

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY52	52.10.1.1476
Advanced Extrapolation	
Triple Flat Phantom 5.1C	
10 mm	with Spacer
dx, dy, dz = 5 mm	
1750 MHz ± 1 MHz	
	DASY52 Advanced Extrapolation Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm

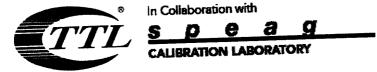
٦

Head TSL parameters

ters and calculations were applied.

The following parameters and calculations we	Temperature	Permittivity	Conductivity
	22.0 °C	40.1	1.37 mho/m
Nominal Head TSL parameters Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	1.33 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

sult with Head TSI SA


R result with Head 13L	Condition	
SAR averaged over 1 $-cm^3$ (1 g) of Head TSL		8.91 mW / g
SAR measured	250 mW input power	
SAR for nominal Head TSL parameters	normalized to 1W	36.5 mW /g ± 18.8 % (k=2)
SAR for normal field for parameters SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
	250 mW input power	4.81 mW / g
SAR measured		19.5 mW /g ± 18.7 % (k=2)
SAR for nominal Head TSL parameters	normalized to 1W	10.0 mm rg = 10.0 mm rg

Body TSL parameters

he following parameters and calculations were a	Temperature	Permittivity	Conductivity
TOL seremeters	22.0 °C	53.4	1.49 mho/m
Nominal Body TSL parameters	(22.0 ± 0.2) °C	53.8±6%	1.48 mho/m ± 6 %
Measured Body TSL parameters			
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

(result with body to	Condition	
SAR averaged over 1 cm^3 (1 g) of Body TSL	250 mW input power	9.17 mW / g
SAR measured		
SAR for nominal Body TSL parameters	normalized to 1W	37.0 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
	250 mW input power	5.05 mW / g
SAR measured		20.3 mW /g ± 18.7 % (k=2)
SAR for nominal Body TSL parameters	normalized to 1W	20.3 1111 /g 2 1011 /0 (10 =/

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3- 0.87 jΩ
	- 40.7 dB
Return Loss	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8Ω- 2.59 jΩ
Return Loss	- 24.3 dB

General Antenna Parameters and Design

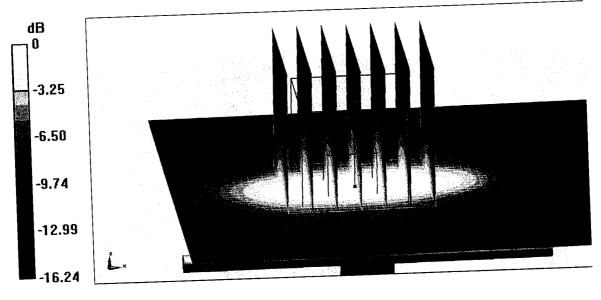
	1.087 ns
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

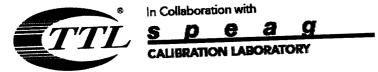
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

	SPEAG
Manufactured by	

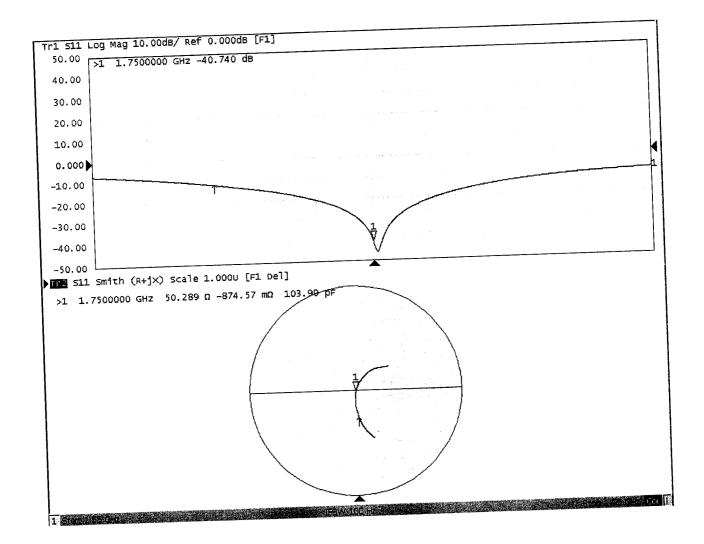

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

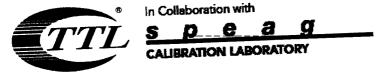
Date: 07.30.2018


DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China **DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1137** Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.332$ S/m; $\epsilon r = 41.17$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.7, 8.7, 8.7) @ 1750 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Pnanton: MFF_V5.1C, Type: QD 00011101
 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11
- Measurement Sw: DAS 132, Version 52.10 (1), 4 (7439)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.50 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 8.91 W/kg; SAR(10 g) = 4.81 W/kg Maximum value of SAR (measured) = 13.5 W/kg


0 dB = 13.5 W/kg = 11.30 dBW/kg



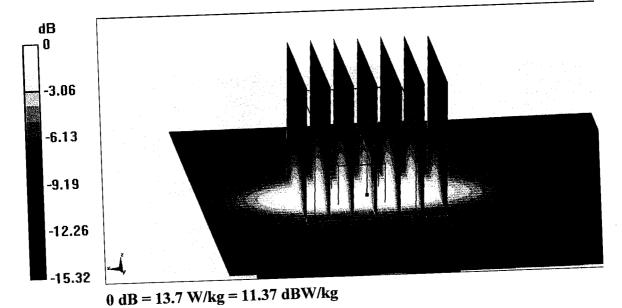
Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

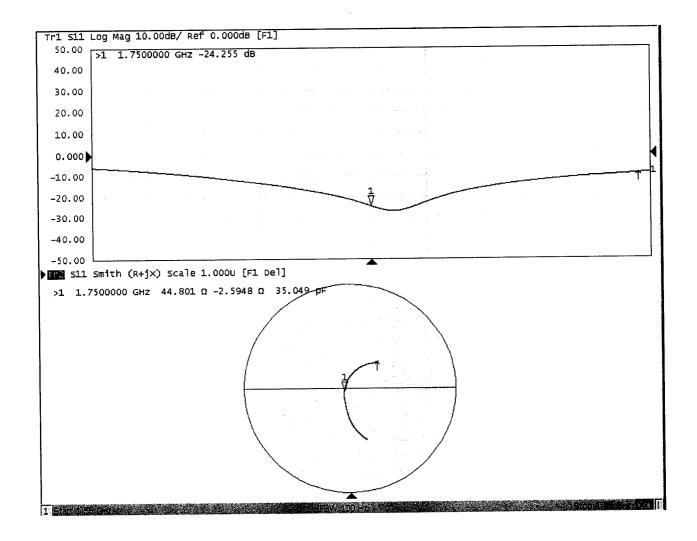
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn


DASY5 Validation Report for Body TSL

Date: 07.30.2018

Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1137 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; σ = 1.477 S/m; ϵ r = 53.84; ρ = 1000 kg/m3 Phantom section: Left Section DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.6, 8.6, 8.6) @ 1750 MHz; Calibrated: • 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 ٠ • (7439)


System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 77.55 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 13.7 W/kg

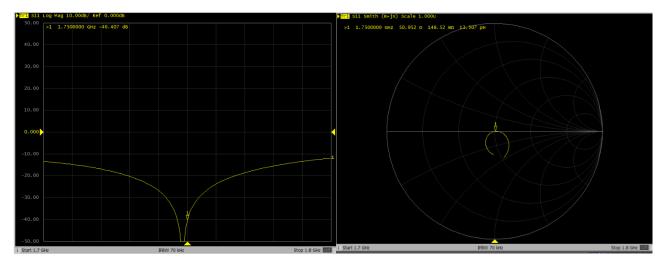
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Impedance Measurement Plot for Body TSL

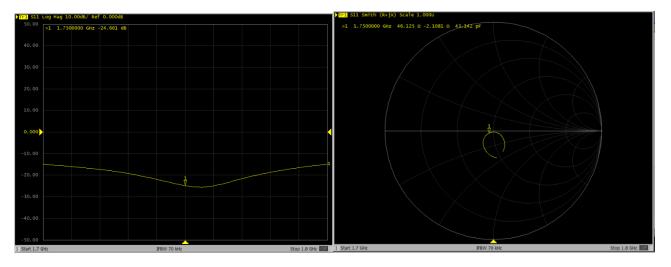
D1750V2, Serial No. 1137 Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

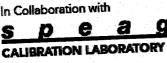
	D1750V2 – serial no. 1137											
1750 Head						1750 B	ody					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018.07.30	-40.7		50.3		-0.87		-24.3		44.8		-2.59	
2019.10.23	-40.4	0.7	51	0.7	-0.15	0.72	-24.7	-1.6	46.1	1.3	-2.1	0.49


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



Dipole Verification Data> D1750V2, serial no. 1137


1750MHz - Head

1750MHz – Body

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

CALIBRATION GERTIFICATE

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Client

Sporton

Z18-60536 **Certificate No:**

FF-Z11-003-01 Calibration Procedures for dipole validation kits

December 7, 2018

D1900V2 - SN: 5d182

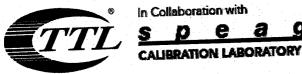
Calibration date:

Calibration Procedure(s)

Object

This calibration Certificate documents the traceability to national standards, which realize the physical units of

measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.


All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

		Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	100596	Car Date(Cambrated 3), 220 07-Mar-18 (CTTL, No.J18X01510) 07-Mar-18 (CTTL, No.J18X01510) 27-Aug-18(SPEAG,No.EX3-7514_Aug18) 20-Aug-18(SPEAG,No.DAE4-1555_Aug18)	Mar-19 Mar-19 Aug-19 Aug-19
Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # MY49071430 MY46110673		Scheduled Calibration Jan-19 Jan-19

	Name	Function	Signature
Calibrated by:	Zhao Jing S	SAR Test Engineer	Con To Use
Reviewed by:	Lin Hao	SAR Test Engineer	Min Victor
Approved by:	Qi Dianyuan	SAR Project Leader	
			ssued: December 10, 2018
	inete shall not be reproduced e	except in full without writte	en approval of the laboratory.

This calibration certificate shall not be repro-

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

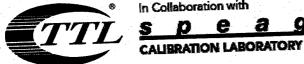
lossary:

TSL ConvF N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless
- communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz


Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the • measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- . SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the
- nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

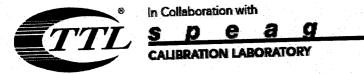
Head TSL parameters

neters and calculations were applied.

The following parameters and calculations mere	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.44 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

P result with Head TSL SA

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
	250 mW input power	10.1 mW / g
SAR measured SAR for nominal Head TSL parameters	normalized to 1W	39.6 mW /g ± 18.8 % (k=2)
	Condition	
SAR averaged over 10 cm^3 (10 g) of Head TSL	250 mW input power	5.25 mW / g
SAR measured	normalized to 1W	20.7 mW /g ± 18.7 % (k=2)
SAR for nominal Head TSL parameters		


Body TSL parameters

he following parameters and calculations were a	Temperature	Permittivity	Conductivity
	22.0 °C	53.3	1.52 mho/m
Nominal Body TSL parameters	(22.0 ± 0.2) °C	51.8 ± 6 %	1.56 mho/m ± 6 %
Measured Body TSL parameters			
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
	250 mW input power	10.2 mW / g
SAR measured		39.9 mW /g ± 18.8 % (k=2)
SAR for nominal Body TSL parameters	normalized to 1W	39.9 mw /g ± 10.0 // (* =/
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
	250 mW input power	5.31 mW / g
SAR measured		20.9 mW /g ± 18.7 % (k=2)
SAR for nominal Body TSL parameters	normalized to 1W	20.9 MW/g 1 10.7 / (K 2)

Certificate No: Z18-60536

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1Ω+ 5.35jΩ
Return Loss	- 25.0dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.9Ω+ 6.19jΩ
Return Loss	- 24.0dB

General Antenna Parameters and Design

	1.067 ns
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

		SPEAG
Manufactured by	· · · · · · · · · · · · · · · · · · ·	

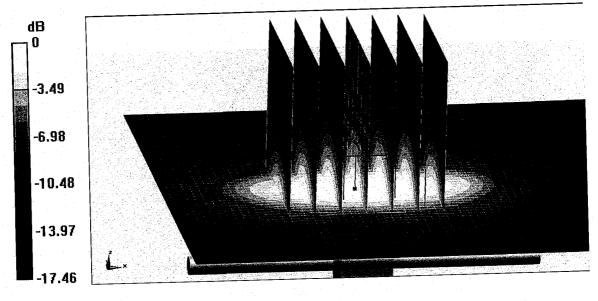
CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

