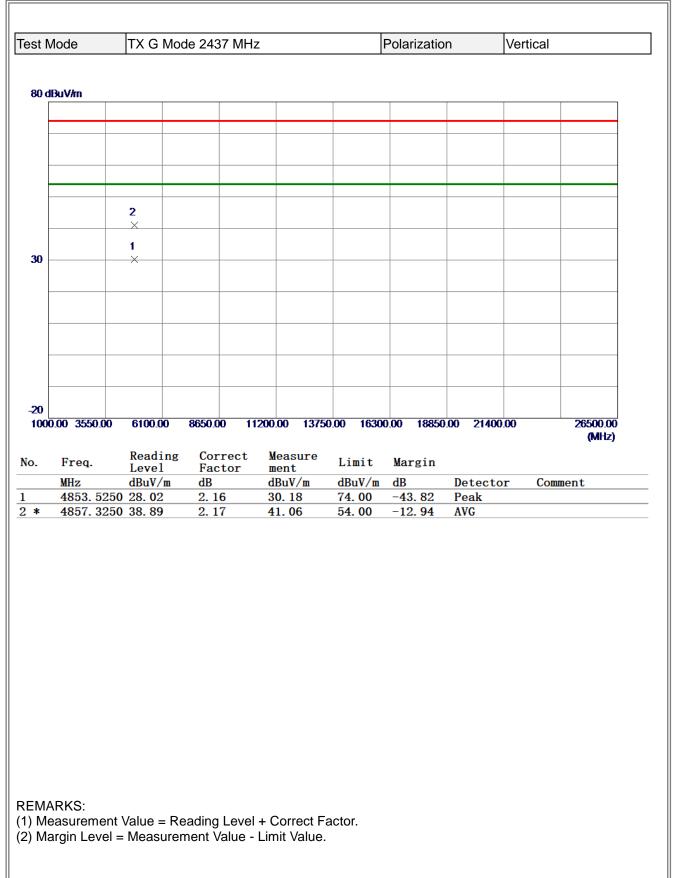


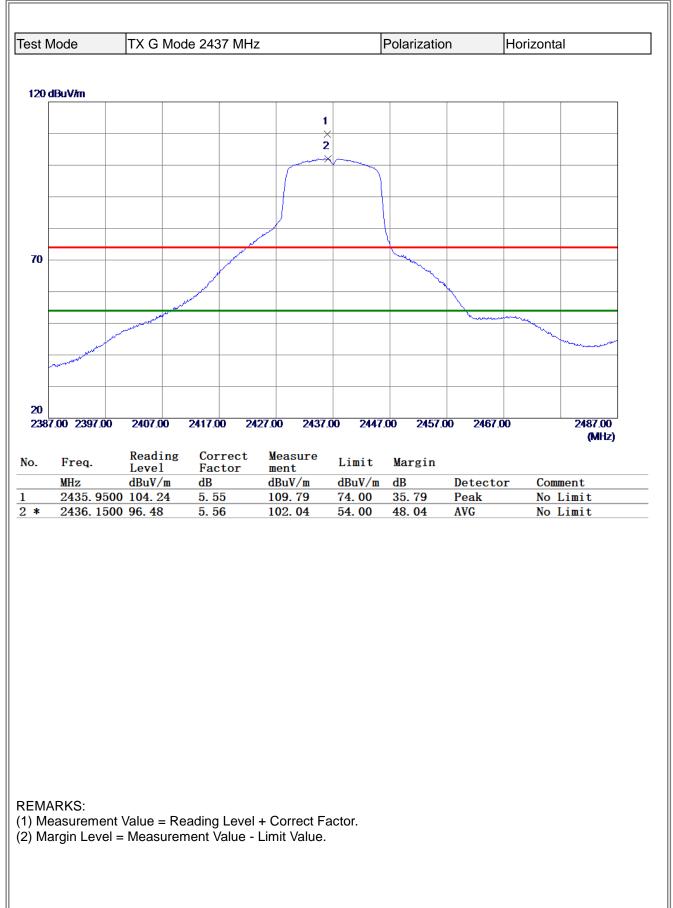


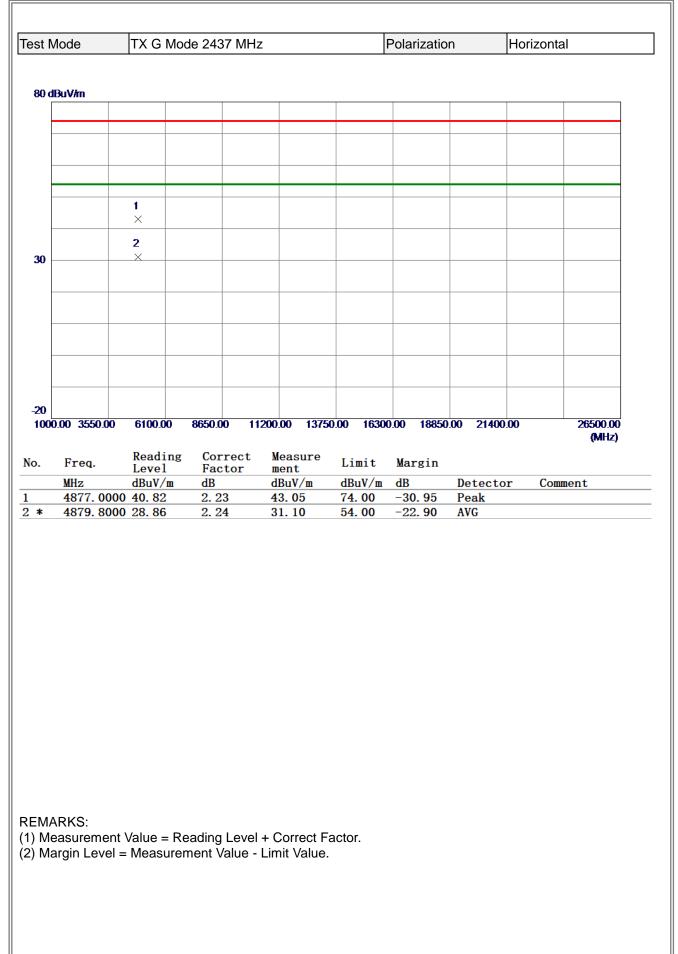

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

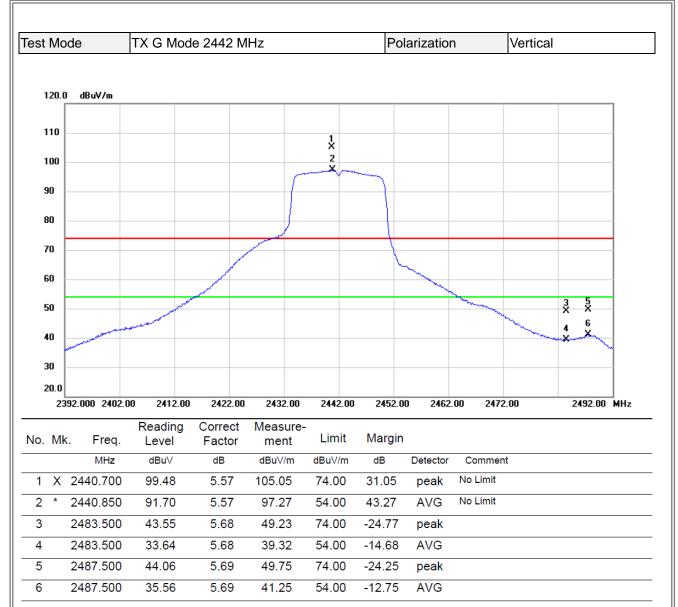

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

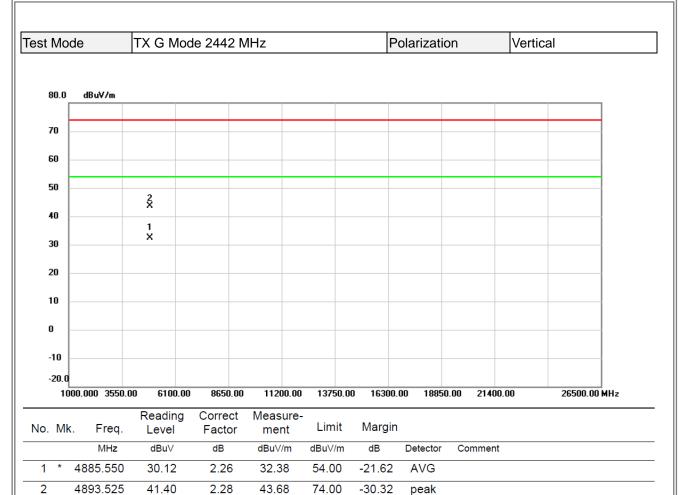

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

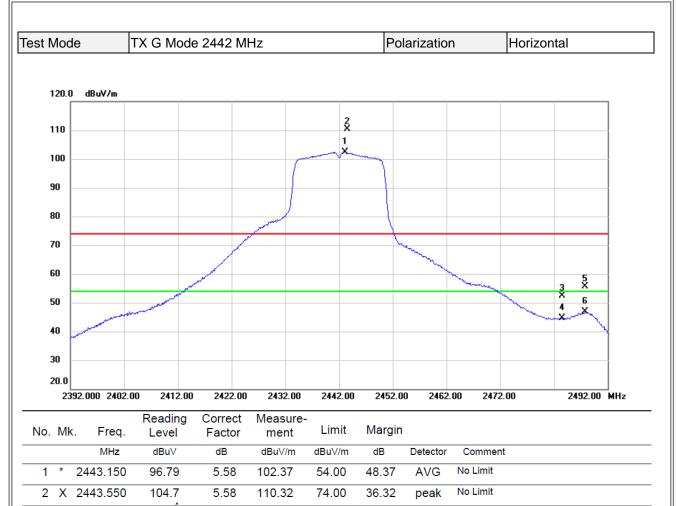

st M	lode	TX G M	ode 2412 N	1Hz		Polarizatio	n	Vertical	
0 dE	3uV/m								
\vdash									
_		2							
		×							
		1							
		×							
-									
_									
nn	.00 3550.00	6100.00	8650.00	11200.00 13750	0.00 1630	0.00 18850	.00 21400	00	26500.00
7 . 7U					1000	0.00 10050	.00 21400		(MHz)
	Freq.	Reading Level		t Measure	Limit	Margin	.00 21400		
	Freq. MHz	Reading Level dBuV/m	g Correc Factor dB	t Measure ment dBuV/m	Limit dBuV/m	Margin dB	Detecto		(MHz)
	Freq.	Reading Level dBuV/m 30.90	g Correc Factor	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03			(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m	Limit dBuV/m	Margin dB	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
	Freq. MHz 4823.7000 4825.1250	Reading Level dBuV/m 30.90	g Correc Factor dB 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00	Margin dB -21.03	Detecto AVG		(MHz)
