

TEST REPORT

APPLICANT	Realme Chongqing Mobile Telecommunications Corp., Ltd.
PRODUCT NAME	: Mobile Phone
MODEL NAME	: RMX2103
BRAND NAME	: realme
FCC ID	: 2AUYFRMX2103
STANDARD(S)	47 CFR Part 22 Subpart H47 CFR Part 24 Subpart E47 CFR Part 27 Subpart L
RECEIPT DATE	: 2020-08-03
TEST DATE	: 2020-08-04 to 2020-08-25
ISSUE DATE	: 2020-08-29

Edited by:

Zhou Xiaolong Zhou Xiaolong (Rapporteur)

Peng Approved by:

Peng Huarui (Supervisor)

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

DIRECTORY

1. Te	chnical Information ······· 4
1.1.	Applicant and Manufacturer Information ······ 4
1.2. E	Equipment Under Test (EUT) Description 4
1.3. N	Maximum ERP/EIRP and Emission Designator8
1.4. 1	Test Standards and Results ······ 9
1.5. E	Environmental Conditions ······11
2. 47	CFR Part 2, Part 22H , 24E&27L Requirements ······
2.1. 0	Conducted RF Output Power·····12
2.2. F	Peak to Average Ratio ······16
2.3. 9	99% Occupied Bandwidth ······22
2.4. F	Frequency Stability ······28
2.5. 0	Conducted Out of Band Emissions ······33
2.6. E	Band Edge······39
2.7. 1	Transmitter Radiated Power (EIRP/ERP) ······44
2.8. F	Radiated Out of Band Emissions50
Annex	x A Test Uncertainty ······95
Annex	x B Testing Laboratory Information ······96

Change History					
Version	Version Date Reason for change				
1.0 2020-08-29		First edition			

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Realme Chongqing Mobile Telecommunications Corp., Ltd.	
Applicant Address:	No.178 Yulong Avenue, Yufengshan, Yubei District,	
	Chongqing,China	
Manufacturer: Realme Chongqing Mobile Telecommunications Corp., Ltd.		
Manufacturer Address: No.178 Yulong Avenue, Yufengshan, Yubei District, Chongqing,China		

1.2. Equipment Under Test (EUT) Description

Product Name:	Mobile Phone		
Hardware Version:	11		
Software Version:	realme UI V1.0		
Modulation Type:	QPSK,16QAM	64QAM	
Operation Band:	Band 2 / 4 / 5 /	7 / 38 / 40 / 41	
Carrier Aggregation:	B2C, B7C, B38	3C, B41C(only downlink carrier Aggregation)	
	LTE Band 2	Tx: 1850MHz – 1910MHz	
	LTE Dariu Z	Rx: 1930MHz – 1990MHz	
	LTE Band 4	Tx: 1710MHz – 1755MHz	
	LIE Band 4	Rx: 2110MHz – 2155MHz	
	LTE Band 5	Tx:824MHz - 849MHz	
		Rx:869MHz - 894MHz	
	LTE Band 7	Tx:2500MHz – 2570MHz	
Frequency Range:		Rx:2620MHz – 2690MHz	
Frequency Range.	LTE Band 38	Tx:2570MHz - 2620MHz	
	LIE Dallu 30	Rx:2570MHz - 2620MHz	
		Tx: 2305MHz– 2315MHz	
	LTE Band 40	Rx:2305MHz– 2315MHz	
		Tx: 2350MHz– 2360MHz	
		Rx: 2350MHz– 2360MHz	
	LTE Band 41	Tx:2535MHz-2655MHz	
		Rx:2535MHz-2655MHz	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

	LTE Band 2	1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz		
	LTE Band 4	1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz		
	LTE Band 5	1.4MHz, 3MHz, 5MHz, 10MHz		
Channel Bandwidth	LTE Band 7	5MHz,10MHz,15MHz,20MHz		
	LTE Band 38	5MHz, 10MHz, 15MHz, 20MHz		
	LTE Band 40	5MHz, 10MHz		
	LTE Band 41	5MHz, 10MHz, 15MHz, 20MHz		
Antenna Type:	PIFA Antenna			
	LTE Band 2	1.10 dBi		
	LTE Band 4	1.10 dBi		
	LTE Band 5	0.50 dBi		
Antenna Gain:	LTE Band 7	1.10 dBi		
	LTE Band 38	1.10 dBi		
	LTE Band 40	1.10 dBi		
	LTE Band 41	1.10 dBi		
	Battery 1			
	Brand Name:	realme		
	Model No.:	BLP803		
	Capacity:	4890.00mAh		
	Rated Voltage:	3.87V		
	Charge Limit:	4.45V		
	Manufacturer	SUNWODA Electronic Co., Ltd.		
	Battery 2			
	Brand Name:	realme		
	Model No.:	BLP803		
Accessory Information:	Capacity:	4890.00mAh		
	Rated Voltage:	3.87V		
	Charge Limit:	4.45V		
	Manufacturer	Huizhou Desay Battery Co., Ltd.		
	Battery 3			
	Brand Name:	realme		
	Model No.:	BLP803		
	Capacity:	4890.00mAh		
	Rated Voltage:	3.87V		
	Charge Limit:	4.45V		
	Manufacturer	TWS TECHNOLOGY (GUANGZHOU) LIMITED		

Fax: 86-755-36698525 E-mail: service@morlab.cn

A	AC Adapter1	
E	Brand Name:	realme
Ν	Nodel No.:	OP92KAUH
٦	Rated Input:	100-240V ~ 50/60Hz 0.5A
ا	Rated Output:	9V=2.0A or 5V=2.0A
N	Manufacturer	ShenZhen KunXing Technology Co., Ltd
A	AC Adapter2	
E	Brand Name:	realme
Ν	Nodel No.:	OP92KAUH
F	Rated Input:	100-240V ~ 50/60Hz 0.5A
م	Rated Output:	9V=2.0A or 5V=2.0A
Ν	Manufacturer	Huizhou Golden Lake Industrial Co.,Ltd