1 E

In Collaboration with

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn


Date: 12.06.2018

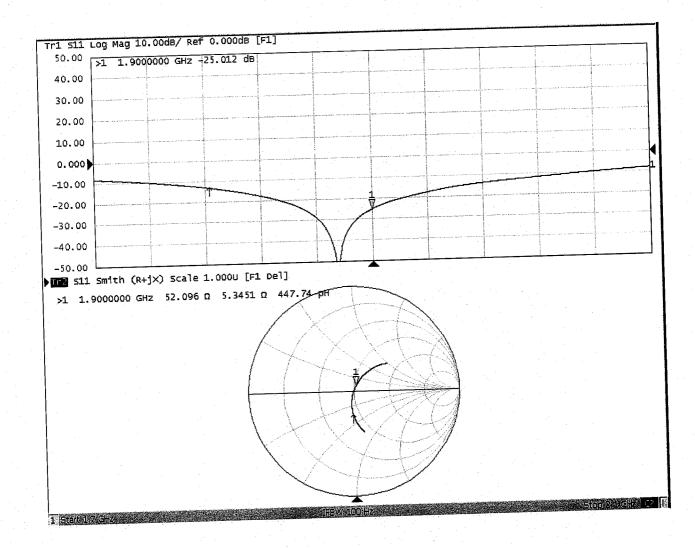
DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.441 S/m; ϵ_r = 39.59; ρ = 1000 kg/m3 Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.73, 7.73, 7.73) @ 1900 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.91 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.25 W/kg Maximum value of SAR (measured) = 15.8 W/kg

0 dB = 15.8 W/kg = 11.99 dBW/kg



Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

a

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Body TSL

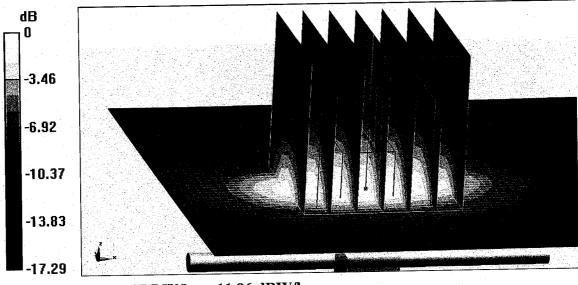
Date: 12.05.2018

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.564 S/m; ϵ_r = 51.82; ρ = 1000 kg/m3

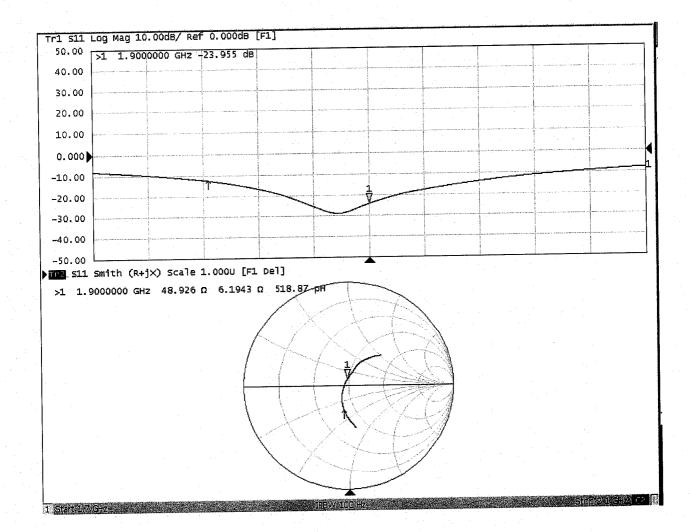

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.53, 7.53, 7.53) @ 1900 MHz; Calibrated: • 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018 •
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062 • •
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 ٠ (7450)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.07 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.31 W/kg

Maximum value of SAR (measured) = 15.7 W/kg



0 dB = 15.7 W/kg = 11.96 dBW/kg

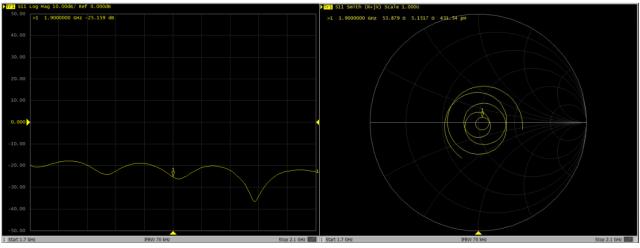
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

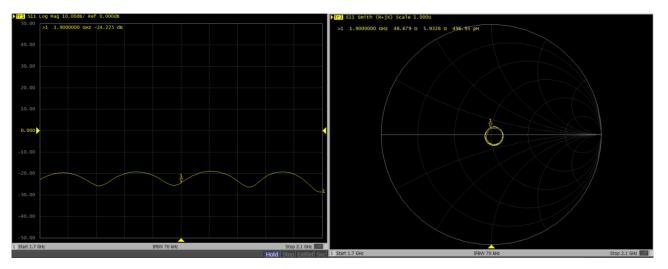
D1900V2, Serial No. 5d182 Extended Dipole Calibrations