14	Freq. <u>MHz</u> <u>4823.7000</u> <u>4825.1250</u> <u>4825.1250</u>	Readin Level dBuV/m 30.90 42.86	g Correc Factor dB 2.07 2.07	t Measure ment dBuV/m 32.97	Limit dBuV/m 54.00 74.00	Margin dB -21.03	Detecto AVG		(MHz)




- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


.01 11	/lode	TX G M	ode 2412	MHz			Polarizatio	n	Horizont	al
30 d	BuV/m									
		2								
		×								
		1								
30		×								
-										
ŀ										
-20	00 4550 01	0400.00	0050.00	4400		100 4000	100 40050	00 01100		00500.00
1000	0.00 3550.00) 6100.00	8650.00	1120	0.00 13750	0.00 16300	00 18850	00 21400	.00	26500.00 (MHz)
0.	Freq.	Reading	corr	ect 1	Measure	Limit	Margin			
0.	MHz	Level	Fact	or I	ment	ыши	margin			
			dR			dRuV/m		Detecto	r Con	mont
*	4824.10	dBuV/m 00 32.53	dB 2. 07	:	dBuV/m 34. 60	dBuV/m 54. 00	dB -19. 40	Detecto AVG	or Con	ment
	4824.10			:	dBuV/m		dB		or Con	ment
*	4824.10	00 32.53	2.07	:	dBuV/m 34. 60	54.00	dB -19. 40	AVG	or Con	ment





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

REMARKS:

3

4

5

6

2483.500

2483.500

2487.850

2487.850

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

46.71

38.85

49.87

41.14

5.68

5.68

5.70

5.70

52.39

44.53

55.57

46.84

74.00

54.00

74.00

54.00

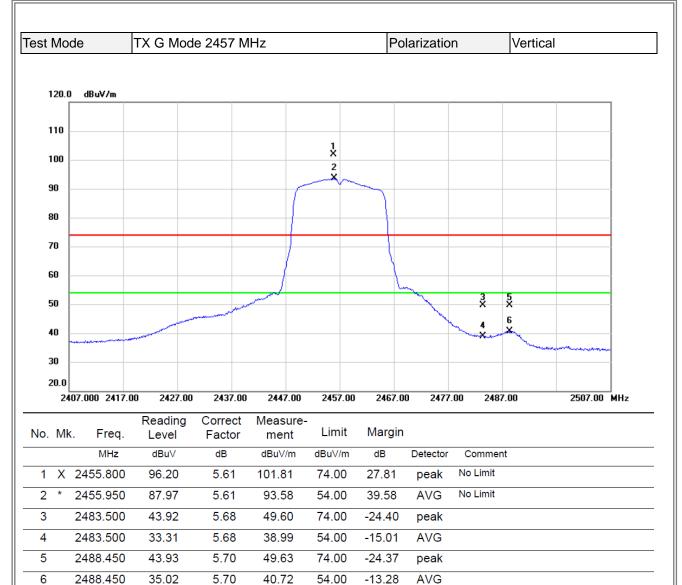
-21.61

-9.47

-18.43

-7.16

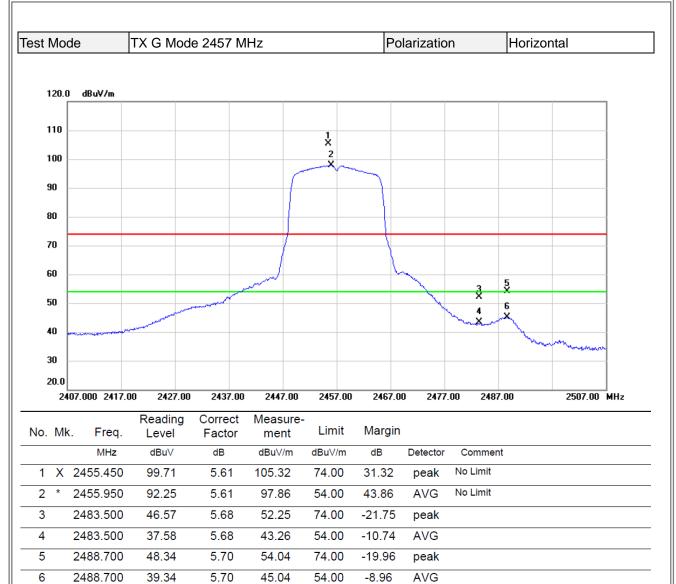
peak


AVG

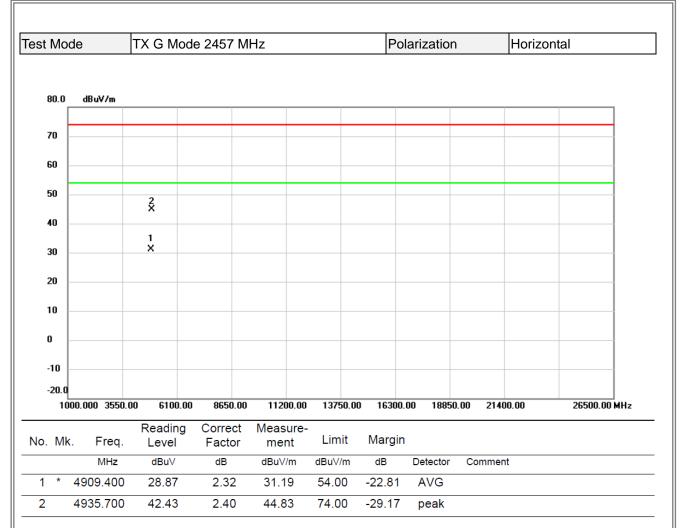
peak

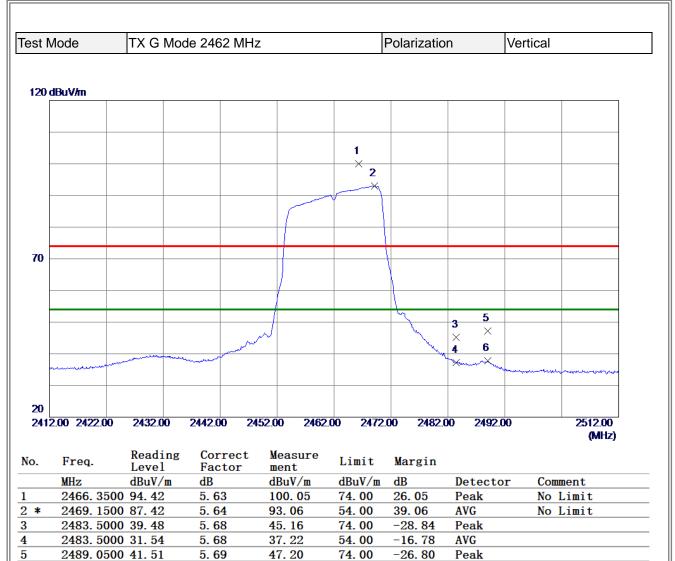
AVG

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.