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

- Note 1: The transmitter (Tx) frequency arrangement of the Cellular 850MHz band used by the EUT can be represented with the formula F(n)=824.2+0.2*(n-128), 128<=n<=251; the lowest, middle, highest channel numbers (ARFCHs) used and tested in this report are separately 128 (824.2MHz), 190 (836.6MHz) and 251 (848.8MHz).</p>
- Note 2: The transmitter (Tx) frequency arrangement of the PCS 1900MHz band used by the EUT can be represented with the formula F(n)=1850.2+0.2*(n-512), 512<=n<=810; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 512 (1850.2MHz), 661 (1880.0MHz) and 810 (1909.8MHz).
- Note 3: The transmitter (Tx) frequency arrangement of the WCDMA Band V used by the EUT can be represented with the formula F(n)=826.4+0.2*(n-4132), 4132<=n<=4233; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 4132 (826.4MHz), 4182(836.4MHz) and 4233 (846.6MHz).
- Note 4: The transmitter (Tx) frequency arrangement of the WCDMA Band II used by the EUT can be represented with the formula F(n)=1852.4+0.2*(n-9262), 9262<=n<=9538; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 9262 (1852.4MHz), 9400 (1880MHz) and 9538 (1907.6MHz).
- **Note 5:** The transmitter (Tx) frequency arrangement of the WCDMA 1700MHz band used by the EUT can be represented with the formula F(n)=1712.4+0.2*(n-1312), 1312<=n<=1513; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 1312 (1712.4MHz), 1413 (1732.6MHz) and 1513 (1752.6MHz).
- **Note 6:** All modes and data rates were considered and evaluated respectively by performing full test. Test modes are chosen to be reported as the worst case below:
 - GPRS mode and EDGE mode for GSM 850;
 - GPRS mode and EDGE mode for GSM 1900;
 - WCDMA mode for WCDMA band V;
 - WCDMA mode for WCDMA band II;
 - WCDMA mode for WCDMA band IV;
- **Note 7:** For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. Maximum ERP/EIRP and Emission Designator

System	Maximum ERP/EIRP(W)	Emission Designator
GSM850	1.026	253KG3W
EDGE850	0.256	249KG7W
GSM1900	1.086	251KG2W
EDGE1900	0.423	249KG8W
WCDMA Band V	0.142	4M14F9W
WCDMA Band II	0.251	4M15F9W
WCDMA Band IV	0.231	4M14F9W

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

1.4. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22, Part 24 and Part 27 for the EUT FCC ID Certification:

No	Identity	Document Title
1	47 CFR Part 2 (10-1-12 Edition)	Frequency Allocations and Radio Treaty Matters;
I	47 CFR Part 2 (10-1-12 Edition)	General Rules and Regulations
2	47 CFR Part 22 (10-1-12 Edition)	Public Mobile Services
3	47 CFR Part 24 (10-1-12 Edition)	Personal Communications Services
4	47 CFR Part 27 (10-1-12 Edition)	Miscellaneous Wireless Communications Services

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

No.	Section	Description	Test Date	Test Engineer	Result	Method determination/ Remark
1	2.1046	Conducted RF Output Power	Aug 4 to 6, 2020	Zhou Xiaolong	PASS	No deviation
2	24.232(d)	Peak -Average Ratio	Aug 6 to 8, 2020	Zhou Xiaolong	PASS	No deviation
3	2.1049	99% Occupied Bandwidth	Aug 8 to 10, 2020	Zhou Xiaolong	PASS	No deviation
4	2.1055, 22.355, 24.235, 27.54	Frequency Stability	Aug 13 to 15, 2020	Zhou Xiaolong	PASS	No deviation
5	2.1051, 22.917(a), 24.238(a),	Conducted Out of Band Emissions	Aug 16 to 21, 2020	Zhou Xiaolong	PASS	No deviation
6	2.1051, 22.917(a), 24.238(a),	Band Edge	Aug 22 to 25 2020	Zhou Xiaolong	PASS	No deviation
7	22.913(a), 24.232(a)	Transmitter Radiated Power (EIPR/ERP)	Aug 4, to 8, 2020	Peng Xuewei	PASS	No deviation
8	2.1051, 22.917(a), 24.238(a)	Radiated Out of Band Emissions	Aug 7	Peng Xuewei	PASS	No deviation

Test detailed items/section required by FCC rules and results are as below:

Note 1: The tests were performed according to the method of measurements prescribed in KDB971168 D01 v03 and ANSI/TIA-603-E-2016.

Note 2: The path loss during the RF test is calibrated to correct the results by the offset setting in the test equipments. The ref offset 26.5dB contains two parts that cable loss 16.5dB and Attenuator 10dB.

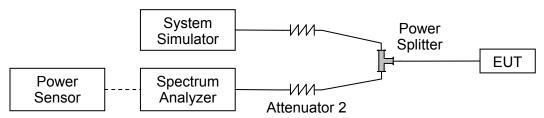
1.5. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.47 CFR Part 2, Part 22H , 24E&27L Requirements


2.1. Conducted RF Output Power

2.1.1. Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.1.3. Test Results

GSM850	Average Power (dBm)		
TX Channel	128	190	251
Frequency (MHz)	824.2	836.6	848.8
GSM 1 Tx slot	31.49	31.65	31.76
GPRS 1 Tx slot	31.52	31.69	31.82
GPRS 2 Tx slots	31.01	31.15	31.51
GPRS 3 Tx slots	30.70	30.82	31.12
GPRS 4 Tx slots	30.40	30.54	30.80
EDGE 1 Tx slot	25.74	25.67	25.57
EDGE 2 Tx slots	23.71	23.75	23.72
EDGE 3 Tx slots	22.54	22.43	22.60
EDGE 4 Tx slots	21.95	21.89	22.02