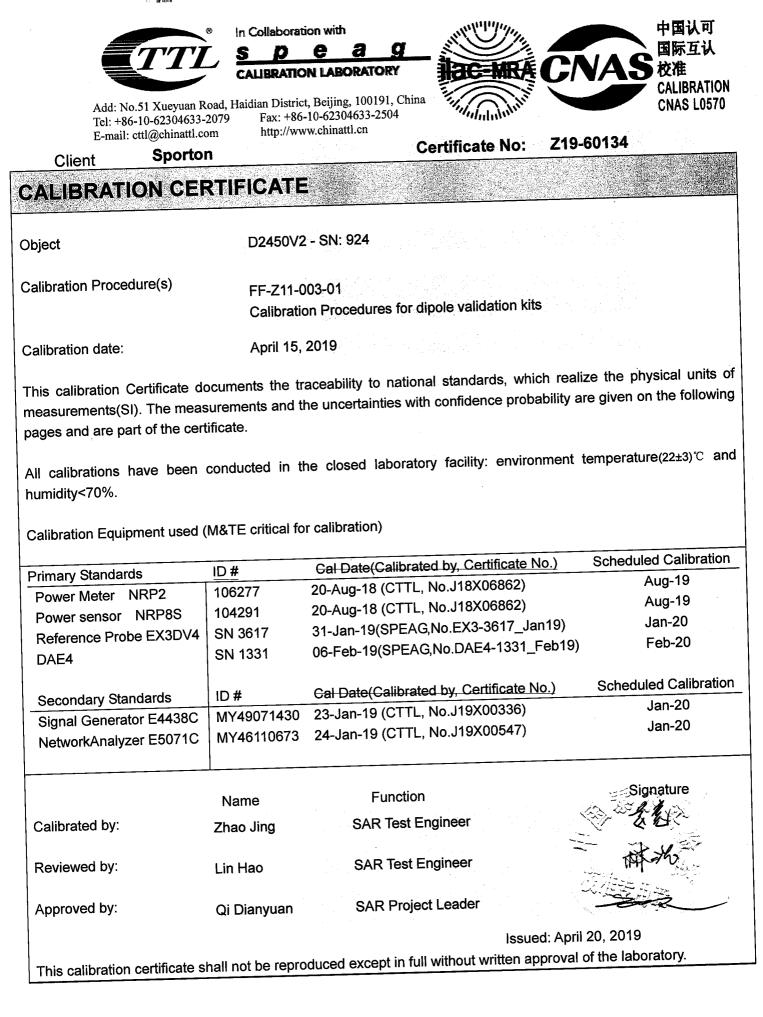
Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

	D1900V2 – serial no. 5d182											
1900 Head						1900 B	ody					
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018.12.7	-25		52.1		5.35		-24		48.9		6.19	
2019.11.25	-25.2	-0.8	53.9	1.8	5.15	-0.2	-24.2	-0.8	48.7	-0.2	5.93	-0.26


<Justification of the extended calibration>

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.




Dipole Verification Data> D1900V2, serial no. 5d182

1900MHz - Head

1900MHz – Body

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented . parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the • measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

p

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

e

CALIBRATION LABORATORY

а

C

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.1 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.99 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	2.01 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

	Condition	
SAR averaged over 1 cm ³ -(1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.1 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.83 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 18.7 % (k=2)

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.9Ω+ 2.68 jΩ
Return Loss	- 29.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8Ω+ 4.17 jΩ
Return Loss	- 27.2dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.019 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

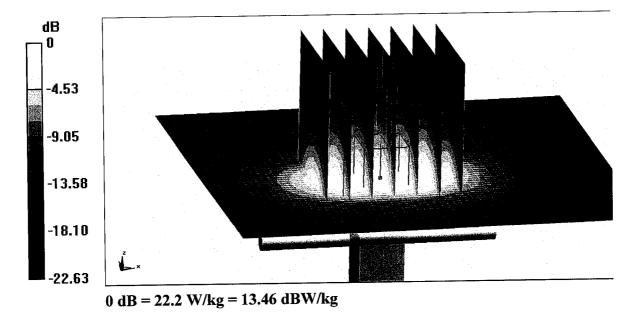
Manufactured by	SP	EAG	

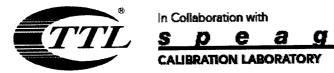
D

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

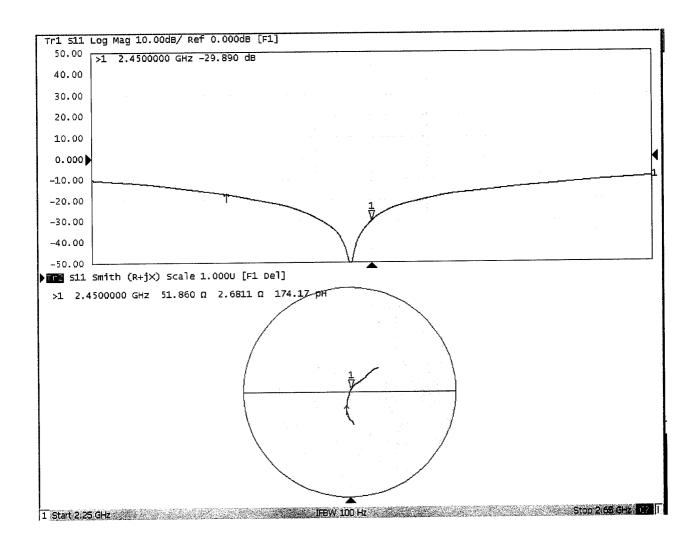
CALIBRATION LABORATORY


а


Date: 04.15.2019 **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 40.35; ρ = 1000 kg/m3 Phantom section: Right Section **DASY5** Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.62, 7.62, 7.62) @ 2450 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 • (7450)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 86.73 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.99 W/kg Maximum value of SAR (measured) = 22.2 W/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

Impedance Measurement Plot for Head TSL

D

e

CALIBRATION LABORATORY

a

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com

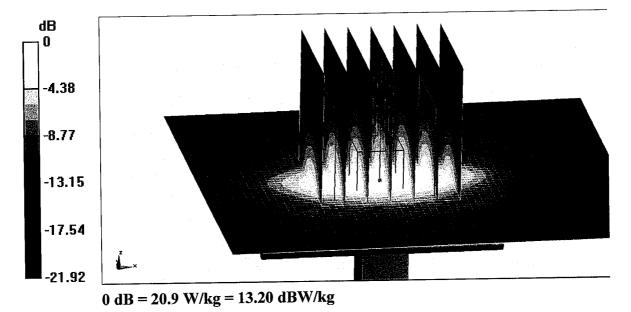
DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

Date: 04.15.2019

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 2.005 S/m; ϵ_r = 54.25; ρ = 1000 kg/m3 Phantom section: Center Section **DASY5** Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.79, 7.79, 7.79) @ 2450 MHz; Calibrated: . 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 . (7450)