(2) Margin Level = Measurement Value - Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

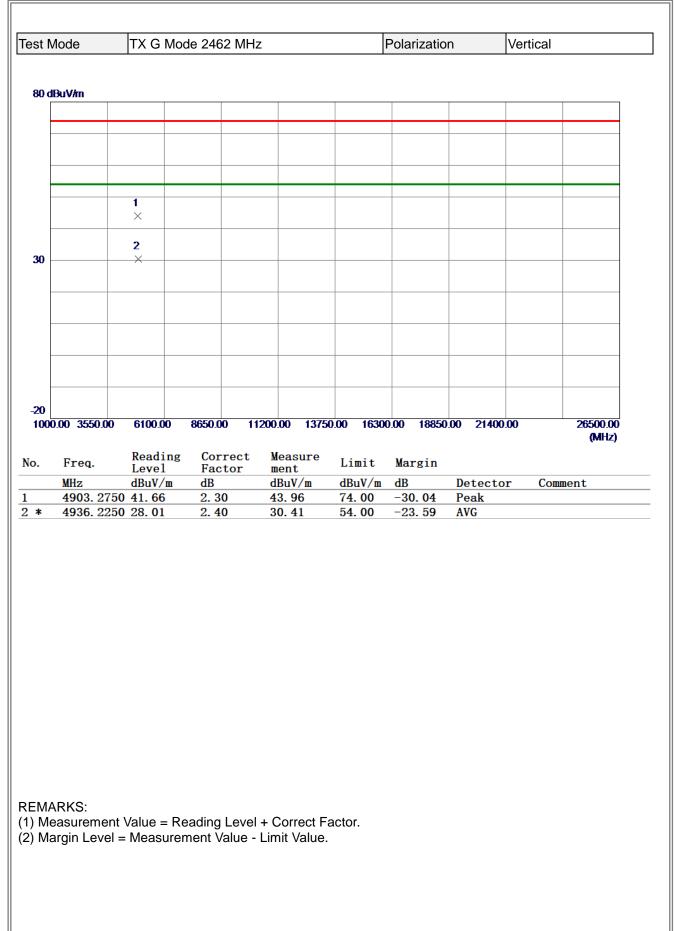
37.74

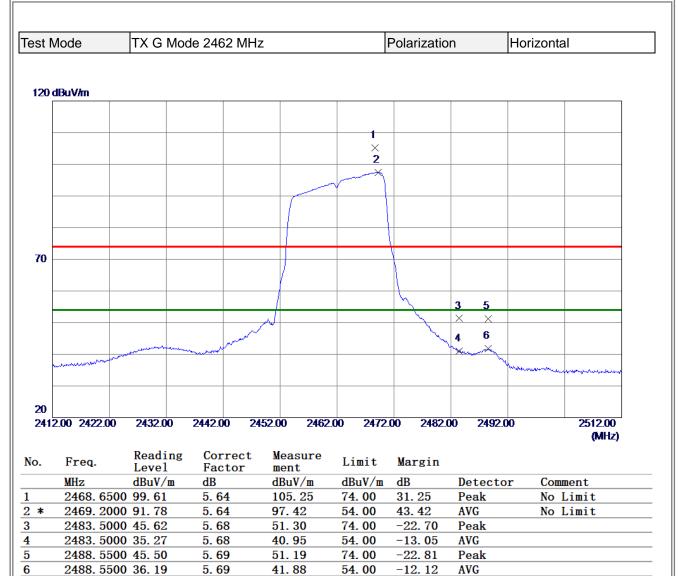
54.00

-16.26

AVG

REMARKS:

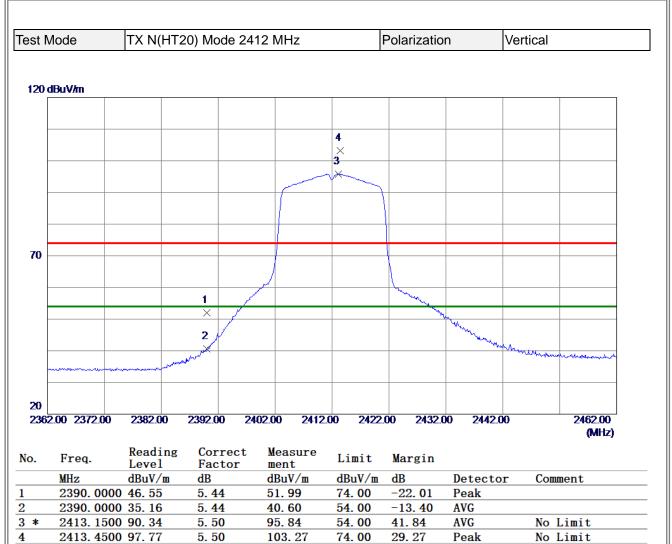

6


2489.0500 32.05

(1) Measurement Value = Reading Level + Correct Factor.

5.69

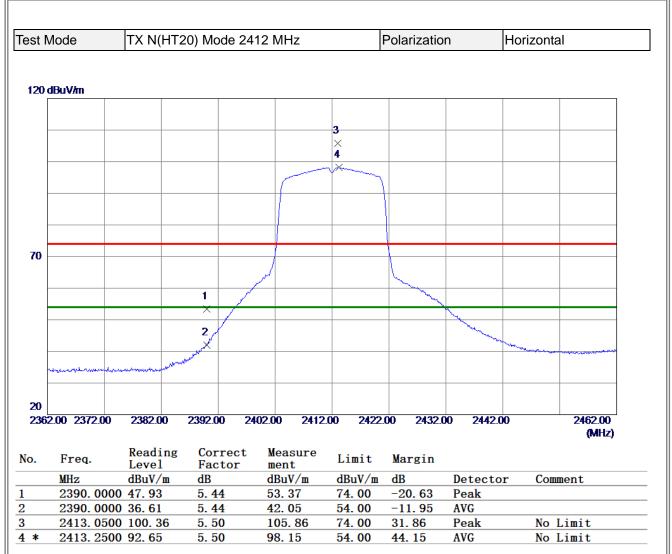
(2) Margin Level = Measurement Value - Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

est l	Mode	TX G N	1ode 246	2 MHz		ł	Polarizatio	n	Hori	zontal
80.4	dBuV/m									
001										
		- 1 ×								
		2 ×								
30										
-20										
100	0.00 3550.00	6100.00	8650.0	0 11200	.00 13750	.00 16300).00 18850	0.00 2140	0.00	26500.00 (MHz)
		Readir	ng Cor	rect M	leasure	.	. .			(
).	Freq.	Level	Fac	tor 1	lent	Limit	Margin			2
	MHz 4907.750	dBuV/m	u dB 2.32		BuV/m 5. 53	dBuV/m 74.00	dB -28.47	Detecto Peak	or	Comment
*		0 30.06	2. 32		2.38	54.00	-21.62	AVG		

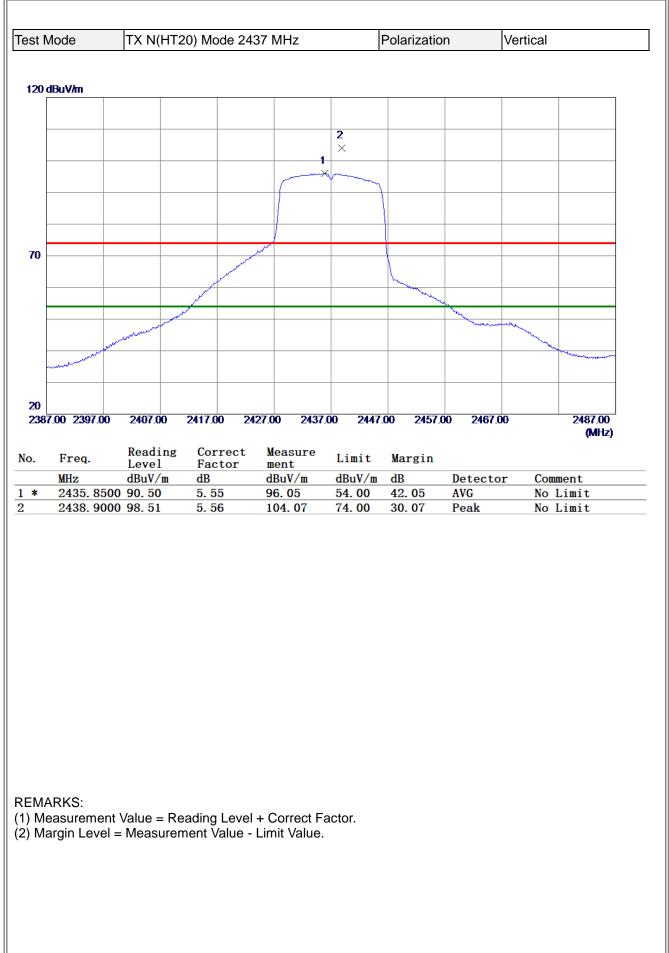
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