GSM1900	Average Power (dBm)			
TX Channel	512	661	810	
Frequency (MHz)	1850.2	1880	1909.8	
GSM 1 Tx slot	29.26	29.14	29.19	
GPRS 1 Tx slot	29.30	29.05	29.14	
GPRS 2 Tx slots	29.14	28.84	29.03	
GPRS 3 Tx slots	29.01	28.70	28.93	
GPRS 4 Tx slots	28.78	28.61	28.71	
EDGE 1 Tx slot	25.16	24.94	24.99	
EDGE 2 Tx slots	25.06	24.75	24.90	
EDGE 3 Tx slots	24.90	24.63	24.75	
EDGE 4 Tx slots	24.78	24.53	24.60	

WCDMA Band V		Average Power (dBm)	
TX Channel	4132	4182	4233
Frequency (MHz)	826.4	836.4	846.6
RMC 12.2Kbps	23.17	22.98	23.09
HSDPA Subtest-1	22.12	21.99	22.25
HSDPA Subtest-2	21.15	21.02	21.24
HSDPA Subtest-3	20.32	20.23	20.51
HSDPA Subtest-4	20.19	20.12	20.37
HSUPA Subtest-1	21.14	21.01	21.27
HSUPA Subtest-2	21.12	21.00	21.23
HSUPA Subtest-3	20.80	20.74	20.95
HSUPA Subtest-4	22.15	21.99	22.21
HSUPA Subtest-5	21.03	20.89	21.14
HSPA+ (16QAM) Subtest-1	20.19	20.04	20.27
DC-HSDPA Subtest-1	21.88	21.8	21.78
DC-HSDPA Subtest-2	21.9	21.73	21.76
DC-HSDPA Subtest-3	21.38	21.24	21.25
DC-HSDPA Subtest-4	21.42	21.27	21.26

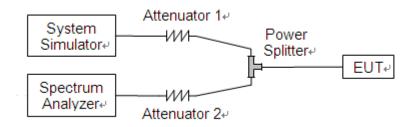
WCDMA Band II		Average Power (dBm))
TX Channel	9262	9400	9538
Frequency (MHz)	1852.4	1880.0	1907.6
RMC 12.2Kbps	22.85	22.88	22.89
HSDPA Subtest-1	21.35	21.39	21.34
HSDPA Subtest-2	20.43	20.38	20.44
HSDPA Subtest-3	19.70	19.56	19.71
HSDPA Subtest-4	19.59	19.50	19.53
HSUPA Subtest-1	20.59	20.41	20.40
HSUPA Subtest-2	20.54	20.37	20.31
HSUPA Subtest-3	20.28	20.08	20.03
HSUPA Subtest-4	21.51	21.36	21.29
HSUPA Subtest-5	20.45	20.28	20.30
HSPA+ (16QAM) Subtest-1	19.61	19.47	19.44
DC-HSDPA Subtest-1	21.71	21.66	21.62
DC-HSDPA Subtest-2	21.74	21.72	21.61
DC-HSDPA Subtest-3	21.21	21.13	21.15
DC-HSDPA Subtest-4	21.22	21.18	21.13

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Http://www.morlab.cn E-mail: service@morlab.cn

Fax: 86-755-36698525

WCDMA Band IV	A	verage Power (dBm))
TX Channel	1312	1413	1513
Frequency (MHz)	1712.4	1732.6	1752.6
RMC 12.2Kbps	22.48	22.47	22.52
HSDPA Subtest-1	21.47	21.43	21.38
HSDPA Subtest-2	20.50	20.43	20.41
HSDPA Subtest-3	19.66	19.71	19.65
HSDPA Subtest-4	19.57	19.62	19.58
HSUPA Subtest-1	20.51	20.43	20.41
HSUPA Subtest-2	20.49	20.40	20.37
HSUPA Subtest-3	20.18	20.09	20.11
HSUPA Subtest-4	21.45	21.38	21.39
HSUPA Subtest-5	20.39	20.33	20.30
HSPA+ (16QAM) Subtest-1	19.25	19.17	19.24
DC-HSDPA Subtest-1	21.58	21.52	21.59
DC-HSDPA Subtest-2	21.49	21.47	21.54
DC-HSDPA Subtest-3	20.96	20.98	21.04
DC-HSDPA Subtest-4	21.02	21.00	21.05


2.2. Peak to Average Ratio

2.2.1. Requirement

According to FCC 24.232(d) and 27.50(d), the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2.2.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.2.3. Test procedure

1 .For GSM/EDGE operating mode:

- a. Set RBW=1MHz, VBW=3MHz, peak detector in spectrum analyzer.
- b. Set EUT in maximum output power, and triggered the bust signal.
- c. Measured respectively the peak level and mean level, and the deviation was recorded as Peak to Average ratio.
- 2. For UMTS operating mode:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.

2.2.4. Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

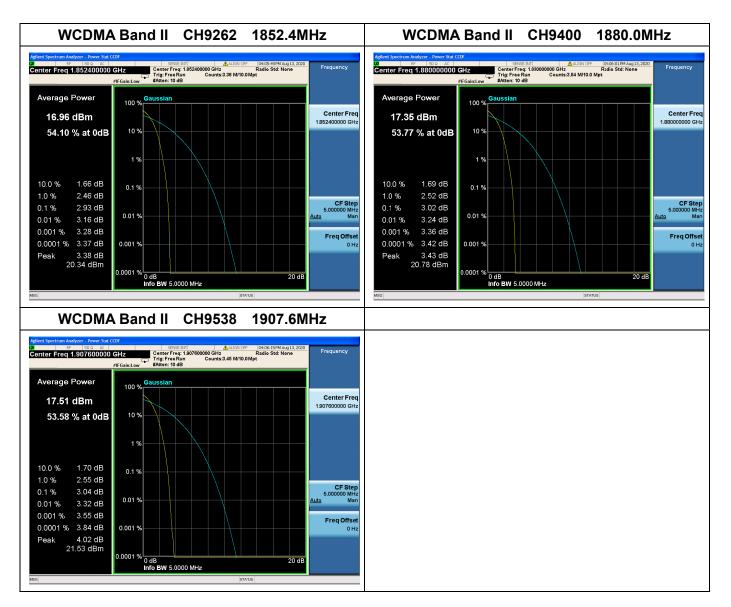
A. Test Verdict:

Band Channel	Frequency	Peak to Average ratio	Limit	Vardiat	
Danu	Channel	(MHz)	dB	dB	Verdict
GSM	512	1850.2	0.038		PASS
1900MHz	661	1880.0	0.024		PASS
810	810	1909.8	0.028	13	PASS
EDGE	512	1850.2	0.022	13	PASS
1900MHz	661	1880.0	0.025		PASS
1900IVINZ	810	1909.8	0.019		PASS

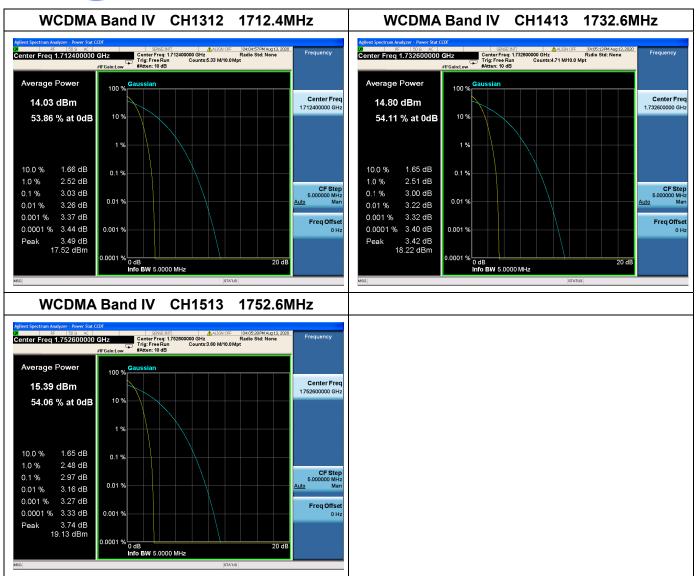
Bond	Band Channel	Frequency	Peak to Average ratio	Limit	Verdict
Бапа	Channel	(MHz)	dB	dB	verdict
WCDMA	9262	1852.4	2.930		PASS
Band II	9400	1880.0	3.020		PASS
Danu II	9538	1907.6	3.040	13	PASS
	1312	1712.4	3.030	13	PASS
WCDMA Band IV	1413	1732.6	3.000		PASS
Danu IV	1513	1752.6	2.970		PASS

MORLAB

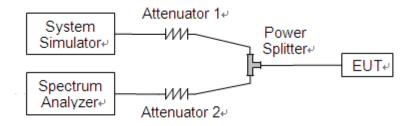
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



MORLAB


SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


2.3.99% Occupied Bandwidth

2.3.1. Requirement

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. Occupied bandwidth is also known as the 99% emission bandwidth.

2.3.2. Test Description

Test Setup:

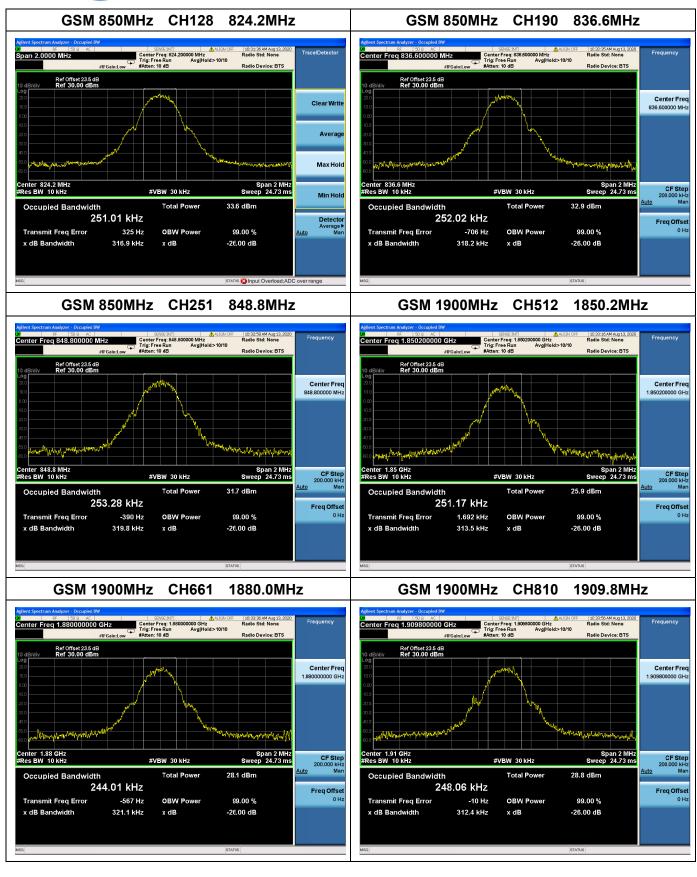
The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2.3.3. Test Result

The lowest, middle and highest channels are selected to perform testing to record the 99% occupied bandwidth.

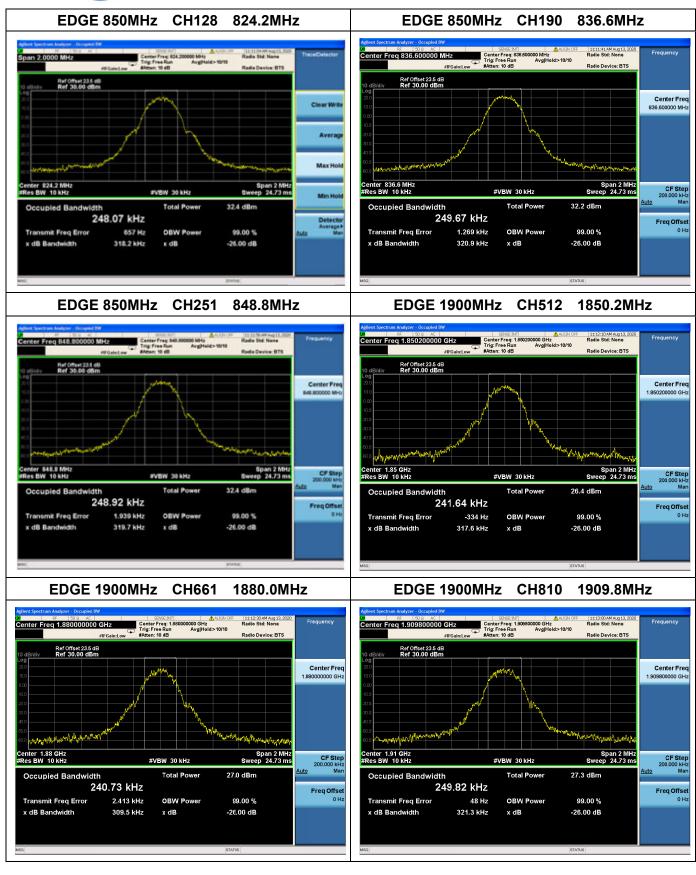
GSM Test Verdict:

Band	Channel	Frequency	99% Occupied Bandwidth	26dB Bandwidth
		(MHz)	(kHz)	(kHz)
GSM	128	824.2	251.01	316.90
850MHz	190	836.6	252.02	318.20
85010112	251	848.8	253.28	319.80
GSM	512	1850.2	251.17	313.50
1900MHz	661	1880.0	244.01	321.10
1900101112	810	1909.8	248.06	312.40
EDGE	128	824.2	248.07	318.20
850MHz	190	836.6	249.67	320.90
ODUVITIZ	251	848.8	248.92	319.70
FDOF	512	1850.2	241.64	317.60
EDGE 1900MHz	661	1880.0	240.73	309.50
	810	1909.8	249.82	321.30


WCDMA Test Verdict:

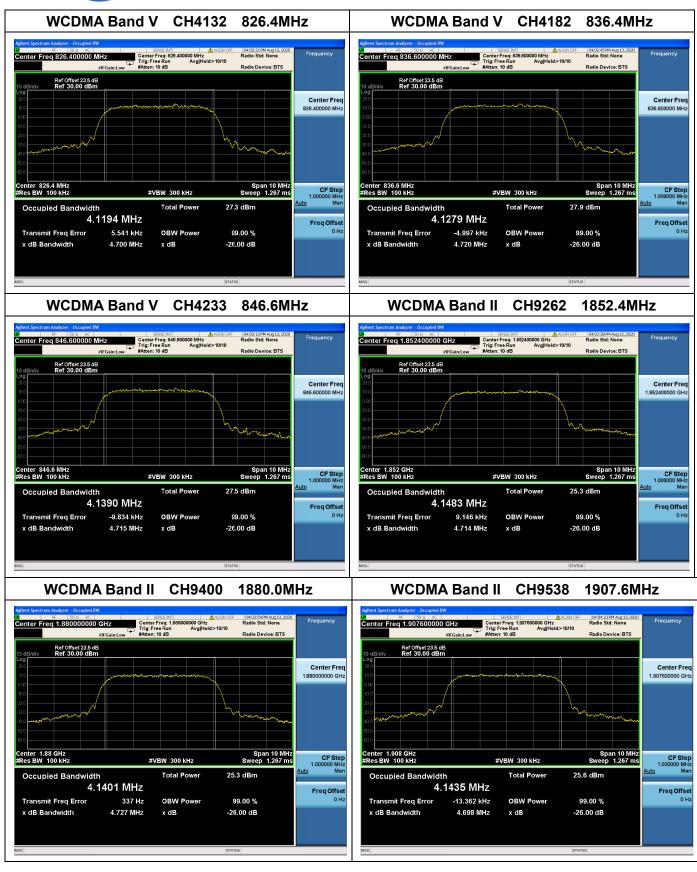
Pand	Band Channel	Frequency	99% Occupied Bandwidth	26dB Bandwidth
Dallu	Channel	(MHz)	(MHz)	(MHz)
WCDMA	4132	826.4	4.119	4.700
Band V	4182	836.4	4.128	4.720
Danu v	4233	846.6	4.139	4.715
	9262	1852.4	4.148	4.714
WCDMA Band II	9400	1880.0	4.140	4.727
Danu II	9538	1907.6	4.144	4.698
WCDMA	1312	1712.4	4.139	4.716
Band IV	1413	1732.6	4.131	4.713
	1513	1752.6	4.129	4.716

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



MORLAB

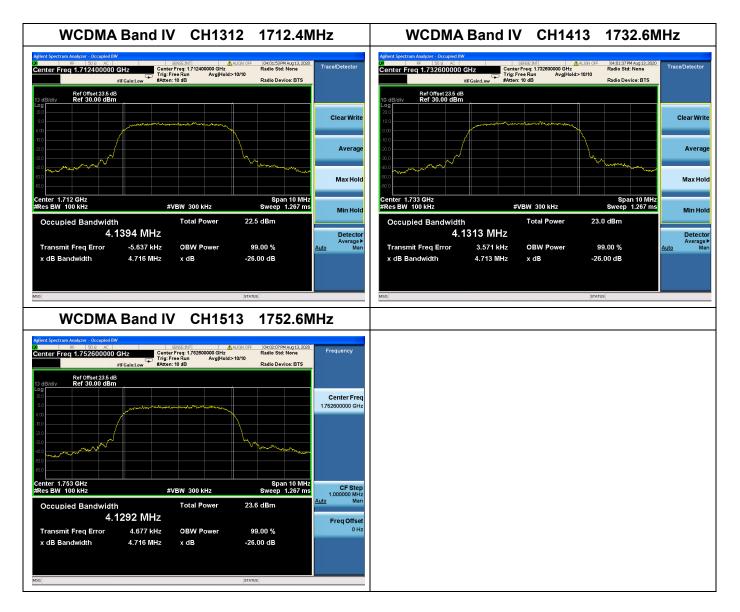
SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

Dage 25 of (

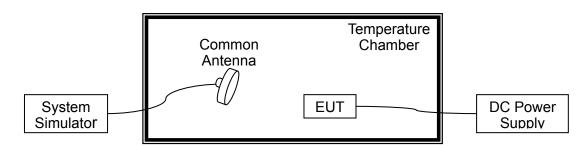


MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

2.4. Frequency Stability

2.4.1. Requirement


According to FCC section 22.355, 24.235 and 27.54 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

(a) The temperature is varied from -30° C to $+50^{\circ}$ C at intervals of not more than 10° C.

(b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

2.4.2. Test Description

Test Setup:

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

2.4.3. Test Result


The nominal, highest and lowest extreme voltages are separately3.85VDC, 4.40VDC and 3.70VDC, which are specified by the applicant; the normal temperature here used is 20°C.

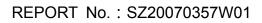
A. Test Verdict:

	GSM 850MHz, Channel 190, Frequency 836.6MHz						
			Limit =±2.5ppm				
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result		
100		+20(Ref)	22	0.025			
100		-30	28	0.031			
100		-20	-36	-0.025			
100		-10	44	0.031			
100	3.85	0	27	0.031			
100	3.00	+10	15	0.017	PASS		
100		+20	22	0.031	FA33		
100		+30	74	0.091			
100		+40	62	0.077			
100		+50	52	0.051			
115	4.40	+20	-7	-0.007			
85	3.70	+20	-70	-0.084			

	GSM 1900MHz, Channel 661, Frequency 1880.0MHz						
		Limit =\	Within Authorized Ba	nd			
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result		
100		+20(Ref)	97	0.051			
С		-30	38	0.031			
100		-20	21	0.036			
100		-10	-37	-0.027			
100	3.85	0	-29	-0.016			
100	3.00	+10	-52	-0.029	PASS		
100		+20	41	0.023	PA33		
100		+30	-73	-0.038			
100		+40	29	0.015			
100		+50	30	0.041			
115	4.40	+20	18	0.010			
85	3.70	+20	-57	-0.032			

EDGE 850MHz, Channel 190, Frequency 836.6MHz Limit =±2.5ppm							
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result		
100		+20(Ref)	25	0.030			
100		-30	20	0.028			
100		-20	-18	-0.031			
100		-10	28	0.029			
100	2.05	0	-26	-0.030			
100	3.85	+10	55	0.063	DACC		
100		+20	15	0.018	- PASS		
100		+30	28	0.035			
100		+40	25	0.031			
100		+50	34	0.025			
115	4.40	+20	-35	-0.042			
85	3.70	+20	-46	-0.053			

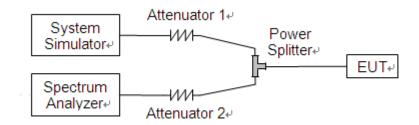
	EDGE 1900MHz, Channel 661, Frequency 1880.0MHz						
		Limit =W	ithin Authorized Ba	nd			
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result		
100		+20(Ref)	42	0.022			
100		-30	23	0.026			
100		-20	-15	-0.037			
100		-10	29	0.023			
100	3.85	0	-84	-0.045			
100	3.00	+10	-83	-0.042	PASS		
100		+20	27	0.014	FA33		
100		+30	82	0.044			
100		+40	16	0.009			
100		+50	30	0.017			
115	4.40	+20	18	0.012			
85	3.70	+20	-24	-0.014			



	WCE	MA Band V, C	Channel 4182, Freque	ncy 836.4MHz	
			Limit =±2.5ppm		
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result
100		+20(Ref)	31	0.037	
100		-30	25	0.025	
100		-20	-17	-0.033	
100		-10	24	0.027	
100	2.05	0	25	0.022	
100	3.85	+10	32	0.033	
100		+20	16	0.017	- PASS
100		+30	25	0.031	
100		+40	43	0.057	
100		+50	29	0.038	
115	4.40	+20	-65	-0.076	
85	3.70	+20	-32	-0.043	

WCDMA Band II, Channel 9400, Frequency 1880.0MHz Limit =Within Authorized Band					
Voltage (%)	Power (VDC)	Temp (°C)	Fre. Dev. (Hz)	Deviation (ppm)	Result
100		+20(Ref)	25	0.014	
100		-30	21	0.028	
100		-20	-13	-0.038	
100		-10	29	0.023	
100	2.05	0	24	0.028	
100	3.85	+10	-26	-0.015	– PASS
100		+20	87	0.046	PA33
100		+30	82	0.042	
100		+40	51	0.028	
100		+50	38	0.021	
115	4.40	+20	44	0.024	
85	3.70	+20	-84	-0.043	

	WCDM	MA Band IV, Ch	nannel 1413, Frequen	icy 1732.6MHz	
		Limit =V	Vithin Authorized Bar	nd	
Voltage (%)	Power	Temp (°C)	Fre. Dev.	Deviation	Result
voltage (76)	(VDC)	Temp (C)	(Hz)	(ppm)	Result
100		+20(Ref)	-54	-0.033	
100		-30	29	0.042	
100		-20	18	0.039	
100		-10	39	0.0028	
100	2.05	0	-52	-0.031	
100	3.85	+10	-38	-0.025	DACO
100		+20	-63	-0.037	- PASS
100		+30	-36	-0.022	
100		+40	66	0.038	
100		+50	37	0.029	
115	4.40	+20	13	0.010	
85	3.70	+20	-54	-0.033	

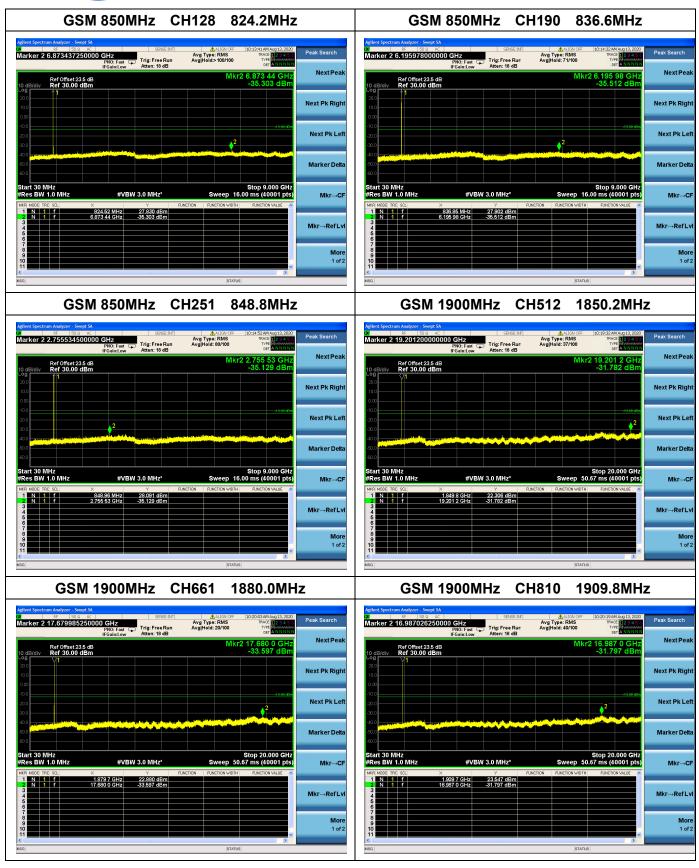

2.5. Conducted Out of Band Emissions

2.5.1. Requirement

According to FCC section 22.917(a), 24.238(a) and 27.53(h) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

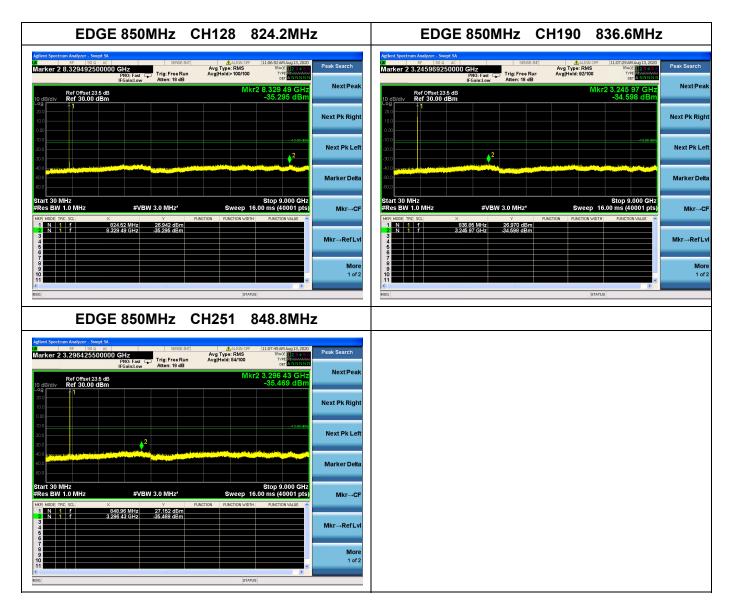
2.5.2. Test Description

Test Setup:


The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

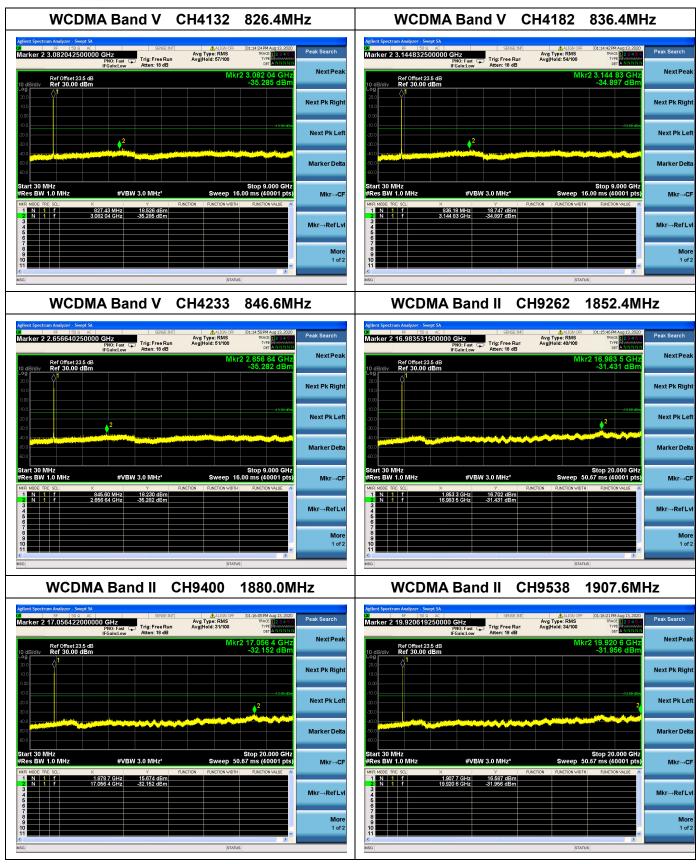
2.5.3. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.



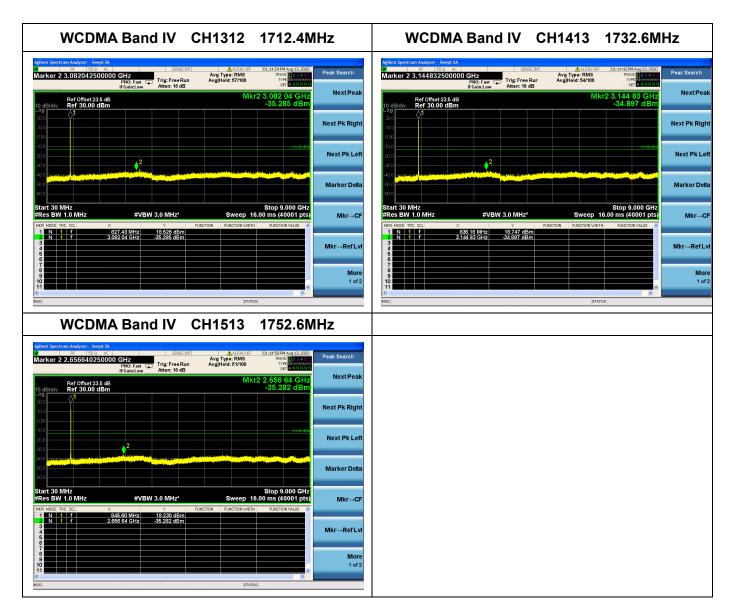
MORLAB

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

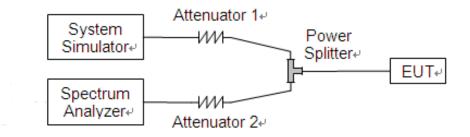


	EDGE 1900MHz CH661 1880.0MHz
Ant/Sectrum Anilyzer Smiph Si Stream Ant/Si GF 1105(35:4) Aug 12,2020 Peak Search rker 2 15.910141/250000 GHz IFGGintum Trig: Free Run Attach: 18 dB Avg Type: RMS Avg Type: RMS Generation Trig: Free Run Control of Control o	Agline: Spectrum Analyzer - Swegt SA Carter State - S
Ref Offset 23.5 d3 Mkr2 16.910 1 GHz dB/div Ref 30.00 dBm -33.001 dBm	Ref Offset 23.5 dB Mkr2 16.987 0 GHz 10 dB/div Ref 30.00 dBm -31.764 dBm
O O 0 O 0 O 0 O	Log 01 Next Pk 1
D	100
Marker Delta	eoo
t 30 MHz s BW 1.0 MHz #VBW 3.0 MHz* Sweep 50.67 ms (40001 pts) #00E TRC SQL X Y RUNCTION RUNCTION WIDTH RUNCTION WILL A	Start 30 MHz Stop 20.000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz* Sweep 50.67 ms (40001 pts) MXR wode tre; sq. x y Runction Runction worth Runction water
N 1 f 18498 GHz 21910 dBm N 1 f 169101 GHz 33.001 dBm N 1 a 169101 GHz 33.001 dBm Nkr→RefLvt	1 N 1 f 1.279 T GHz 22.503 dBm 2 N 1 f 16.987 0 GHz -31.764 dBm 4
More 1 of 2	
EDGE 1900MHz CH810 1909.8MHz	
nt Spectrum Analyzer - Swept SA 157 509 AC 5765-107 1108-51494 Aug 13,2020 Ker 2 17.028/632550000 GHz Avg Type: RMS Trive: RES Rear For	
Answer Streetwin Answer Streetwin Answer Peak Search 05 500 400 500 400 500 Peak Search Peak Search </td <td></td>	
t Spectrum Analyzer - Swept SA BB 900 46 F 2 17.028955250000 GHz HG 1 2 17.028955250000 GHz HG 1 2 17.0289552520000 GHz HG 1 2 17.02895525250000 GHz HG 1 2 17.02895525250000 GHz HG 1 2 17.02890 GHz Ref Offset 23.5 d3 Mkr2 17.02890 GHz Next Peak	
Spectrum Analyzer - Swypt 33 BE S00 44 SENEIN/I Aut 120 0FF 11:02:51:4014:01:32:000 Peak Search Ker 2 17:02:89:6325:500:00 CHz IFG officet 23:5.00 Bm Trig: Free Run Atten: 19:4B Mkr2 17:02:80 GHz Avg Type: RMS Peak Search Arg: Free Run IFG officet 23:5.0 dB Mkr2 17:02:80 GHz -32:710 dBm Next Peak	
Spectrum Analyzer _Swept SA 19 000 AC SPACE.NT Aud 104106F 110854AARJug12.000 Peak Search Areg Type: FMNS Processor Processor <td></td>	
t Spectram Analyzer - Swept SA Ref 2 17.028953250000 GHz PR0: Fast C Ref 30.00 GHz PR0: Fast C Ref 30.00 GHz PR0: Fast C PR0: F	
rt Spectrum Analyzer - Swept SA Ref 2 17.028963250000 GHz Frig Free Run H Calubra - Stop 20.000 GHz Frig Free Run H Calubra - Stop 20.000 GHz Trig Free Run Are 17.028 9 GHZ Calubra - Stop 20.000 GHZ Trig Free Run H Calubra - Stop 20.000 GHZ H Calubra - Stop 20.000	
Ref Offset 23.5 d3 SEACE INITIAte:: 10 d5 Arg Type:: RMS Trace: 10 d5 Ref Offset 23.5 d3 Next Peak Search Ref Offset 23.5 d3	

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China



2.6.1. Requirement

According to FCC section 22.917(b), 24.238(b) and 27.53(h) in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

2.6.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