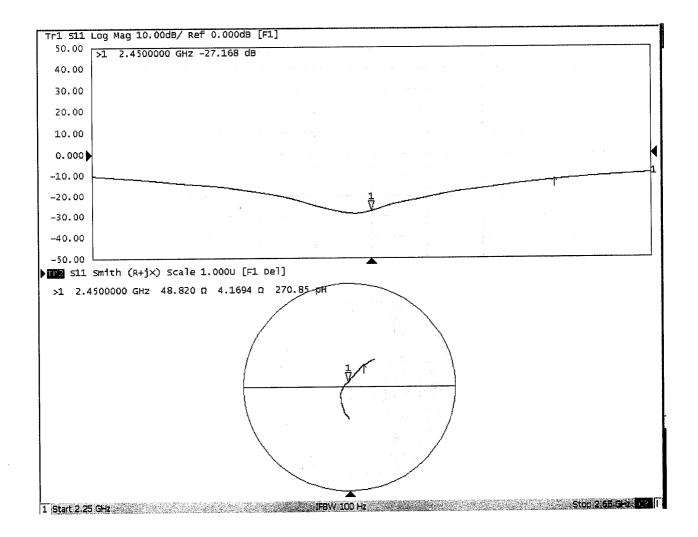

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.46 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.83 W/kg

Maximum value of SAR (measured) = 20.9 W/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

TT	N 100 100 100 100 100 100 100 100 100 10	oration with		中国认可国际互认
	CALIBRA	TION LABORATORY	Hac MRA	い A S 校准
Add: No.51 Xueyu Tel: +86-10-62304 E-mail: cttl@china	633-2079 Fax:	strict, Beijing, 100191, Chi +86-10-62304633-2504 /www.chinattl.cn	ina Hillinghillinghilling	CALIBRATION CNAS L0570
Client Spo	and the second second state		Certificate No: Z	18-60537
CALIBRATION C	EBTIEIGA	ne -		
Object	D2600	V2 - SN: 1070		
Calibration Procedure(s)			Vie Suissen en der der der der	
		-003-01 ition Procedures for c	lingle validation kits	
Collibration data.	the first of the second stands	n an		
Calibration date:	Decem	ber 7, 2018		
This calibration Certificate measurements(SI). The me pages and are part of the ce	asurements and			ealize the physical units of are given on the following
All calibrations have been humidity<70%. Calibration Equipment used			ry facility: environmen	t temperature(22±3)℃ and
Primary Standards	ID #	Cal Date(Calibrate	d by, Certificate No.)	Scheduled Calibration
Power Meter NRVD	102196	07-Mar-18 (CTTL, I	· · · · · · · · · · · · · · · · · · ·	Mar-19
Power sensor NRV-Z5	100596	07-Mar-18 (CTTL, I		Mar-19
Reference Probe EX3DV4	1		No.EX3-7514_Aug18)	Aug-19
DAE4	SN 1555	20-Aug-18(SPEAG	No.DAE4-1555_Aug18,	3) Aug-19
Secondary Standards	ID#	Cal Date(Calibrated	d by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	23-Jan-18 (CTTL, N	No.J18X00560)	Jan-19
Network Analyzer E5071C	MY46110673	24-Jan-18 (CTTL, N	√o.J18X00561)	Jan-19
	Name	Function		Signature
Calibrated by:	화장, 승규는 가슴 것 것			
	Zhao Jing	SAR Test Eng	lineer	
Reviewed by:	Lin Hao	SAR Test Eng	lineer	#HB
Approved by:	Qi Dianyuan	SAR Project I	_eader	
				ember 10, 2018
This calibration certificate sh	all not be reprod	luced except in full w	ithout written approval of	of the laboratory

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.2.1495
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

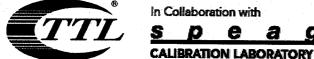
Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.93 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	58.1 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.50 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	26.1 mW /g ± 18.7 % (k=2)


Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Body TSL parameters	22.0 °C	52.5	2.16 mho/m	
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.18 mho/m ± 6 %	
Body TSL temperature change during test	<1.0 °C			

SAR result with Body TSL

SAR averaged over $1_{-}cm^3$ (1 g) of Body TSL	Condition			
SAR measured	250 mW input power	13.8 mW / g		
SAR for nominal Body TSL parameters	normalized to 1W	54.6 mW /g ± 18.8 % (k=2) 6.18 mW / g 24.6 mW /g ± 18.7 % (k=2)		
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition			
SAR measured	250 mW input power			
SAR for nominal Body TSL parameters	normalized to 1W			

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

e

Appendix(Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6Ω- 6.33jΩ				
Return Loss	- 23.7dB				

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.8Ω- 5.36jΩ				
Return Loss	- 22.1dB				

General Antenna Parameters and Design

Electrical Delay (one direction)	1.015 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

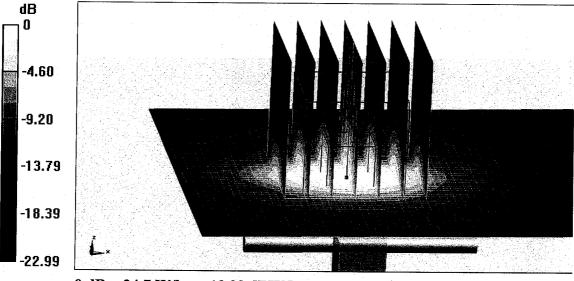
Manufactured by	SDEAC
indicate of by	SPEAG

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079E-mail: cttl@chinattl.comFax: +86-10-62304633-2504http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 12.06.2018

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070** Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.926$ S/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration:


- Probe: EX3DV4 SN7514; ConvF(6.92, 6.92, 6.92) @ 2600 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

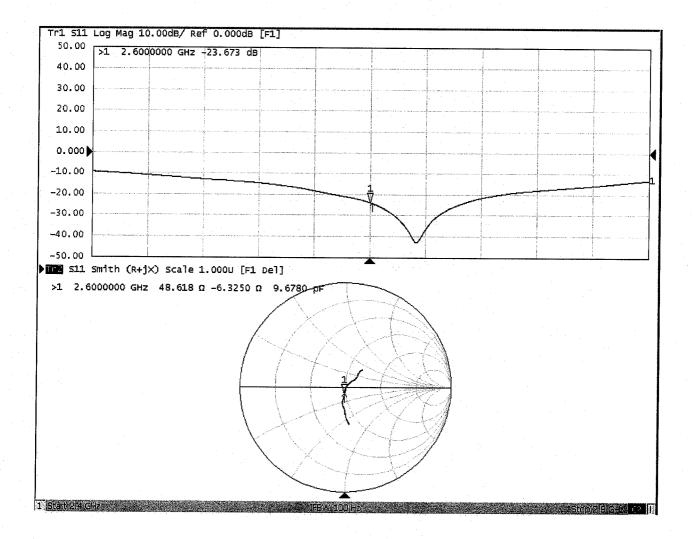
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