3โL

est I	Mode	TX N(HT	20) Mode 24	12 MHz		Polarizatio	n	Vertical	
20 4	lBuV/m								
00									
		1							
		2							
30		X							
20									
100	0.00 3550.00	6100.00	8650.00 11	200.00 1375	0.00 1630	0.00 18850	0.00 21400	0.00	26500.00 (MHz)
0.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
			ractor		10.11/			Com	ment
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detecto	or com	monto
*	MHz 4820. 3250 4825. 9750	dBuV/m 0 38.87	dB 2.06 2.08	dBuV/m 40.93 31.29	dBuV/m 74.00 54.00	dB -33. 07 -22. 71	Detecto Peak AVG		
*	4820. 3250	dBuV/m 0 38.87	2.06	40.93	74.00	-33. 07	Peak		


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

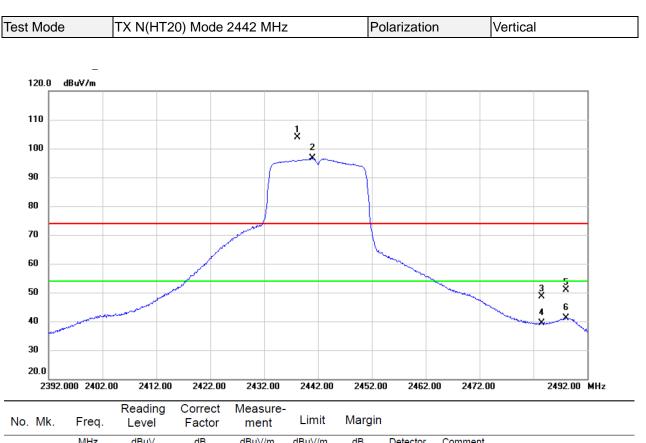
est Mo	ode	TX N(HT2	20) Mode 24	12 MHz		Polarizatio	n	Horizont	tal
80 dBu	uV/m								
		2							
		×							
		1							
		×							
30									
-									
-20									
	0 3550.00	6100.00	8650.00 11	200.00 1375	0.00 1630	0.00 18850	.00 21400).00	26500.00
			_						(MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
				dBuV/m	dBuV/m	dB	Detecto	or Cor	mment
	MHz	dBuV/m	dB						
* 4	MHz 4838.000 4846.300	dBuV/m 0 31.60	dB 2. 11 2. 14	33.71 46.17	54.00 74.00	-20. 29	AVG Peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.



2 2 <th2< th=""> 2 <th2< th=""> <th2< th=""></th2<></th2<></th2<>	X Image: Contract Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment		lode	TX N(HT	20) Mode 2	437 MHz		Polarizatio	on	Vertical	
2 2 <th2< th=""> 2 <th2< th=""> <th2< th=""></th2<></th2<></th2<>	2 2 <th2< th=""> 2 <th2< th=""> <th2< th=""></th2<></th2<></th2<>	80 d	BuV/m								
X Image: Contract Measure Limit Margin MHz dBuV/m dB dBuV/m dB uV/m dB uV/m <t< th=""><th>X I I I I 30 1 I I I I 30 X I I I I I I 30 X I I I I I I I 4 I I I I I I I I I 20 I <</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	X I I I I 30 1 I I I I 30 X I I I I I I 30 X I I I I I I I 4 I I I I I I I I I 20 I <										
X Image: Contract Measure Limit Margin MHz dBuV/m	X I I I I I 30 1 I I I I I 30 X I I I I I I 30 X I I I I I I I 30 X I I I I I I I 30 X I I I I I I I 30 X I I I I I I I I 4 I										
X I I I I I 30 1 X I I I I 30 X I I I I I I 30 X I I I I I I I 30 X I I I I I I I I 30 X I <tdi< td=""> I I</tdi<>	× ·										
X I I I I I 30 1 X I I I I 30 X I I I I I I 30 X I I I I I I I 30 X I I I I I I I I 30 X I <tdi< td=""> I I</tdi<>	X Image: Contract Measure ment Limit Margin MHz dBuV/m dB dBuV/m dB Detector Comment										
30 ×	30 ×										
20	20			1							
MHz dBuV/m dB dBuV/m dB Duv/m dB Duv/m dB Detector Comment * 4850.200 28.44 2.15 30.59 54.00 -23.41 AVG	MHz dBuV/m dB dBuV/m dB dBuV/m dB Description Comment Comment Avector Comment Comment	30		X							
MHz dBuV/m dB dBuV/m dB Duv/m dB Duv/m dB Detector Comment * 4850.200 28.44 2.15 30.59 54.00 -23.41 AVG	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) b. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4850.2000 28.44 2.15 30.59 54.00 -23.41 AVG										
MHz dBuV/m dB dBuV/m dB Duv/m dB Duv/m dB Detector Comment * 4850.200 28.44 2.15 30.59 54.00 -23.41 AVG	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) b. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4850.2000 28.44 2.15 30.59 54.00 -23.41 AVG										
MHz dBuV/m dB dBuV/m dB Duv/m dB Duv/m dB Detector Comment * 4850.200 28.44 2.15 30.59 54.00 -23.41 AVG	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) b. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4850.2000 28.44 2.15 30.59 54.00 -23.41 AVG										
MHz dBuV/m dB dBuV/m dB Duv/m dB Duv/m dB Detector Comment * 4850.200 28.44 2.15 30.59 54.00 -23.41 AVG	1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 26500.00 (MHz) b. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4850.2000 28.44 2.15 30.59 54.00 -23.41 AVG										
(MHz) D. Freq. Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4850.2000 28.44 2.15 30.59 54.00 -23.41 AVG	MHz Reading Level Correct Factor Measure ment Limit Margin MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4850.2000 28.44 2.15 30.59 54.00 -23.41 AVG	-20									
Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment*4850.200028.442.1530.5954.00-23.41AVG	Freq.Reading LevelCorrect FactorMeasure mentLimitMarginMHzdBuV/mdBdBuV/mdBuV/mdBDetectorComment*4850.200028.442.1530.5954.00-23.41AVG	1000	0.00 3550.00	6100.00	8650.00	1200.00 1375	0.00 1630	0.00 18850	0.00 21400	.00	
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4850.2000 28.44 2.15 30.59 54.00 -23.41 AVG	MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment * 4850.2000 28.44 2.15 30.59 54.00 -23.41 AVG	o.	Freq.	Reading	Correct		Limit	Margin			
				dBuV/m	dB	dBuV/m		dB		r Con	ment
		*	4850.200								
			4862. 550	0 41.01							
			4862. 550	00 41. 01							
				10 41. 01							
EMARKS: Measurement Value = Reading Level + Correct Factor.) Measurement Value = Reading Level + Correct Factor.	ΞΜΑ	ARKS: easuremen	t Value = R	eading Leve	el + Correct Fa	actor.				
Measurement Value = Reading Level + Correct Factor.		ΞΜΑ	ARKS: easuremen	t Value = R	eading Leve	el + Correct Fa - Limit Value.	actor.				

BL

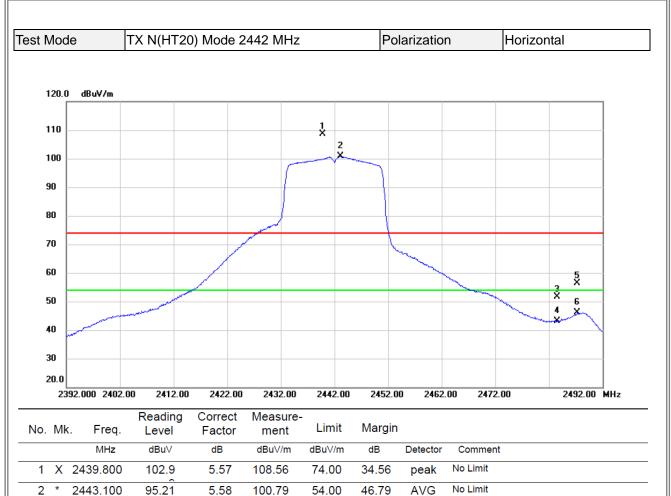


Le Free Reading Correct Measure Limit Mensie	est l	Node	TX N(HT	20) Mode 24	37 MHz		Polarizatio	n	Horizon	Ital
30 2	80.4	lBu\ <i>li</i> m								
X Image: Correct Measure Image: Correct Measure										
X Image: Correct Measure Image: Correct Measure										
X Image: Correct Measure Image: Correct Measure										
X Image: Correct Measure Limit Margin										
X Image: Correct Measure Limit Manaja										
30 ×										
30 ×			1							
-20 -20 1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 268 Reading Correct Measure Limit Mangin	30									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 265 (No. Free Reading Correct Measure Limit Mensin	~									
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 265 (No. Free Reading Correct Measure Limit Mensin										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 265 (No. Free Reading Correct Measure Limit Mensin										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 265 (La Fraz Reading Correct Measure Limit Mangin										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 265 (No. Free Reading Correct Measure Limit Mensin										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 265 (No. Free Reading Correct Measure Limit Mensin										
1000.00 3550.00 6100.00 8650.00 11200.00 13750.00 16300.00 18850.00 21400.00 265 (No. Free Reading Correct Measure Limit Mensio										
A Free Reading Correct Measure Limit Mensio		0.00 3550.00	0 6100.00	8650.00 1	1200.00 13750	0.00 1630	0.00 18850	0.00 21400	0.00	26500.00
No. Freq. Reading Correct Measure Limit Margin										(MHz)
	lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
MHz dBuV/m dB dBuV/m dBuV/m dB Detector Comment				dB					or Co	mment
* 4850.6000 30.45 2.15 32.60 54.00 -21.40 AVG 4872.8000 43.46 2.21 45.67 74.00 -28.33 Peak										