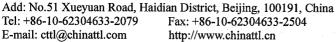
Reference Value = 99.07 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 31.1 W/kg

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.5 W/kg Maximum value of SAR (measured) = 24.7 W/kg

0 dB = 24.7 W/kg = 13.93 dBW/kg




Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Fax: +86-10-62304633-2504 http://www.chinattl.cn

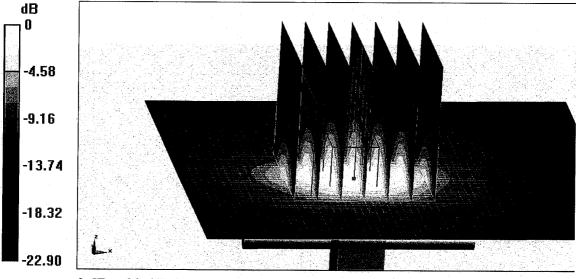
..... CALIBRATION LABORATORY

DASY5 Validation Report for Body TSL

Date: 12.06.2018

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.181 \text{ S/m}$; $\varepsilon_r = 51.03$; $\rho = 1000 \text{ kg/m3}$ Phantom section: Right Section **DASY5** Configuration:

- Probe: EX3DV4 SN7514; ConvF(7.06, 7.06, 7.06) @ 2600 MHz; Calibrated: 8/27/2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/20/2018
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 ٠ (7450)


Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.90 V/m; Power Drift = -0.04 dB

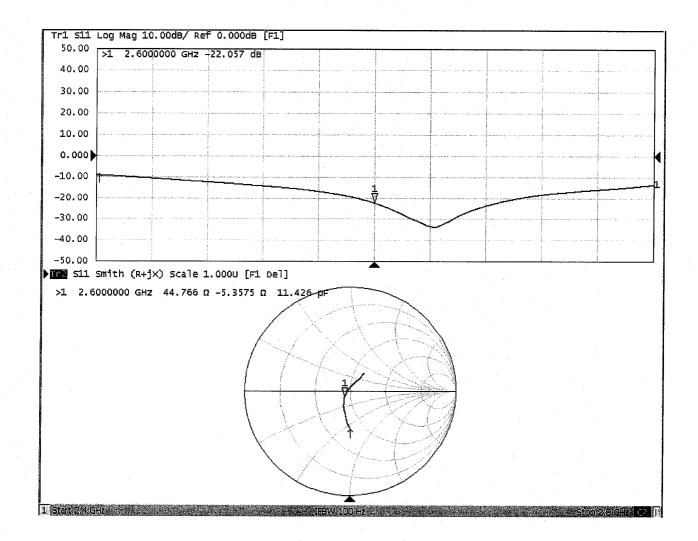
Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (measured) = 23.6 W/kg

0 dB = 23.6 W/kg = 13.73 dBW/kg

D


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

е

CALIBRATION LABORATORY

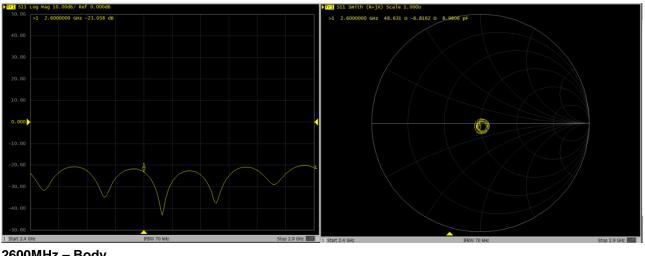
ē

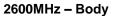
Impedance Measurement Plot for Body TSL

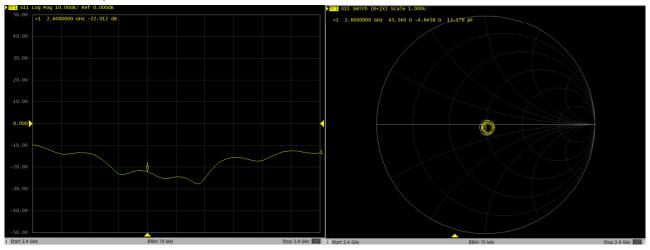
D2600V2, Serial No. 1070 Extended Dipole Calibrations

Referring to KDB 865664 D01 v01r02, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

	D2600V2 – serial no. 1070											
	2600 Head					2600 Body						
Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2018.12.7	-23.7		48.6		-6.33		-22.1		44.8		-5.36	
2019.11.25	-23.1	2.5	48.6	0	-6.82	-0.49	-22.0	0.5	45.3	0.5	-4.65	0.71


<Justification of the extended calibration>


The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



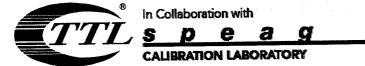
Dipole Verification Data> D2600V2, serial no. 1070