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

NO.	WK.	⊢req.	Level	Factor	ment	Limit	wargin		
		MHz	dBuV	dB	dBuV/m	dBu∀/m	dB	Detector	Comment
1	X	2438.200	98.29	5.56	103.85	74.00	29.85	peak	No Limit
2	*	2440.950	91.02	5.57	96.59	54.00	42.59	AVG	No Limit
3		2483.500	42.97	5.68	48.65	74.00	-25.35	peak	
4		2483.500	33.59	5.68	39.27	54.00	-14.73	AVG	
5	2	2488.050	45.06	5.70	50.76	74.00	-23.24	peak	
6	2	2488.050	35.45	5.70	41.15	54.00	-12.85	AVG	

(1) Measurement Value = Reading Level + Correct Factor.


(2) Margin Level = Measurement Value - Limit Value.

st Mode	TX N(HT2	20) Mode 2	442 MHz		Pola	arization	Vertica	
80.0 dBu¥	/m							
70								
60								
50								
40	2 X							
30	1 X							
20								
10								
0								
-10								
-20.0								
1000.000	3550.00 6100.0	0 8650.00	11200.00	13750.00	16300.0	0 18850.00	21400.00	26500.00 MHz
. Mk. F	Reading req. Level	Correct Factor	Measure- ment	Limit	Margin			
N	lHz dBu∀	dB	dBuV/m	dBuV/m	dB	Detector Co	omment	
* 4860.	900 27.86	2.18	30.04	54.00	-23.96	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

3

4

5

6

2483.500

2483.500

2487.300

2487.300

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

45.88

37.52

50.59

40.49

5.68

5.68

5.68

5.68

51.56

43.20

56.27

46.17

74.00

54.00

74.00

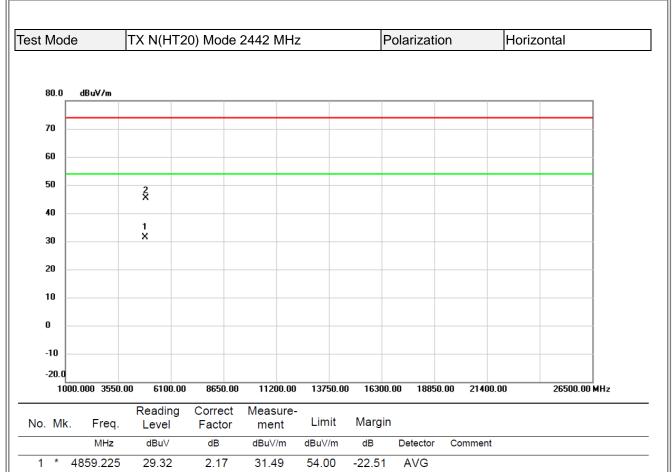
54.00

-22.44

-10.80

-17.73

-7.83


peak

AVG

peak

AVG

2

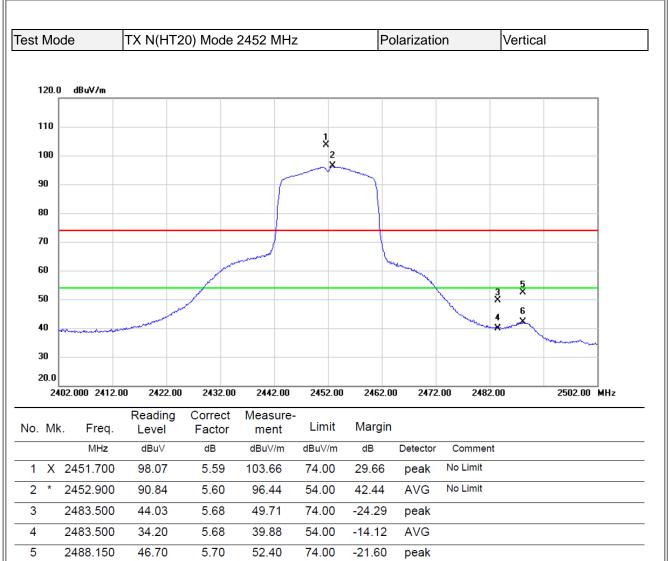
4888.450

(1) Measurement Value = Reading Level + Correct Factor.

2.26

45.27

74.00


-28.73

peak

(2) Margin Level = Measurement Value - Limit Value.

43.01

6

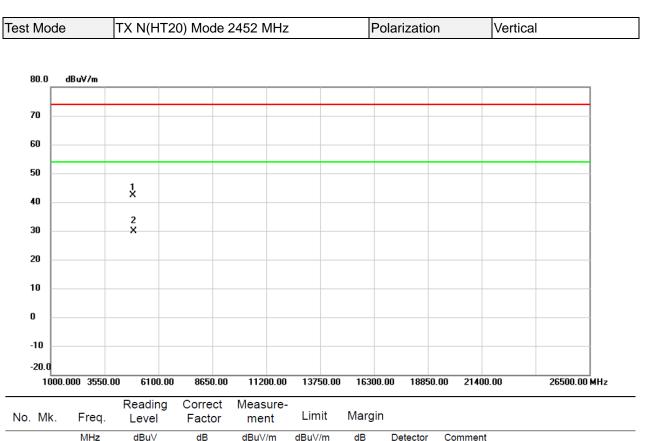
2488.150

(1) Measurement Value = Reading Level + Correct Factor.

5.70

42.01

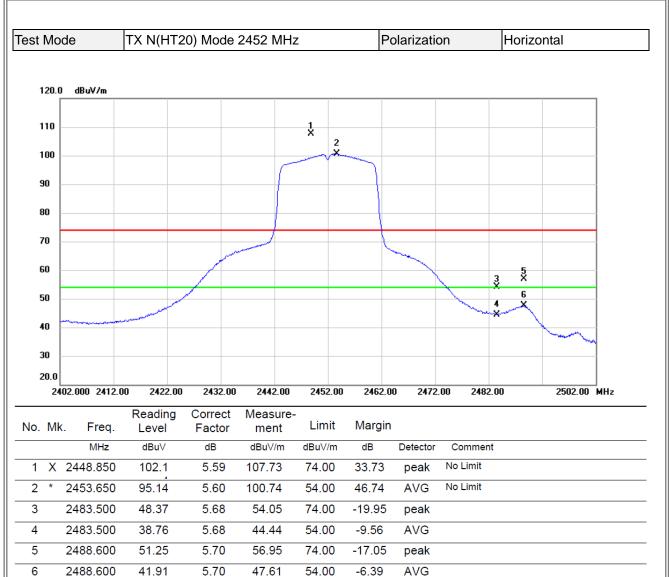
54.00


-11.99

AVG

(2) Margin Level = Measurement Value - Limit Value.

36.31



		20101	1 40101	mont		-		
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment
 1	4900.200	40.06	2.29	42.35	74.00	-31.65	peak	
 2 *	4923.425	27.50	2.37	29.87	54.00	-24.13	AVG	

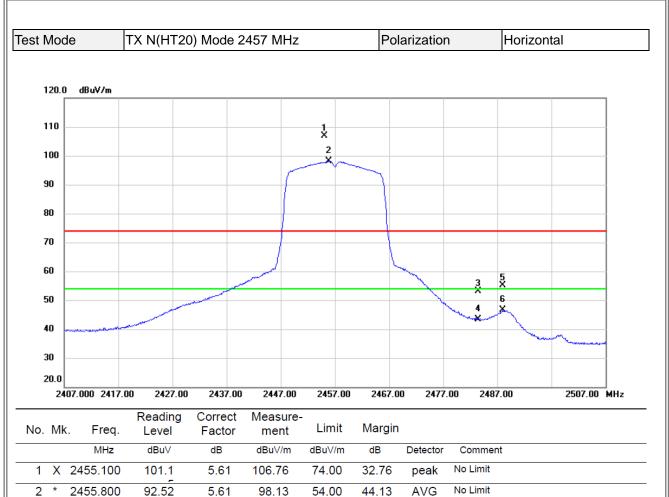
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

est Mode	·	TX N(HT20) Mode 2	452 MHz		Pol	arization	H	lorizontal	
80.0 di	Bu¥/m									
70										
60										
50		1×								
40		^								_
30		2 X								
20										
10										
0										
-10										
-20.0										
1000.00	00 3550.0	0 6100.00	8650.00	11200.00	13750.0	D 16300.	.00 18850	0.00 21400.	.00 26500.0)0 MHz
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1			
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1 488	82.350	42.87	2.24	45.11	74.00	-28.89	peak			
2 * 492	24.925	28.65	2.37	31.02	54.00	-22.98	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

st Mod	le .	TX N(HT20	0) Mode 24	457 MHz		Pol	arization		Vertical		
120.0 Г	dBuV/m								1		٦
110											
100					1 X 2						
90 -				~	-×	~					
80											
70											1
60									5 X		
50						~		хь			
40		The second s	A reason of the second s				~	4	6 X		
30									- waren		-
20.0											
240	07.000 2417.0	0 2427.00	2437.00	2447.00	2457.00	2467.0	10 2477.	00 248	7.00	2507.00	MHz
lo. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	I				
	MHz	dBu∨	dB	dBuV/m	dBu∀/m	dB	Detector	Comme	nt		
1 X	2455.600	95.32	5.61	100.93	74.00	26.93	peak	No Limit			
2 *	2456.250	87.97	5.61	93.58	54.00	39.58	AVG	No Limit			
3	2483.500	44.34	5.68	50.02	74.00	-23.98	peak				
4	2483.500	32.89	5.68	38.57	54.00	-15.43	AVG				
5	2488.800	52.60	5.70	58.30	74.00	-15.70	peak				
6	2488.800	35.10	5.70	40.80	54.00	-13.20	AVG				


- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est Mo	ode	TX N(HT2	0) Mode 2	457 MHz		Pola	rization	Verti	cal
80.0	dBuV/m								
70									
60									
50									
40		×							
30		2 X							
20									
10									
o									
-10									
-20.0									
10	00.000 3550	.00 6100.00	8650.00	11200.00	13750.00	16300.0	00 18850.	00 21400.00	26500.00 MHz
o. Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	4909.950	39.33	2.32	41.65	74.00	-32.35	peak		
2 *	4912.700	28.86	2.34	31.20	54.00	-22.80	AVG		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

3

4

5

6

2483.500

2483.500

2488.050

2488.050

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

47.36

37.63

49.40

40.88

5.68

5.68

5.70

5.70

53.04

43.31

55.10

46.58

74.00

54.00

74.00

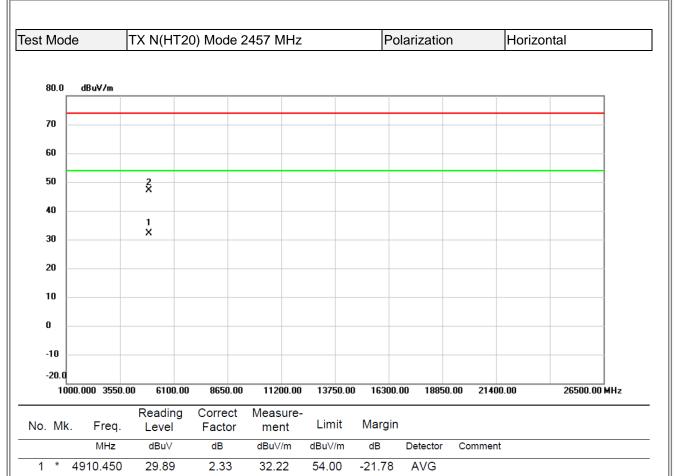
54.00

-20.96

-10.69

-18.90

-7.42


peak

AVG

peak

AVG

2

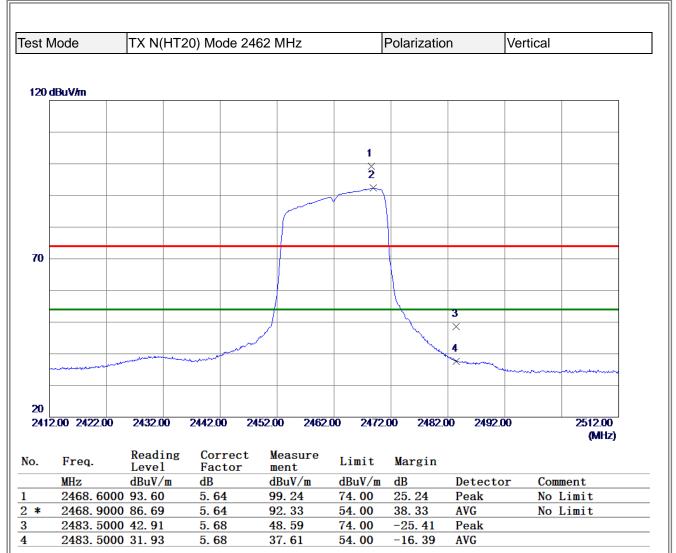
4918.150

(1) Measurement Value = Reading Level + Correct Factor.

2.34

47.03

74.00

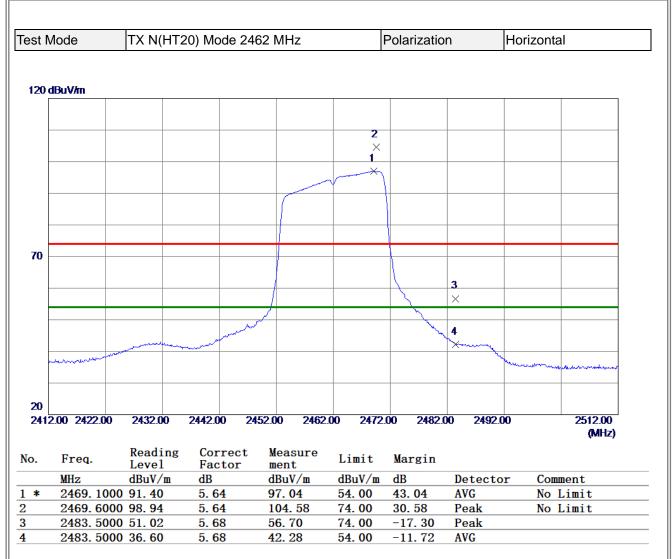

-26.97

peak

(2) Margin Level = Measurement Value - Limit Value.

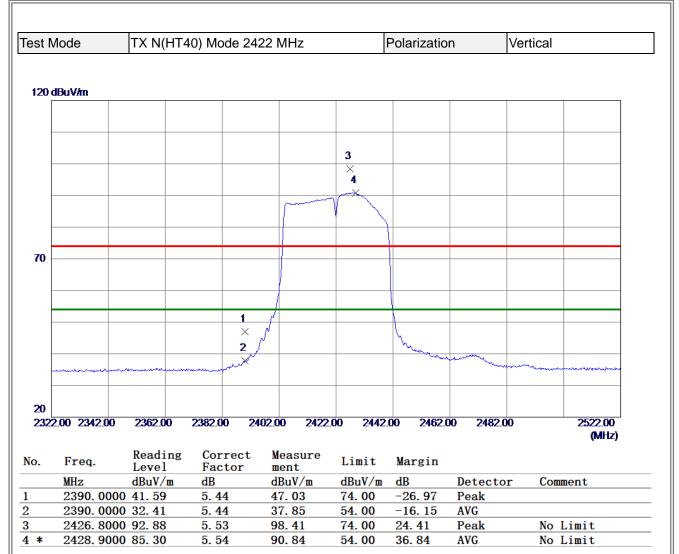
44.69

BL


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

est I	Mode	TX N(HT2	20) Mode 24	162 MHz		Polarizatio	n	Vertical	
0 (lBuV/m								
		1							
		×							
30		2 ×							
50									
-20									
100	0.00 3550.00	6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	.00 21400	00	26500.00
		Reading	Correct	Measure					(MHz)
о.	Freq.	Level	Factor	ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detecto	or Co	mment
*	4906.300 4925.075	10 40.28	2. 31 2. 37	42. 59 30. 87	74.00	-31. 41 -23. 13	Peak AVG		

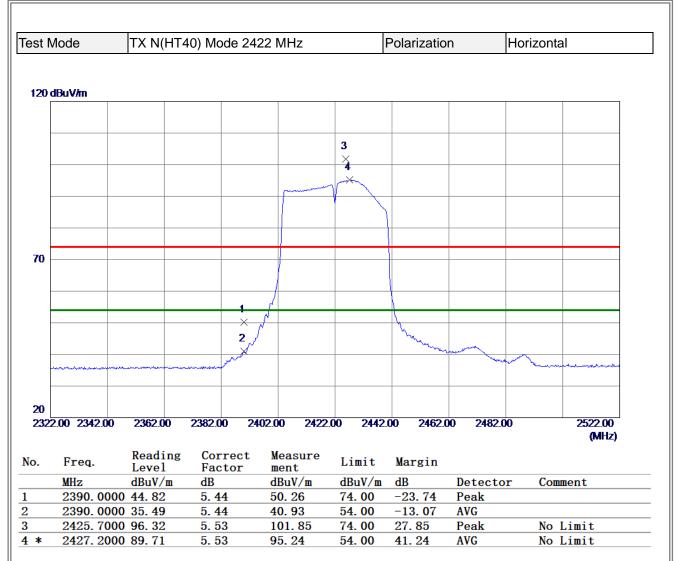
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

əst in	lode	TX N(HT	20) Mode 24	62 MHz		Polarizatio	n	Horizor	ntal
80 d	BuV/m								
[
-									
		2							
		×							
ł		1							
30		×							
ľ									
-20			0050.00	1000.00 4075		0.00 40050	04400		00500.00
1000	0.00 3550.00	6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0.00 21400	.00	26500.00 (MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detecto	r Co	omment
[* 2	4928.775 4944.900		2. 38 2. 43	31.96 45.47	54.00 74.00	-22. 04 -28. 53	AVG Peak		
(

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

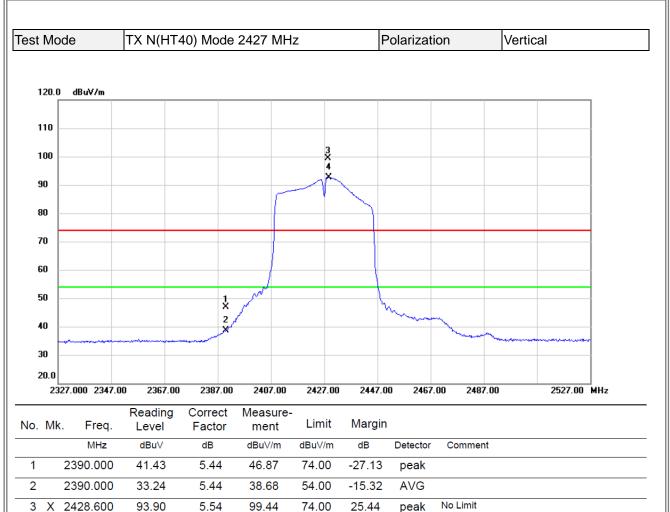
BL


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

est N	lode	TX N(HT4	10) Mode 242	22 MHz		Polarizatio	on Ve	ertical
80 d	BuV/m					_		
		1						
		X						
		2						
30								
-								
-20								
1000	0.00 3550.00	6100.00	8650.00 11	200.00 13750	0.00 1630	0.00 18850	0.00 21400.00	26500.00 (MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detector	Comment
*	4843.075		2. 13	41.07 30.05	74.00 54.00	-32. 93 -23. 95	Peak AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

BL


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

est N	Node	TX N(HT	40) Mode 24	22 MHz		Polarizatio	n	Horizor	ntal
80 d	lBuV/m								
[
		1 ×							
		2							
30		X							
-20									
	0.00 3550.00	6100.00	8650.00 11	200.00 1375	0.00 1630	0.00 18850	.00 21400).00	26500.00
									(MHz)
lo.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin			
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detecto	or Co	omment
2 *	4843.873		2. 13 2. 15	43.76 31.16	74.00 54.00	-30. 24 -22. 84	Peak AVG		
	4001.000	JU 29. UI	2.15	51.10	54.00	-22.04	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

4 *

2428.700

(1) Measurement Value = Reading Level + Correct Factor.

5.54

92.68

54.00

38.68

AVG

No Limit

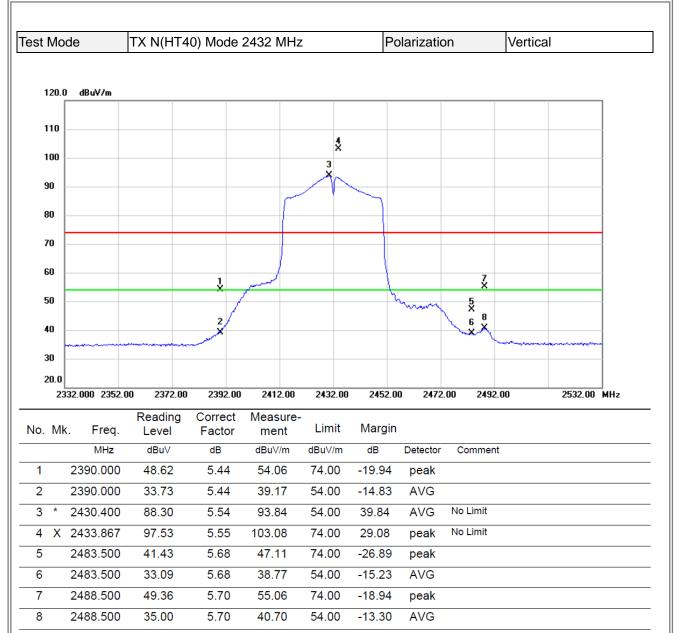
(2) Margin Level = Measurement Value - Limit Value.

87.14

t Mo	ode	TX N(HT4	0) Mode	2427 MHz	<u></u>	Pol	arizatio	'n	Vertical	
80.0	dBu¥∕m								1	-
70										-
60										_
50										-
40		2 X								_
30		1 X								_
20										-
10										-
o										-
-10										-
20.0										
10	00.000 3550.	00 6100.00	8650.00	11200.00	13750.00	16300.00	18850	.00 21400.	00 26500.0	0 MHz
M۴	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin				
	MHz	dBu∨	dB	dBu∀/m	dBu\//m	dB	Detector	Comment		
*	4853.432	26.04	2.16	28.20	54.00	-25.80	AVG			
	4854.750	38.10	2.16	40.26	74.00	-33.74	peak			

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est Mod	е	TX N(HT40) Mode 2	427 MHz		Pol	arizatio	n	Horizon	tal	
120.0 Г	dBuV/m										
110											
100					3X 4						
					-r						
90											
80											
70											
60			1 X	- All		-+					
50			2/			h	hun	Lun			
40			2 X					$\overline{\ }$	γ		
30	- marine the second	an a	adament of						a mark marker with	m	
20.0											
23	27.000 2347	.00 2367.00	2387.00	2407.00	2427.00	2447.0	D 2467	.00 2487	7.00	2527.00 MI	Hz
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin					
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Commer	nt		
1	2390.000	53.69	5.44	59.13	74.00	-14.87	peak				
2	2390.000	38.26	5.44	43.70	54.00	-10.30	AVG				
3 X	2428.800	98.22	5.54	103.76	74.00	29.76	peak	No Limit			
4 *	2428.900	91.69	5.54	97.23	54.00	43.23	AVG	No Limit			


- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

t Mod	е	TX N(HT4	0) Mode 24	27 MHz		Pola	arization	Horizor	ntal
80.0	dBuV/m								
70									
60									
50		1							
40		1 X							
30		2 X							
20									
10									
0									
-10									
-20.0	1								
10	000.000 35	6100.00 6100.0	0 8650.00	11200.00	13750.00	16300.	00 18850.0	0 21400.00	26500.00 MH
lo. M	k. Fred	Reading 1. Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBu∀/m	dBuV/m	dB	Detector	Comment	
1	4854.37	3 41.01	2.16	43.17	74.00	-30.83	peak		
2 *	4856.06	0 28.05	2.16	30.21	54.00	-23.79	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

BIL

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

st Mo	ode	TX N(HT4	0) Mode 2	2432 MHz		Pol	arizatior	1	Vertical	
80.0	dBuV/m									
70										
60										
50		1 X								
40										
30		2 X								
20										
10										
0										
-10										
-20.0										
1	000.000 3550.			11200.00	13750.00	16300.0	0 18850.	.00 2140	D.00	26500.00 MHz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin				
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	:	
1	4865.105	38.12	2.19	40.31	74.00	33.69	peak			
2 *	4866.140	26.43	2.20	28.63	54.00	25.37	AVG			

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

est Mo	de	TX N(HT4	0) Mode	2432 MHz	2	Ρ	olarizati	on	Horizo	ntal	
120.0) dBu∀/m										
110					3						
100					3× 4						
90				r							
80											
70											
60			×	Service and a service of the service			<u>h</u>	\$ 7 X X			
50			2				him	6 8 X			
40	en hungelichnigere	Anatoliananafratala.	and the second s						watermarker	ىروالىغۇنى ئەسەبۇرىقۇمۇر.	
30 20.0											
	332.000 2352.0	0 2372.00	2392.00	2412.00	2432.00	2452.	00 2472	2.00 2492	.00	2532.00	MHz
No. Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	า				
	MHz	dBu∨	dB	dBu∨/m	dBu∨/m	dB	Detector	Commen	t		
1	2390.000	53.51	5.44	58.95	74.00	-15.05					
2	2390.000	38.66	5.44	44.10	54.00	-9.90	AVG				
	2428.800	99.66	5.54	105.20	74.00	31.20	peak	No Limit			
4 *	2430.500	93.09	5.54	98.63	54.00	44.63	AVG	No Limit			
5	2483.500	51.20	5.68	56.88	74.00	-17.12					
6	2483.500	36.99	5.68	42.67	54.00	-11.33	AVG				

7

8

2488.300

2488.300

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

5.70

5.70

55.53

45.05

74.00

54.00

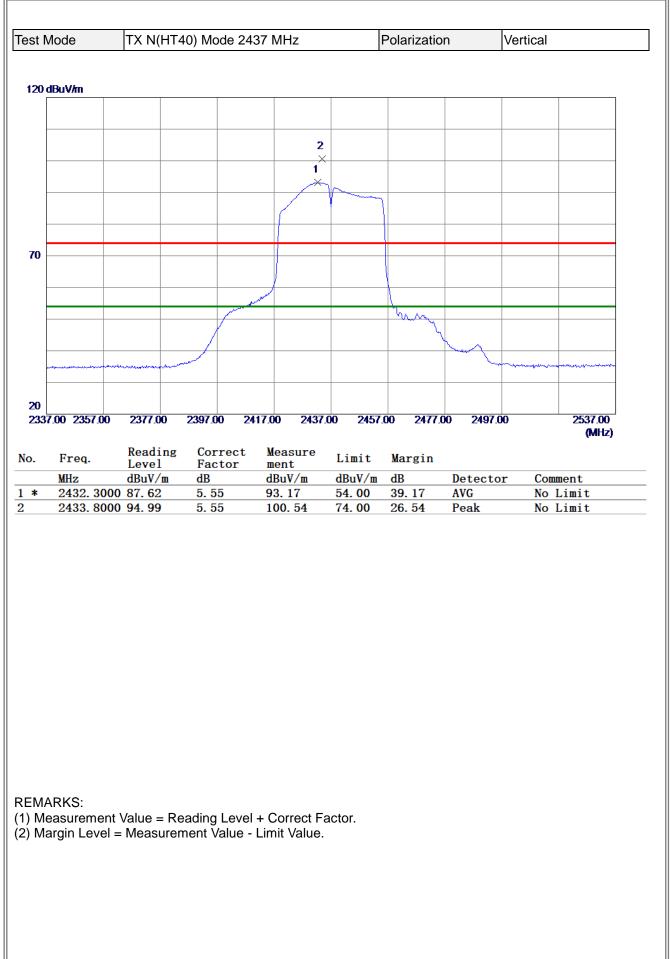
-18.47

-8.95

peak

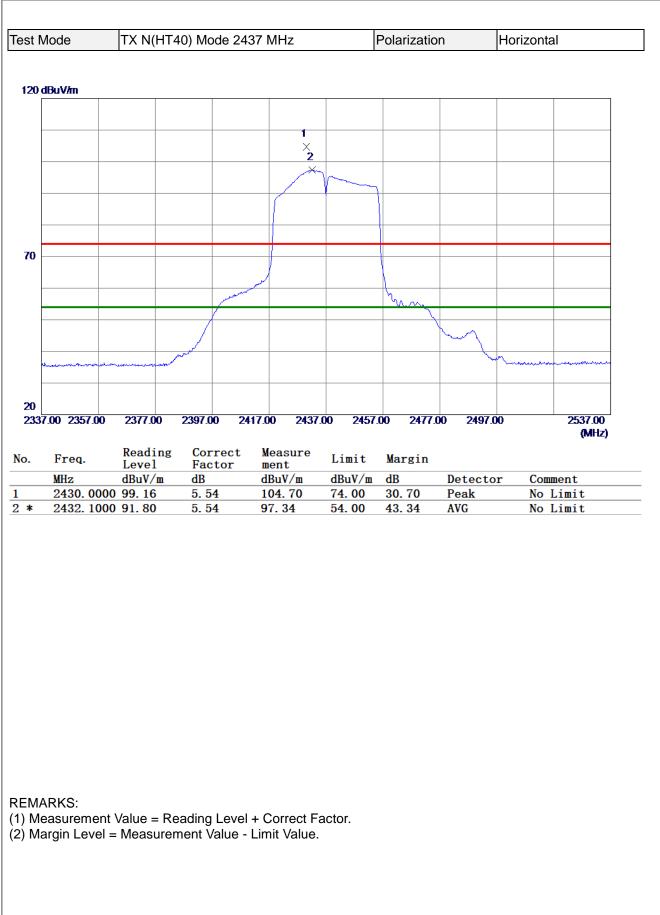
AVG

49.83


39.35

t Moo	le	TX N(HT4	0) Mode	2432 MH	Z		Polariza	ation	Horizontal
80.0	dBu∀/m								
70									
60									
50		1 X							
40									
30		2 X							
20									
10									
0									
-10									
-20.0									
10	00.000 3550.	00 6100.00	8650.00	11200.00	13750.00	16300.	.00 1885	0.00 21400.0	0 26500.00 MH
o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	I		
	MHz	dBu∨	dB	dBuV/m	dBu∨/m	dB	Detector	Comment	
1	4866.050	40.10	2.20	42.30	74.00	-31.70	peak		
2 *	4866.297	27.28	2.20	29.48	54.00	-24.52	AVG		

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.



551 1	Node		40) Mode 24			Polarizatio		ertical
80 d	lBuV/m							
		1						
30		2 ×						
		~						
-20 100	0.00 3550.00	6100.00	8650.00 1	1200.00 1375	0.00 1630	0.00 18850	0.00 21400.00	26500.00 (MHz)
N.7		Reading	Correct	Measure		. ·		(tau tz)
No.	Freq.	Level	Factor	ment	Limit	Margin	Detector	0t
1	MHz 4874.120	dBuV/m 0 37.85	dB 2. 22	dBuV/m 40.07	dBuV/m 74.00	dB -33. 93	Detector Peak	Comment
2 *	4876. 251		2. 22	28.24	54.00	-25.76	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Sti	Node		40) Mode 243	37 MHZ		Polarizatio	n F	lorizontal
80 d	lBuV/m							
[
		1						
		X						
		2						
30								
-20 100	0.00 3550.00) 6100.00	8650.00 11	200.00 1375	0.00 1630	0.00 18850	.00 21400.0	0 26500.00
								(MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin		
	MHz	dBuV/m	dB	dBuV/m	dBuV/m		Detector	Comment
l 2 *		99 39.49 50 27.00	2. 22	<u>41. 71</u> 29. 22	74.00 54.00	-32. 29 -24. 78	Peak AVG	
. *	4873.07	30 27.00	4.44	2 9. 22	54.00	-24.78	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

est Mo	de	TX N(HT40) Mode 24	142 MHz		Pola	rization		Vertical		
120.0	dBu∀/m										_
110											
100					1 X 2						
90					×						-
80											
70											
60								5 X			-
50						*	my j	3			
40							- V	6 4 X			
30	a	harden marked and and						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	energine water by a population of the	and the second	1
20.0											
23	42.000 2362.		2402.00	2422.00	2442.00	2462.0	0 2482	.00 250	2.00	2542.00	MH
lo. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin					
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	nt		
1 X	2432.900	93.72	5.55	99.27	74.00	25.27	peak	No Limit			
2 *	2433.000	85.44	5.55	90.99	54.00	36.99	AVG	No Limit			
3	2483.500	42.60	5.68	48.28	74.00	-25.72	peak				
4	2483.500	33.55	5.68	39.23	54.00	-14.77	AVG				
5	2488.100	49.04	5.70	54.74	74.00	-19.26	peak				
6	2488.100	36.17	5.70	41.87	54.00	-12.13	AVG				

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

st Moo	de	TX N(HT4	0) Mode 2	2442 MHz		P	olarizati	on	Vertical	
80.0	dBu∀/m									
00.0	0504710									
70										
60										
50										
40		×								
30		2 X								
20										
10										
0										
-10										
-20.0										
10	00.000 3550).00 6100.00	8650.00	11200.00	13750.00	16300	.00 1885	60.00 2140	00.00	26500.00 MHz
lo. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	I			
	MHz	dBu∨	dB	dBuV/m	dBu∀/m	dB	Detector	Commer	nt	
1	4481.958	37.88	1.08	38.96	74.00	-35.04	peak			
2 *	4485.998	3 26.14	1.08	27.22	54.00	-26.78	AVG			

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.