2600MHz - Head

Add: No.51 Xucyuan Road, Haidian District, Baijing, 100191, China Tex: +86-10-02304633-2304 Tex: +86-10-02304633-2304 Fix: +86-10-02304633-2304 Client : Sporton Calibratic on procedure (s) CF-Z11-002-01 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure(s) FF-Z11-002-01 Calibration Certificate documents the traceability to national standards, which realize the physical units o measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°c and humidity Primary Standards ID # Calibrated by: Yu Zongying SAR Test Engineer Acquisitor Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader		in Collabor	etion with C A G ION LABORATORY		CNAS	中国认可 国际互认 校准 CALIBRATION
Client : Option CALIBRATION CERTIFICATE Object DAE4 - SN: 715 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units o measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%.	Tel: +86-10-6230	4633-2512 Fax: +	-86-10-62304633-2504	Fill Andulution		CNAS L0570
Object DAE4 - SN: 715 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units o measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 20-Jun-18 (CTTL, No.J18X05034) June-19 Calibrated by: Yu Zongying Reviewed by: Lin Hao Approved by: Qi Dianyuan				Certificate N	lo: Z19-60029	
Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units or measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.	CALIBRATION	BERTIFICAT				
Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: January 23, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units o measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.	Object	DAE4	- SN: 715			
This calibration Certificate documents the traceability to national standards, which realize the physical units or measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.	Calibration Procedure(s)	Calibra	ation Procedure for the	e Data Acquisit	ion Electronics	
measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.	Calibration date:	Janua	ry 23, 2019		an an an Araba an Araba an Araba. An Araba An Araba an Araba an Araba an Araba	
Primary Standards ID # Cal Date (Calibrated b), Columnation (Calibrated b), Colum	measurements(SI). The n pages and are part of the All calibrations have be humidity<70%.	neasurements and certificate. en conducted in	I the uncertainties with c the closed laboratory	onfidence proba	bility are given on t	he following
Process Calibrator 753 1971018 20-suil-ito (CTTE, No.5 to Noscolity) Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader	Primary Standards	ID# Ca	al Date(Calibrated by, C	ertificate No.)	Scheduled Calib	ration
Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader	Process Calibrator 753	1971018	20-Jun-18 (CTTL, No.	J18X05034)	June-19)
Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader						
Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader		Name	Function		Signature	
Approved by: Qi Dianyuan SAR Project Leader	Calibrated by:	Yu Zongying	SAR Test Engine	er	A Anthon	\geq
	Reviewed by:	Lin Hao	SAR Test Engine	er.	= AFAB	
·	Approved by:	Qi Dianyuan	SAR Project Lea	ıder	- And	
Issued: January 24, 2019						
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.	This calibration certificat	e shall not be repr	oduced except in full wi	thout written app		.or y.

1

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn


Glossary: DAE

Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:1LSB =6.1μV ,full range =-100...+300 mVLow Range:1LSB =61nV ,full range =-1.....+3mVDASY measurement parameters:Auto Zero Time:3 sec;Measuring time:3 sec;

Calibration Factors X		Y	Z	
High Range	405.101 ± 0.15% (k=2)	$404.654 \pm 0.15\%$ (k=2)	404.478 \pm 0.15% (k=2)	
Low Range	3.99019 ± 0.7% (k=2)	3.97763±0.7% (k=2)	$3.97614 \pm 0.7\%$ (k=2)	

Connector Angle

ector Angle to be used in DASY system 33	330.5° ± 1 °
--	--------------

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Sporton

Client

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3819 N. F.

GALIBRANON GERT EX3DV4 - SN 8819 Object QA CAL-01.v9/ QA CAL-14 v5. QA CAL-23 v5, QA CAL-25 v7 Calibration procedure(s) Calibration procedure for dosimetricile field probes March 1, 2019 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

		Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		04-Apr-18 (No. 217-02672/02673)	Apr-19
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103244		Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
		Check Date (in house)	Scheduled Check
Secondary Standards	ID	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power meter E4419B	SN: GB41293874		In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

Calibrated by:	Name Michael Weber	Function Laboratory, Lechnicians	Signature
Approved by:	Katja Pokovic	Techhical Manager	Jelly
			Issued: March 2, 2019
This calibration certificate sl	nall not be reproduced except	t in full without written approval of the lab	oratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z	tissue simulating liquid sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point crest factor (1/duty_cycle) of the RF signal
CF A, B, C, D	modulation dependent linearization parameters
Polarization φ	retation around probe axis
Polarization 9	φ rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to **Connector Angle**

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from \pm 50 MHz to \pm 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

Basic Calibration Parameters

Basic Calibration Parar	<u>neters</u>		0	Unc (k=2)
	Sensor X	Sensor Y	Sensor Z	
Norm (μV/(V/m) ²) ^A	0.46	0.40	0.46	± 10.1 %
DCP (mV) ^B	101.7	100.6	101.3	

Calibration Results for Modulation Response

	Communication System Name		A dB	Β dB√μV	C	D dB	VR mV	Max dev.	Unc [–] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	149.0	±3.0 %	± 4.7 %
		Y	0.0	0.0	1.0		142.6		
		Y	0.0	0.0	1.0		155.7		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

Other Probe Parameters	Triangular
Sensor Arrangement	112.8
Connector Angle (°)	
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mn
Probe Body Diameter	10 mn
Tip Length	9 mr
Tip Diameter	2.5 mr
Probe Tip to Sensor X Calibration Point	1 mr
Probe Tip to Sensor Y Calibration Point	1 mr
Probe Tip to Sensor Z Calibration Point	
Recommended Measurement Distance from Surface	1.4 m

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	41.9	0.89	10.00	10.00	10.00	0.42	1.05	± 12.0 %
835	41.5	0.90	9.57	9.57	9.57	0.55	0.89	± 12.0 %
900	41.5	0.97	9.43	9.43	9.43	0.41	1.05	± 12.0 %
1450	40.5	1.20	8.68	8.68	8.68	0.29	0.80	± 12.0 %
1750	40.1	1.37	8.54	8.54	8.54	0.40	0.89	± 12.0 %
1900	40.0	1.40	8.27	8.27	8.27	0.23	0.99	± 12.0 %
2000	40.0	1.40	8.20	8.20	8.20	0.35	0.86	± 12.0 %
2300	39.5	1.67	7.64	7.64	7.64	0.37	0.86	± 12.0 %
2450	39.2	1.80	7.21	7.21	7.21	0.34	0.92	± 12.0 %
2600	39.0	1.96	7.06	7.06	7.06	0.38	0.89	± 12.0 %
3300	38.2	2.71	6.91	6.91	6.91	0.29	1.20	± 14.0 %
3500	37.9	2.91	6.89	6.89	6.89	0.25	1.20	± 14.0 %
3700	37.7	3.12	6.67	6.67	6.67	0.25	1.25	± 14.0 %
5250	35.9	4.71	5.07	5.07	5.07	0.40	1.80	± 14.0 %
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	± 14.0 %
5750	35.4	5.22	4.77	4.77	4.77	0.40	1.80	± 14.0 %

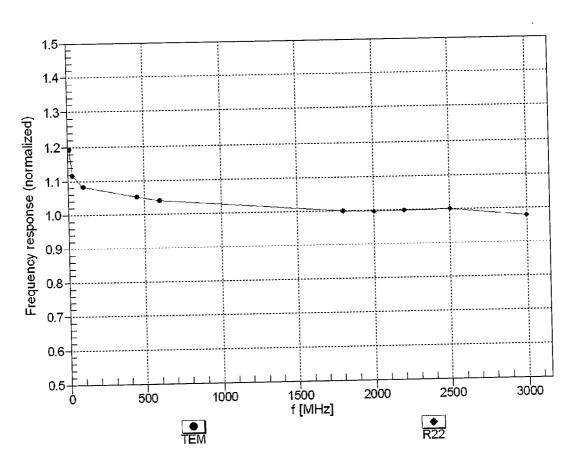
Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

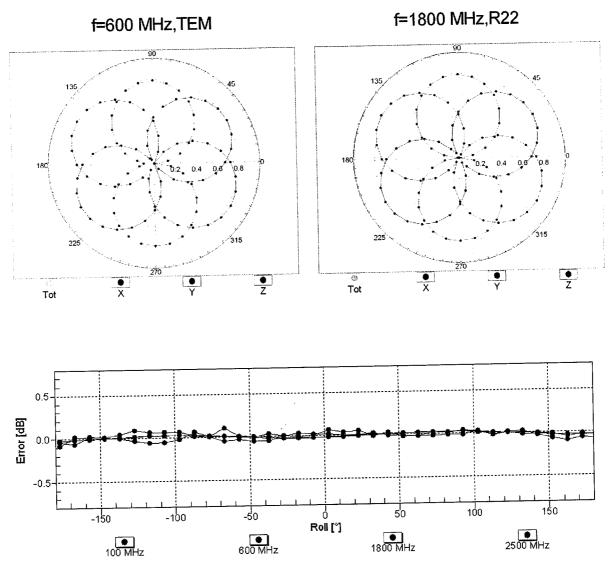
the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3819

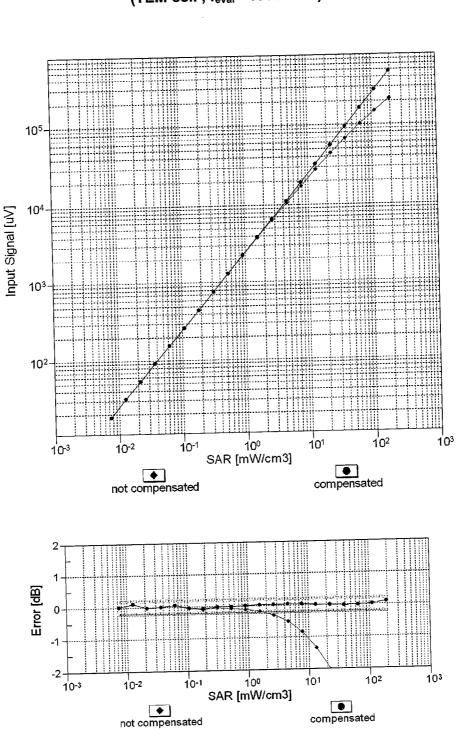

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
750	55.5	0.96	9.68	9.68	9.68	0.69	0.80	± 12.0 %
835	55.2	0.97	9.40	9.40	9.40	0.49	0.97	± 12.0 %
900	55.0	1.05	9.36	9.36	9.36	0.50	0.92	± 12.0 %
1750	53.4	1.49	8.06	8.06	8.06	0.33	0.85	± 12.0 %
1900	53.3	1.52	7.66	7.66	7.66	0.25	1.11	± 12.0 %
2300	52.9	1.81	7.49	7.49	7.49	0.32	0.96	± 12.0 %
2450	52.7	1.95	7.32	7.32	7.32	0.37	0.89	± 12.0 %
2600	52.5	2.16	7.04	7.04	7.04	0.34	0.95	± 12.0 %
3300	51.6	3.08	6.60	6.60	6.60	0.28	1.20	± 14.0 %
3500	51.3	3.31	6.57	6.57	6.57	0.25	1.20	± 14.0 %
3700	51.0	3.55	6.37	6.37	6.37	0.30	1.25	± 14.0 %
5250	48.9	5.36	4.46	4.46	4.46	0.50	1.90	± 14.0 %
5600	48.5	5.77	3.92	3.92	3.92	0.50	1.90	± 14.0 %
5750	48.3	5.94	4.07	4.07	4.07	0.50	1.90	± 14.0 %

Calibration Parameter Determined in Body Tissue Simulating Media

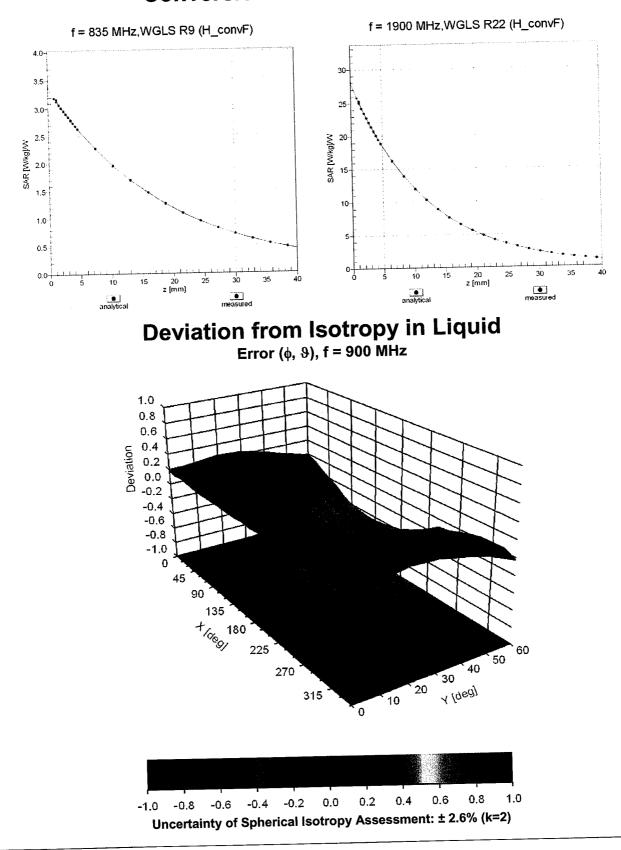
^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.


F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of

the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment