

Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 1 of 73

# FCC SAR TEST REPORT

Client Name : AVS-ELECTRONICS(HK)LTD.

Address 16D Hollywood Centre 77-91 Queens Road West,Sheung Wan, Hong Kong SAR

Product Name : 8-inch tablet

Date : Oct. 17, 2019

# Shenzhen Anbotek Compliance Laboratory Limited

#### Shenzhen Anbotek Compliance Laboratory Limited



#### botek An Anbotek Testing **Product Safety**

## Report No.: SZAWW191010018-01

FCC ID: 2AUYC-SUITEPAD-8 Page 2 of

# Contents

| 1. | State | ement of Compliance                                                                                                         | 6    |
|----|-------|-----------------------------------------------------------------------------------------------------------------------------|------|
| 2. | Gen   | eral Information                                                                                                            | 7    |
|    | 2.1.  | Client Information                                                                                                          | 7    |
|    | 2.2.  | Testing Laboratory Information                                                                                              | 7    |
|    | 2.3.  | Description of Equipment Under Test (EUT)                                                                                   |      |
|    | 2.4.  | Device Category and SAR Limits                                                                                              | 8    |
|    | 2.5.  | Applied Standard                                                                                                            | 8    |
|    | 2.6.  | Environment of Test Site                                                                                                    | 8    |
|    | 2.7.  | Test Configuration                                                                                                          | 8    |
| 3. | Spee  | cific Absorption Rate (SAR)                                                                                                 | . 9  |
|    | 3.1.0 | Introduction                                                                                                                | 9    |
|    | 3.2.  | SAR Definition                                                                                                              | 9    |
| 4. | SAR   | Measurement System                                                                                                          | 10   |
|    | 4.1.  | E-Field Probe                                                                                                               | 11   |
|    | 4.2.  | Data Acquisition Electronics (DAE)                                                                                          | 11   |
|    | 4.3.  | Robot                                                                                                                       | . 12 |
|    | 4.4.  | Measurement Server                                                                                                          | . 13 |
|    | 4.5.  | Phantom                                                                                                                     | . 14 |
|    | 4.6.  | Device Holder                                                                                                               | . 15 |
|    | 4.7.  | Data Storage and Evaluation                                                                                                 | . 16 |
| 5. | Test  | Equipment List                                                                                                              | 18   |
| 6. | Tiss  | ue Simulating Liquids                                                                                                       | 19   |
| 7. | Syst  | ue Simulating Liquids<br>em Verification Procedures                                                                         | 20   |
| 8. | Mea   | surement Procedures                                                                                                         | 22   |
|    | 9.1.  | Spatial Peak SAR Evaluation                                                                                                 | . 22 |
|    | 9.2.  | Power Reference Measurement                                                                                                 | . 23 |
|    | 9.3.  | Area Scan Procedures                                                                                                        | . 23 |
|    | 9.4.  | Zoom Scan Procedures                                                                                                        | . 24 |
|    | 9.5.  | Volume Scan Procedures                                                                                                      | . 25 |
|    | 9.6.  | Power Drift Monitoring                                                                                                      | . 25 |
| 9. | Con   |                                                                                                                             | 26   |
| 10 |       | nna Location                                                                                                                | 28   |
|    | 10.1  | Antenna Location                                                                                                            | . 28 |
|    | 10.2  | Standalone SAR test exclusion considerations                                                                                | . 29 |
|    | 10.3  | Required Test Configurations                                                                                                | . 30 |
| 11 | .SAR  | Test Results Summary                                                                                                        | 31   |
| 12 | .Mea  |                                                                                                                             | 32   |
|    |       | x A. EUT Photos and Test Setup Photos                                                                                       | 33   |
|    | pendi |                                                                                                                             | 34   |
| -  | -     | Anbotek Compliance Laboratory Limited                                                                                       | Ann  |
|    |       | F, Building D, Sogood Science and Technology Park, SanweiCommunity,<br>Street, Bao'an District, Shenzhen, Guangdong, China. | N500 |

Email:service@anbotek.com Tel:(86)755-26066440 Fax:(86)755-26014772

www.anbotek.com

Report No.: SZAWW191010018-01FCC ID: 2AUYC-SUITEPAD-8Page 3 of 73Appendix C.Plots of SAR Test Data36Appendix D.DASY System Calibration Certificate38

#### Shenzhen Anbotek Compliance Laboratory Limited



## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 4 of

# **TEST REPORT**

| Applicant    | :    | AVS-ELECTRONICS(HK)LTD. |
|--------------|------|-------------------------|
| Manufacturer | :    | AVS-ELECTRONICS(HK)LTD. |
| Product Name | oten | 8-inch tablet           |
| Model No.    | nbot | SuitePad-8              |
| Trade Mark   | pal  | SuitePad                |
| Rating(s)    | :    | DC 3.7V from Battery    |
|              |      |                         |

## Test Standard(s) : FCC 47 CFR Part2.1093 IEEE 1528-2013 IEEE Std C95.1, 1999 Edition

Compliance

Anbotek

Approved

3

botek

Laborator

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEEE 1528-2013, ANSI/IEEE C95.1:1999 and FCC 47 CFR Part 2.1093 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited. Date of Receipt Oct. 17, 2019

Date of Test

Oct. 17, 2019 Oct.08~Oct. 15, 2019

Boloby Wang

(Engineer / Bobby Wang)

Reviewer

Snavy Meng

(Supervisor / Snowy Meng)

## (Manager / Sally Zhang)

### Shenzhen Anbotek Compliance Laboratory Limited

Approved & Authorized Signer

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

Prepared By



## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 5 of 73

Version

| Version No.     | Date          | Description                                          |
|-----------------|---------------|------------------------------------------------------|
| Anboten 01Anbo  | Oct. 17, 2019 | Original                                             |
| Anboten Amu     | ek Anbotek An | John Anbolek Anbolek Anbolek Anbo                    |
| Anbo hotek An   | potek Anboten | And Anbotek Anbotek Anbotek An                       |
| Attek Anbotek   | Anboten Anbo  | Anbotek Anbotek Anbotek Anbotek                      |
| botek Anbotek   | Anboto Ant    | K Anbotek Anbotek Anbotek Anbotek Anbotek            |
| Anbotek Anboten | Anbu Ant      | otek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek |

#### Shenzhen Anbotek Compliance Laboratory Limited





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 6 of 73

## 1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

## <Highest SAR Summary>

|                | Highest Reported 1g-SAR(W/Kg)    | SAR Test Limit    |
|----------------|----------------------------------|-------------------|
| Frequency Band | Body                             | (W/Kg)            |
| WIFI 2.4G      | And hotek 0.657 ote And rek and  | tek Anbor         |
| WIF 5G U-NII-1 | Anbour And Sole 0.763 poter Anbo | botek 1.6 Anbotek |
| Test Result    | otek Anbota Ano tek PASS Anboa A | hotek Anboter     |

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

#### Shenzhen Anbotek Compliance Laboratory Limited





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 7 of 73

# 2. General Information

## 2.1. Client Information

| Applicant    | : | AVS-ELECTRONICS(HK)LTD.                                                |
|--------------|---|------------------------------------------------------------------------|
| Address      | : | 16D Hollywood Centre 77-91 Queens Road West, Sheung Wan, Hong Kong SAR |
| Manufacturer | : | AVS-ELECTRONICS(HK)LTD.                                                |
| Address      | • | 16D Hollywood Centre 77-91 Queens Road West, Sheung Wan, Hong Kong SAR |

## 2.2. Testing Laboratory Information

| Test Site: | ite: : Shenzhen Anbotek Compliance Laboratory Limited |                                                                                                                                             |  |  |  |
|------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Address:   |                                                       | 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102 |  |  |  |

## 2.3. Description of Equipment Under Test (EUT)

| Product Name                                  | •      | 8-inch tablet                  | Anboto Anto Anbotek Anbotek Anbotek                                                                                                                                               |
|-----------------------------------------------|--------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.                                     | :      | SuitePad-8                     | Ano Anbotek Anbotek Anbotek Anbotek                                                                                                                                               |
| Trade Mark                                    | :      | SuitePad                       | ek Anbotek Anbot Anbotek Anbotek Anbot                                                                                                                                            |
| Test Power Supply                             | :      | DC 3.7V from Battery           | potek Anbols An notek Anbolen An                                                                                                                                                  |
| Product<br>Description                        | h hole |                                | 802.11b/ g/ n(HT20): 2412-2462MHz<br>802.11n(HT40):2422-2462 MHz<br>802.11n(HT20)/a/11ac(VHT20):5180-5240MHz<br>802.11n(HT40)/11ac(VHT40):5190-5230MHz<br>802.11ac(VHT80):5210MHz |
|                                               |        | Modulation Type:               | 802.11b: CCK; 802.11g/n: OFDM<br>802.11n/a/11ac: OFDM                                                                                                                             |
| <b>Remark:</b> 1) For a m or the User's Manua |        | e detailed features descriptio | n, please refer to the manufacturer's specifications                                                                                                                              |

#### Shenzhen Anbotek Compliance Laboratory Limited





## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 8 of 73

## 2.4. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

## 2.5. Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- IEEE 1528-2013
- FCC 47 CFR Part 2.1093
- ANSI/IEEE C95.1:1999
- KDB 248227 D01
- KDB 447498 D01
- KDB 616217 D04
- KDB 865664 D01

## 2.6. Environment of Test Site

| Items            | Required | Actual |
|------------------|----------|--------|
| Temperature (°C) | 18-25    | 22~23  |
| Humidity (%RH)   | 30-70    | 55~65  |

## 2.7. Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal.

#### Shenzhen Anbotek Compliance Laboratory Limited





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 9 of 73

# 3. Specific Absorption Rate (SAR)

### 3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

## 3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density ( $\rho$ ).The equation description is as below:

$$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

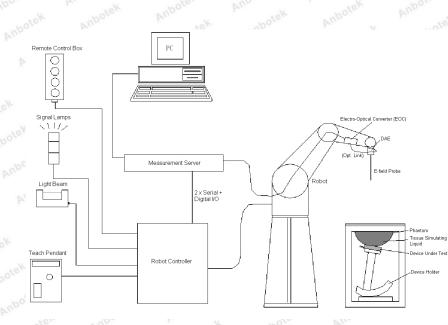
$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity,  $\delta T$  is the temperature rise and  $\delta$ tisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:  $\sigma$  is the conductivity of the tissue,  $\rho$  is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.


#### Shenzhen Anbotek Compliance Laboratory Limited





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 10 of 73

# 4. SAR Measurement System



## **DASY System Configurations**

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- > A standard high precision 6-axis robot with controller, a teach pendant and software
- > A data acquisition electronic (DAE) attached to the robot arm extension
- > A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

#### Shenzhen Anbotek Compliance Laboratory Limited



## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 11 of 73

### 4.1. E-Field Probe

Product Safety

Anbotek 安博检测

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

#### E-Field Probe Specification <EX3DV4 Probe>

Anbotek Testing

|               | Dut all all all                                                                                                                                                   |                                                                   | 10.0     |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------|
| Construction  | Symmetrical design with triangular<br>core<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to<br>organic solvents, e.g., DGBE) |                                                                   | NK Jotel |
| Frequency     | 10 MHz to 6 GHz; Linearity: ± 0.2 dB                                                                                                                              |                                                                   |          |
| Directivity   | <ul> <li>± 0.3 dB in HSL (rotation around probe axis)</li> <li>± 0.5 dB in tissue material (rotation normal to probe axis)</li> </ul>                             | stek<br>nbol                                                      | K        |
| Dynamic Range | 10 $\mu$ W/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 $\mu$ W/g)                                                                                    | Photo of EX3DV4                                                   | potek    |
| Dimensions    | Overall length: 330 mm (Tip: 20 mm)<br>Tip diameter: 2.5 mm (Body: 12 mm)<br>Typical distance from probe tip to<br>dipole centers: 1 mm                           | Anbotek Anbotek<br>Itek Anbotek Anbotek<br>Ibotek Anbotek Anbotek | Anbo     |

### E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than  $\pm$  10%. The spherical isotropy shall be evaluated and within  $\pm$  0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

## 4.2. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com



## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 12 of 73



Photo of DAE

## 4.3. **Robot**

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
  - High reliability (industrial design)
  - Jerk-free straight movements
  - > Low ELF interference (the closed metallic construction shields against motor control fields)



Photo of DASY5

#### Shenzhen Anbotek Compliance Laboratory Limited



## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 13 of 73

#### 4.4. Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip disk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.



Photo of Server for DASY5

#### Shenzhen Anbotek Compliance Laboratory Limited



## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 14 of 73

## 4.5. Phantom

#### <SAM Twin Phantom>

| Shell Thickness | $2 \pm 0.2$ mm;<br>Center ear point: $6 \pm 0.2$ mm        | n nen Anbo           |
|-----------------|------------------------------------------------------------|----------------------|
| Filling Volume  | Approx. 25 liters                                          | A REAL TO A          |
| Dimensions      | Length: 1000 mm; Width: 500 mm;<br>Height: adjustable feet |                      |
| Measurement     | Left Hand, Right Hand, Flat                                |                      |
| Areas           | Phantom                                                    |                      |
|                 | Anbotek Anbotek Anbotek<br>Anbotek Anbotek Anbotek         | Photo of SAM Phantom |

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

### <ELI4 Phantom>

| Shell Thickness | 2 ± 0.2 mm (sagging: <1%)                |
|-----------------|------------------------------------------|
| Filling Volume  | Approx. 30 liters                        |
| Dimensions      | Major ellipse axis: 600 mm               |
|                 | Minor axis:400 mm                        |
| 6               | Anbotek Anbor All hotek                  |
|                 | tek spotek Anbote Anu ote                |
|                 | All All Alle Alle Alle Alle Alle Alle A  |
|                 | hooten Anor tek pootek Anipile k pote An |
|                 | Photo of ELI4 Phantom                    |
|                 | Photo of EL14 Phantom                    |

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

#### Shenzhen Anbotek Compliance Laboratory Limited



# Anbotek Product Safety Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8

#### Page 15 of 73

## 4.6. Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of  $\pm 0.5$ mm would produce a SAR uncertainty of  $\pm 20\%$ . Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP).Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity  $\varepsilon$  = 3 and loss tangent  $\delta$  = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.



**Device Holder** 

#### Shenzhen Anbotek Compliance Laboratory Limited



#### Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 16 of 73

### 4.7. Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

#### Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

| Probe parameters:  | - Sensitivity             | Normi,   | <b>a</b> io, <b>a</b> i1, <b>a</b> i2 |
|--------------------|---------------------------|----------|---------------------------------------|
| Anboy Al           | - Conversion factor       | ConvFi   |                                       |
|                    | - Diode compression point | dcpi     |                                       |
| Device parameters: | - Frequency               | Anbore f |                                       |
|                    | - Crest factor            | cf       |                                       |
| Media parameters:  | - Conductivity            | Tootek   |                                       |
|                    | - Density                 | ρ        |                                       |

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 17 of 73

The formula for each channel can be given as:

Anbotek Testing

$$\mathbf{V}_{i} = \mathbf{U}_{i} + \mathbf{U}_{i}^{2} \cdot \frac{\mathbf{cf}}{\mathbf{dcp}_{i}}$$

- with Vi= compensated signal of channel i, (i = x, y, z)
  - $U_i$  = input signal of channel i, (i = x, y, z)
  - cf = crest factor of exciting field (DASY parameter)
  - dcpi = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

-field Probes: 
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

Anbotek 安博检测

**Product Safety** 

E

H-field Probes:  $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ 

with  $V_i$  = compensated signal of channel i,(i = x, y, z)

Norm<sub>i</sub>= sensor sensitivity of channel i, (i = x, y, z),  $\mu V/(V/m)^2$  for E-field Probes

ConvF= sensitivity enhancement in solution

aij= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E<sub>i</sub>= electric field strength of channel i in V/m

Hi= magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$\mathbf{E_{tot}} = \sqrt{\mathbf{E_x^2} + \mathbf{E_y^2} + \mathbf{E_z^2}}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

Etot= total field strength in V/m

 $\sigma$  = conductivity in [mho/m] or [Siemens/m]

 $\rho$  = equivalent tissue density in g/cm<sup>3</sup>

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

## Shenzhen Anbotek Compliance Laboratory Limited





## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 18 of 73

## 5. Test Equipment List

| Manufacture |                               |                    |               | Calib            | oration       |
|-------------|-------------------------------|--------------------|---------------|------------------|---------------|
| r           | Name of Equipment             | Type/Model         | Serial Number | Last Cal.        | Due Date      |
| SPEAG       | 2450MHz System Validation Kit | D2450V2            | 910           | Jun.15,2018      | Jun.14,2021   |
| SPEAG       | 5GHz System Validation Kit    | D5GHzV2            | 1156          | May.25,2017      | May.24,2020   |
| SPEAG       | Data Acquisition Electronics  | DAE4               | 1549          | Mar.19.2019      | Mar.18.2020   |
| SPEAG       | Dosimetric E-Field Probe      | EX3DV4             | 7396          | May.06,2019      | May.05,2020   |
| Agilent     | ENA Series Network Analyzer   | E5071C             | MY46317418    | Jun.12,2018      | Jun.11,2019   |
| SPEAG       | DAK                           | DAK-3.5            | 1226          | NCR              | NCR           |
| SPEAG       | ELI Phantom                   | QDOVA004AA         | 2058          | NCR              | NCR           |
| AR          | Amplifier                     | ZHL-42W            | QA1118004     | NCR              | NCR           |
| Agilent     | Power Meter                   | N1914A             | MY50001102    | Dec. 06,<br>2018 | Nov. 06, 2019 |
| Agilent     | Power Sensor                  | N8481H             | MY51240001    | Dec. 06,<br>2018 | Nov. 06, 2019 |
| R&S         | Spectrum Analyzer             | N9020A             | MY51170037    | Dec. 06,<br>2018 | Nov. 06, 2019 |
| Agilent     | Signal Generation             | N5182A             | MY48180656    | Dec. 06,<br>2018 | Nov. 06, 2019 |
| Worken      | Directional Coupler           | 0110A05601O-1<br>0 | COM5BNW1A2    | Dec. 06,<br>2018 | Nov. 06, 2019 |

#### Note:

- 1. The calibration certificate of DASY can be referred to appendix D of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

#### Shenzhen Anbotek Compliance Laboratory Limited



## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 19 of 73

# 6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:





Photo of Liquid Height for Head SAR

Photo of Liquid Height for Body SAR

|                | Measured               | Target T | issue |       | Measure               | d Tissue |             |                 |            |  |
|----------------|------------------------|----------|-------|-------|-----------------------|----------|-------------|-----------------|------------|--|
| Tissue<br>Type | Frequenc<br>y<br>(MHz) | εr σ     |       | ٤r    | ε <sub>r</sub> Dev. σ |          | Dev.<br>(%) | Liquid<br>Temp. | Test Data  |  |
| MSL            | 2450                   | 52.70    | 1.950 | 53.46 | 1.44                  | 1.998    | 2.46        | 22.5            | 2019-10-11 |  |
| MSL            | 5200                   | 49.01    | 5.299 | 49.06 | 0.10                  | 5.366    | 1.26        | 22.5            | 2019-10-11 |  |

The following table shows the measuring results for simulating liquid.

#### Shenzhen Anbotek Compliance Laboratory Limited





### Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 20 of 73

## 7. System Verification Procedures

Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

### > Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

## System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:



## System Setup for System Evaluation

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com



## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 21 of 73



### Photo of Dipole Setup

#### Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix B of this report.

| v    | Liquid<br>Type | onto<br>reference<br>dipole (mW) | Targeted<br>SAR<br>(W/kg) | Measured<br>SAR<br>(W/kg) | Normalized<br>SAR<br>(W/kg) | Deviation<br>(%) | Date       |
|------|----------------|----------------------------------|---------------------------|---------------------------|-----------------------------|------------------|------------|
| 2450 | Body           | 250 M                            | 51.8                      | otex 13.1 pro             | 52.4                        | 1.16             | 2019-10-11 |

| Frequenc<br>y<br>(MHz) | Liquid<br>Type | Power fed<br>onto<br>reference<br>dipole (mW) | Targeted<br>SAR<br>(W/kg) | Measured<br>SAR<br>(W/kg) | Normalized<br>SAR<br>(W/kg) | Deviation<br>(%) | Date       |
|------------------------|----------------|-----------------------------------------------|---------------------------|---------------------------|-----------------------------|------------------|------------|
| 5250                   | Body           | ptek 100 prob                                 | 75.0                      | 7.62                      | 76.2                        | 1.60             | 2019-10-11 |
| en abo                 | Par            | Taugat and                                    | 10, 01                    |                           |                             | ore pres         |            |

Target and Measurement SAR after Normalized

Shenzhen Anbotek Compliance Laboratory Limited





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 22 of 73

## 8. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

## 9. 1. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from **Shenzhen Anbotek Compliance Laboratory Limited**

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com Hotline 400-003-0500 www.anbotek.com

# Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 23 of 73 sensor to surface

(f) Calculation of the averaged SAR within masses of 1g and 10g

## 9.2. Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

## 9.3. Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

|     |                                                                                                           |                                                                                                                                                                    | - NY - NO                                                                                      |
|-----|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 5   |                                                                                                           | $\leq$ 3 GHz                                                                                                                                                       | > 3 GHz                                                                                        |
| r   | Maximum distance from closest measurement point<br>(geometric center of probe sensors) to phantom surface | $5 \pm 1 \text{ mm}$                                                                                                                                               | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$                                     |
| No. | Maximum probe angle from probe axis to phantom surface normal at the measurement location                 | $30^{\circ} \pm 1^{\circ}$                                                                                                                                         | $20^{\circ} \pm 1^{\circ}$                                                                     |
| 5   |                                                                                                           | $\leq$ 2 GHz: $\leq$ 15 mm<br>2 - 3 GHz: $\leq$ 12 mm                                                                                                              | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$                  |
| X   | Maximum area scan spatial resolution: $\Delta x_{Area}$ , $\Delta y_{Area}$                               | When the x or y dimension of<br>measurement plane orientation<br>the measurement resolution in<br>x or y dimension of the test of<br>measurement point on the test | on, is smaller than the above,<br>must be $\leq$ the corresponding<br>levice with at least one |

#### Shenzhen Anbotek Compliance Laboratory Limited



## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 24 of 73

#### 9.4. Zoom Scan Procedures

Anbotek Product Safety

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

| 1/2                                                                      |                                                                                                                                                                                                                |                                                  |                                                                             | -0.5                                                                               |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| r wat                                                                    | hole                                                                                                                                                                                                           | Am                                               | ≤ 3 GHz                                                                     | > 3 GHz                                                                            |
| Maximum zoom scan                                                        | spatial resc                                                                                                                                                                                                   | olution: Δx <sub>Zoom</sub> , Δy <sub>Zoom</sub> | $\leq 2 \text{ GHz:} \leq 8 \text{ mm}$<br>2 - 3 GHz: $\leq 5 \text{ mm}^*$ | $3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$<br>$4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$ |
|                                                                          | uniform                                                                                                                                                                                                        | grid: $\Delta z_{Zoom}(n)$                       | $\leq$ 5 mm                                                                 | $3 - 4$ GHz: $\leq 4$ mm<br>$4 - 5$ GHz: $\leq 3$ mm<br>$5 - 6$ GHz: $\leq 2$ mm   |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface | $\begin{array}{c} \begin{array}{c} 1^{st} \text{ two points closest} \\ \text{for phantom surface} \end{array} \\ \\ \hline \Delta z_{Zoom}(n > 1): \\ \text{between subsequent} \\ \text{points} \end{array}$ |                                                  | $\leq$ 4 mm                                                                 | 3 – 4 GHz: ≤ 3 mm<br>4 – 5 GHz: ≤ 2.5 mm<br>5 – 6 GHz: ≤ 2 mm                      |
|                                                                          |                                                                                                                                                                                                                |                                                  | ≤1.5·∆z                                                                     | Zoom(n-1)                                                                          |
| Minimum zoom scan<br>volume                                              |                                                                                                                                                                                                                |                                                  | ≥ 30 mm                                                                     | 3 – 4 GHz: ≥ 28 mm<br>4 – 5 GHz: ≥ 25 mm<br>5 – 6 GHz: ≥ 22 mm                     |

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

\* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is  $\leq 1.4$  W/kg,  $\leq 8$  mm,  $\leq 7$  mm and  $\leq 5$  mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

#### Shenzhen Anbotek Compliance Laboratory Limited



#### Anbotek Testing Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8

#### Page 25 of 73

#### 9.5. Volume Scan Procedures

<u>Anbotek</u> 安博检测

Product Safety

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

### 9.6. Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Email:service@anbotek.com Tel:(86)755-26066440 Fax:(86)755-26014772





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 26 of 73

## 9. Conducted Power

|                |                      | + QP               | What would be a set of the set of | 2.01         |
|----------------|----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Mode           | Channel              | Frequency<br>(MHz) | Conducted Power<br>(dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tune-up(dBm) |
|                | botel Ant            | 2412               | 13.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | k notek an   |
| 802.11b        | 6                    | 2437               | 13.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.50        |
|                | Lo <sup>0</sup> 11   | 2462               | 13.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | stek subote  |
|                | 4 Lotek              | 2412               | 10.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K solek      |
| 802.11g        | 6                    | 2437               | 11.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.50        |
| -              | otek 11 nbot         | 2462               | 11.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | atek anboten |
|                | x 1 hote             | 2412               | 10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | And          |
| 802.11n(20MHz) | 10 <sup>00</sup> 6 M | 2437               | 11.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.50        |
|                | tel11 no             | 2462               | 11.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Au stek      |
|                | Ann 3                | 2422               | 8.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | en Aupo      |
| 802.11n(40MHz) | 6                    | 2437               | 8.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.50         |
|                | 9                    | 2452               | 8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | por An tek   |

#### <WIFI 2.4GHz Conducted Power>

#### Note:

1. Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions:

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is  $\leq$  1.2 W/kg.

#### Shenzhen Anbotek Compliance Laboratory Limited

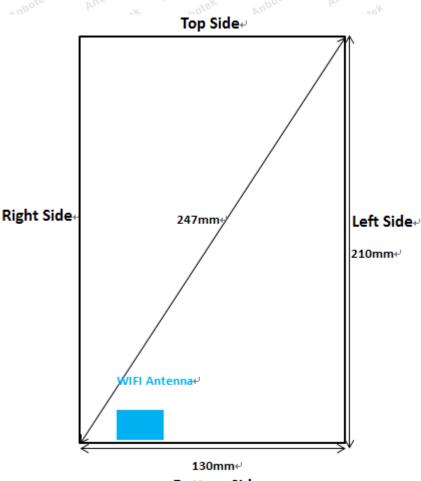


## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 27 of 73

## <WLAN 5 GHz Conducted Power>

| Mode                | Channel           | Frequency<br>(MHz) | Conducted Power<br>(dBm) | Tune-up(dBm)   |
|---------------------|-------------------|--------------------|--------------------------|----------------|
| 002 11              | 36                | 5180               | 16.84                    | poter Anu otek |
| 802.11ac<br>(VHT20) | 40                | 5200               | 16.18                    | 17.00          |
| (01120)             | 48                | 5240               | 16.33                    | Anbotek Anbo   |
| 000 11 m            | 36                | 5180               | 15.93                    | Anbotek Anbo   |
| 802.11n<br>(HT20)   | 40                | 5200               | 15.42                    | 16.00          |
| (1120)              | 48                | 5240               | 15.54                    | stek subotek   |
|                     | 36                | 5180               | 15.33                    | otek anbotek   |
| 802.11a             | 40                | 5200               | 15.86                    | 16.00          |
|                     | 48                | 5240               | 15.51                    | Anbor An       |
| 802.11ac            | 38                | 5190               | 16.54                    | 17.00          |
| (VHT40)             | 46                | 5230               | 16.86                    | 17.00          |
| 802.11n             | 38                | 5190               | 15.68                    | 10.00          |
| (HT40)              | 46                | 5230               | 15.33                    | 16.00          |
| 802.11ac<br>(VHT80) | 42 <sup>100</sup> | 5210               | 14.39                    | 15.00          |

#### Shenzhen Anbotek Compliance Laboratory Limited






Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 28 of 73

## 10. Antenna Location

## 10.1 Antenna Location



Bottom Side

Rear View

# Shenzhen Anbotek Compliance Laboratory Limited





#### Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 29 of 73

#### 10.2 Standalone SAR test exclusion considerations

#### KDB 447498 with KDB 616217:

a) For 100 MHz to 6 GHz and *test separation distances* ≤ 50 mm, the 1-g *SAR test exclusion thresholds* are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]  $\cdot [\sqrt{f(GHz)}] \le 3.0$  for 1-g SAR

When the minimum *test separation distance* is < 5 mm, a distance of 5 mm according is applied to determine SAR test exclusion.

b) For 100 MHz to 6 GHz and *test separation distances* > 50 mm, the 1-g and 10-g *SAR test exclusion thresholds* are determined by the following :

1) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance - 50 mm)·(f(MHz)/150)]} mW, for 100 MHz to 1500 MHz

2) {[Power allowed at *numeric threshold* for 50 mm in step a)] + [(test separation distance - 50 mm)·10]} mW, for > 1500 MHz and ≤6 GHz

| Tx                 | Frequency | Output F | Power    |                 | separa             | ation distance | s (mm) |                    |                 | Calcu   | lated Threshold | l Value |                 |   |
|--------------------|-----------|----------|----------|-----------------|--------------------|----------------|--------|--------------------|-----------------|---------|-----------------|---------|-----------------|---|
| Interface          | (MHz)     | dBm      | mW       | Rear            | Left               | Right          | Тор    | Bottom             | Rear            | Left    | Right           | Тор     | Bottom          |   |
| WIFI 2.4G          | 2437      | 13.50    | 50.1 (e) | 2 p             | nb <sup>o</sup> 70 | 28             | 196    | Anbolo<br>5 Anb    | 7.0<br>MEASURE  | > 50 mm | 1.2<br>EXEMPT   | > 50 mm | 7.0<br>MEASURE  | 0 |
| WIFI 5G<br>U-NII-1 | 5230      | 17.00    | 22.4     | npotek<br>notek | 70                 | 28             | 196    | ote <sup>K</sup> 5 | 22.9<br>MEASURE | > 50 mm | 4.1<br>MEASURE  | > 50 mm | 22.9<br>MEASURE | 3 |

Antennas  $\leq$  50mm to adjacent edges

#### Antennas > 50mm to adjacent edges

| Тх        | Frequency       | Output P | ower |         | separ        | ation distances | (mm) |                    | Calculated Threshold Value |        |        |         |        |  |
|-----------|-----------------|----------|------|---------|--------------|-----------------|------|--------------------|----------------------------|--------|--------|---------|--------|--|
| Interface | (MHz)           | dBm      | mW   | Rear    | Left         | Right           | Тор  | Bottom             | Rear                       | Left   | Right  | Тор     | Bottom |  |
| Ansbot    | 9 <sup>14</sup> | Inpotek  | 5    | Anbor   | alk pr       | nbotek          | Anbo | fe.,               |                            | 296 mW |        | 1556 mW |        |  |
| WIFI 2.4G | 2437            | 13.50    | 50.1 | 2 Anbor | 70           | 28              | 196  | bol <sup>(5)</sup> | ≤ 50mm                     | EXEMPT | ≤ 50mm | EXEMPT  | ≤ 50mm |  |
| WIFI 5G   | anbotek         | PU       | Doro | ek Pu   | nbotek<br>70 | Anb             | stek | Anbo               |                            | 266 mW |        | 1526 mW |        |  |
| U-NII-1   | 5230            | 17.00    | 22.4 | 2       | An-70        | 28              | 196  | 5 Anbol            | ≤ 50mm                     | EXEMPT | ≤ 50mm | EXEMPT  | ≤ 50mm |  |

#### Shenzhen Anbotek Compliance Laboratory Limited





## Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 30 of 73

## **10.3 Required Test Configurations**

The table below identifies the standalone test configurations required for this device according to the findings in Section 10.2:

| Test Configurations | Rear | Left | Right | Тор | Bottom |
|---------------------|------|------|-------|-----|--------|
| WIFI 2.4G           | Yes  | No   | No    | No  | Yes    |
| WIFI 5G U-NII-1     | Yes  | No   | Yes   | No  | Yes    |

#### Shenzhen Anbotek Compliance Laboratory Limited





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 31 of 73

# 11. SAR Test Results Summary

General Note:

1. Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

- Reported SAR(W/kg)= Measured SAR(W/kg)\* Scaling Factor
- 2. Per KDB 447498 D01v05r01, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary

#### <WIFI 2.4GHz>

|     | lot<br>lo. | Band        | Mode    | Test<br>Position | Gap<br>(cm) | Ch | Freq.<br>(MHz) | Power | Tune-Up<br>Limit<br>(dBm) | Scaling<br>Factor | Measured<br>SAR <sub>1g</sub><br>(W/kg) | Reported<br>SAR <sub>1g</sub><br>(W/kg) |
|-----|------------|-------------|---------|------------------|-------------|----|----------------|-------|---------------------------|-------------------|-----------------------------------------|-----------------------------------------|
| ×°4 | <b>#1</b>  | WIFI 2.4GHz | 802.11b | Rear             | 0           | 6  | 2437           | 13.42 | 13.50                     | 1.02              | 0.645                                   | 0.657                                   |
| Ant | pote       | WIFI 2.4GHz | 802.11b | Bottom Side      | 0           | 6  | 2437           | 13.42 | 13.50                     | 1.02              | 0.611                                   | 0.622                                   |

#### <WIFI 5GHz>

| Plo<br>No | Band                 | Mode                | Test<br>Position | Gap<br>(cm) | Ch. | Freq.<br>(MHz) | Power | Tune-Up<br>Limit<br>(dBm) | Scaling<br>Factor |       | Reported<br>SAR <sub>1g</sub><br>(W/kg) |
|-----------|----------------------|---------------------|------------------|-------------|-----|----------------|-------|---------------------------|-------------------|-------|-----------------------------------------|
| #2        | WIFI 5GHz<br>U-NII-1 | 802.11ac<br>(VHT40) | Rear             | otek<br>0   | 46  | 5230           | 16.86 | 17.00                     | 1.03              | 0.739 | 0.763                                   |
| Ant       | WIFI 5GHz<br>U-NII-1 | 802.11ac<br>(VHT40) | Right Side       | 0<br>Anbo   | 46  | 5230           | 16.86 | 17.00                     | 1.03              | 0.369 | 0.381                                   |
| tek.      | WIFI 5GHz<br>U-NII-1 | 802.11ac<br>(VHT40) | Bottom Side      | 0           | 46  | 5230           | 16.86 | 17.00                     | 1.03              | 0.692 | 0.715                                   |

Note:

Appendix C. Plots of SAR Test Data

#### Shenzhen Anbotek Compliance Laboratory Limited





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 32 of 73

## 12. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is< 1.5 W/Kg, the extensive SAR measurement uncertainty analysis described in IEC 62209-2:2010 is not required in SAR reports submitted for equipment approval.

#### Shenzhen Anbotek Compliance Laboratory Limited





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 33 of 73

# Appendix A. EUT Photos and Test Setup Photos



Rear(0mm)

Right side(0mm)



Bottom side (0mm)

## Shenzhen Anbotek Compliance Laboratory Limited





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 34 of 73

## Appendix B. Plots of SAR System Check

## Date: 10/11/2019

#### 2450MHz Body System Check

#### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:910

Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz;  $\sigma$  = 1.857 S/m;  $\epsilon_r$  = 40.706;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

Ambient Temperature:22.3°C;Liquid Temperature:22.0°C;

#### DASY5 Configuration:

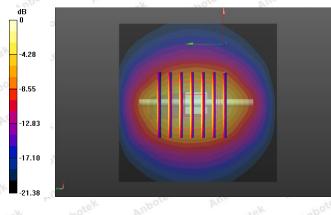
- Probe: EX3DV4 SN7396; ConvF(7.53, 7.53, 7.53) @ 2450 MHz; Calibrated: 5/6/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

## Body/d=10mm,Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.200 mm,

#### dy=1.200 mm

Maximum value of SAR (interpolated) = 22.2 W/kg

## Body/d=10mm,Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 111.6 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.1 W/kg

## SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (measured) = 22.0 W/kg



#### Shenzhen Anbotek Compliance Laboratory Limited



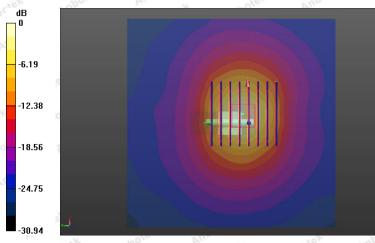
 Report No.: SZAWW191010018-01
 FCC ID: 2AUYC-SUITEPAD-8
 Page 35 of 73

 0 dB = 22.0 W/kg = 13.42 dBW/kg
 Page 35 of 73

Date: 10/11/2019

### 5250MHz Body System Check

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz;  $\sigma$  = 5.362 S/m;  $\epsilon_r$  = 49.01;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(7.57, 7.57, 7.57); Calibrated: 5/6/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Head/d=10mm, Pin=100Mw/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 18.7 W/kg Head/d=10mm, Pin=100mW/Zoom Scan(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.33 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.17 W/kg

Maximum value of SAR (measured) = 18.3 W/kg



## 0 dB = 18.3 W/kg = 12.62 dBW/kg

#### Shenzhen Anbotek Compliance Laboratory Limited

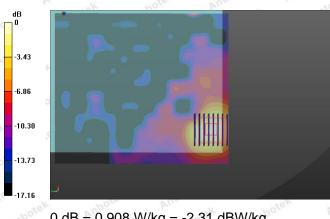




Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 36 of 73

#### **Plots of SAR Test Data** Appendix C.

#### #1


## WIFI 2.4G\_802.11b\_Rear\_Ch6

Communication System: UID 0, Generic WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz;  $\sigma$  = 1.994 S/m;  $\epsilon$ r = 53.507;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

**DASY5** Configuration:

- Probe: EX3DV4 SN7396; ConvF(7.53, 7.53, 7.53) @ 5240 MHz; Calibrated: 5/6/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 6/Area Scan (131x151x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.914 W/kg Rear/CH 6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.184 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 1.18 W/kg SAR(1 g) = 0.645 W/kg; SAR(10 g) = 0.318 W/kg Maximum value of SAR (measured) = 0.908 W/kg



0 dB = 0.908 W/kg = -2.31 dBW/kg

#### Shenzhen Anbotek Compliance Laboratory Limited



# Anbotek Product Safety

# Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 37 of 73 **#2**

## WIFI 5G U-NII-1\_802.11ac(VHT40) \_Rear \_Ch46

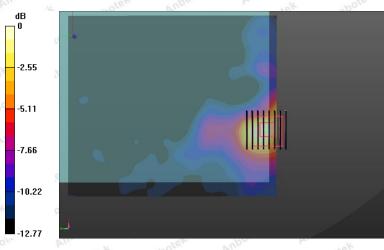
Communication System: UID 0, Generic WIFI (0); Frequency: 5230 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5230 MHz;  $\sigma$  = 5.143 S/m;  $\epsilon_r$  = 48.507;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

### DASY5 Configuration:

- Probe: EX3DV4 SN7396; ConvF(4.93, 4.93, 4.93) @ 5230 MHz; Calibrated: 5/6/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

### Rear/CH 46/Area Scan (131x151x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.900 W/kg


### Rear/CH 46/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 4.054 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.739 W/kg; SAR(10 g) = 0.424 W/kg

Maximum value of SAR (measured) = 0.899 W/kg



0 dB = 0.899 W/kg = -1.75 dBW/kg

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com





Report No.: SZAWW191010018-01 FCC ID: 2AUYC-SUITEPAD-8 Page 38 of 73

# Appendix D. DASY System Calibration Certificate

|                                                                                                                                                                                                                                                                                                                                        | 33-2218 Fax: +86                                                                                                                                                   | -10-62304633-2209                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                                                              |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------|
| E-mail: cttl@chinatt                                                                                                                                                                                                                                                                                                                   | l.com <u>Http://w</u><br>otek (Auden)                                                                                                                              | ww.chinattl.cn                                                                                                                                                                                                                       | Certificate No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z19-687                                                                                 | 16                                                                                                                           |        |
| Client Anb                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                    | The second second                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                                                              |        |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                    |                                                                                                                                                                                                                                      | Constants of the second | 4,00                                                                                    |                                                                                                                              |        |
| Object                                                                                                                                                                                                                                                                                                                                 | EX3DV4                                                                                                                                                             | - SN:7396                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                                                              |        |
| Calibration Procedure(s)                                                                                                                                                                                                                                                                                                               | FF-Z11-0                                                                                                                                                           | 07-03                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                                                              |        |
|                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                    | on Procedures for D                                                                                                                                                                                                                  | osimetric E-field F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | robes                                                                                   |                                                                                                                              |        |
| Calibration date:                                                                                                                                                                                                                                                                                                                      | May06, 3                                                                                                                                                           | 2019                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                                                                                                                              |        |
| ages and are part of the ce                                                                                                                                                                                                                                                                                                            | rtificate.                                                                                                                                                         |                                                                                                                                                                                                                                      | n confidence proba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         |                                                                                                                              |        |
| All calibrations have been numidity<70%.                                                                                                                                                                                                                                                                                               | conducted in th                                                                                                                                                    |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nment temp                                                                              | oerature(22±3)℃                                                                                                              | and    |
| bages and are part of the ce<br>All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards                                                                                                                                                                                                         | conducted in th<br>(M&TE critical for                                                                                                                              |                                                                                                                                                                                                                                      | y facility: enviror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         | berature(22±3)℃                                                                                                              |        |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used                                                                                                                                                                                                                                                              | conducted in th<br>(M&TE critical for                                                                                                                              | calibration)                                                                                                                                                                                                                         | ry facility: enviror<br>by, Certificate No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o.) So                                                                                  |                                                                                                                              |        |
| All calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2                                                                                                                                                                                                                     | conducted in th<br>(M&TE critical for<br>ID# (                                                                                                                     | calibration)<br>Cal Date(Calibrated                                                                                                                                                                                                  | y facility: enviror<br>by, Certificate No<br>No.J18X07447)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.) So<br>Ji                                                                            | cheduled Calibr                                                                                                              |        |
| All calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91                                                                                                                                                                                             | conducted in th<br>(M&TE critical for<br>ID# (<br>101919                                                                                                           | calibration)<br>Cal Date(Calibrated<br>20-Jun-18 (CTTL)                                                                                                                                                                              | y facility: environ<br>by, Certificate No<br>No.J18X07447)<br>No.J18X07447)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o.) So<br>Ji<br>Ji                                                                      | cheduled Calibr<br>un-19                                                                                                     |        |
| Il calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference10dBAttenuator                                                                                                                                           | conducted in th<br>(M&TE critical for<br>ID # (<br>101919<br>101547<br>101548<br>18N50W-10dB                                                                       | calibration)<br>Cal Date(Calibrated<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>13-Mar-19(CTTL,                                                                                                                   | y facility: enviror<br>by, Certificate No<br>No.J18X07447)<br>No.J18X07447)<br>No.J18X07447)<br>No.J19X01547)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ).) Sc<br>بال<br>بال<br>ال                                                              | cheduled Calibr<br>un-19<br>un-19<br>un-19<br>1ar-20                                                                         |        |
| Il calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference10dBAttenuator<br>Reference20dBAttenuator                                                                                                                | conducted in th<br>(M&TE critical for<br>101919<br>101547<br>101548<br>18N50W-10dB<br>18N50W-20dB                                                                  | calibration)<br>Cal Date(Calibrated<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>13-Mar-19(CTTL,<br>13-Mar-19(CTTL,                                                                                                | y facility: enviror<br>by, Certificate No<br>No.J18X07447)<br>No.J18X07447)<br>No.J18X07447)<br>No.J19X01547)<br>No.J19X01548)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ).) Sc<br>Ji<br>Ji<br>Ji<br>V<br>N                                                      | cheduled Calibr<br>un-19<br>un-19<br>un-19<br>far-20<br>far-20                                                               |        |
| All calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference10dBAttenuator<br>Reference20dBAttenuator<br>Reference Probe EX3DV4                                                                                     | conducted in th<br>(M&TE critical for<br>101919<br>101547<br>101548<br>18N50W-10dB<br>18N50W-20dB                                                                  | calibration)<br>Cal Date(Calibratec<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>13-Mar-19(CTTL,<br>13-Mar-19(CTTL,<br>26-Sep-18(SPEA                                                                              | y facility: enviror<br>by, Certificate No<br>No.J18X07447)<br>No.J18X07447)<br>No.J18X07447)<br>No.J19X01547)<br>No.J19X01548)<br>G,No.EX3-7433_S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.) Sc<br>Ji<br>Ji<br>Ji<br>Ji<br>M<br>N<br>Sep18) S                                    | cheduled Calibr<br>un-19<br>un-19<br>un-19<br>1ar-20                                                                         |        |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference10dBAttenuator<br>Reference20dBAttenuator<br>Reference Probe EX3DV4<br>DAE4                                                                             | conducted in th<br>(M&TE critical for<br>101919<br>101547<br>101548<br>18N50W-10dB<br>18N50W-20dB<br>SN 7433<br>SN 549                                             | calibration)<br>Cal Date(Calibrated<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>13-Mar-19(CTTL,<br>13-Mar-19(CTTL,<br>26-Sep-18(SPEA<br>13-Dec-18(SPEA                                                            | y facility: environ<br>by, Certificate No<br>No.J18X07447)<br>No.J18X07447)<br>No.J18X07447)<br>No.J19X01547)<br>No.J19X01548)<br>G,No.EX3-7433_6<br>G, No.DAE4-549_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.) So<br>Ju<br>Ju<br>Ju<br>M<br>N<br>Sep18) S<br>Dec18) D                              | cheduled Calibr<br>un-19<br>un-19<br>un-19<br>far-20<br>far-20<br>sep-19<br>Dec -19                                          | ration |
| Il calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference10dBAttenuator<br>Reference20dBAttenuator<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                       | conducted in th<br>(M&TE critical for<br>101919<br>101547<br>101548<br>18N50W-10dB<br>18N50W-20dB<br>SN 7433<br>SN 549<br>ID #                                     | calibration)<br>Cal Date(Calibrated<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>13-Mar-19(CTTL,<br>13-Mar-19(CTTL,<br>26-Sep-18(SPEA<br>13-Dec-18(SPEA<br>Cal Date(Calibrat                                       | y facility: enviror<br>by, Certificate No<br>No.J18X07447)<br>No.J18X07447)<br>No.J18X07447)<br>No.J19X01547)<br>No.J19X01548)<br>G,No.EX3-7433_6<br>G, No.DAE4-549_<br>ed by, Certificate N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.) So<br>Ji<br>Ji<br>Ji<br>M<br>M<br>Sep18) S<br>Dec18) D<br>No.) Scl                  | cheduled Calibr<br>un-19<br>un-19<br>un-19<br>far-20<br>far-20<br>far-20<br>bec -19<br>bec -19                               | ration |
| Il calibrations have been<br>numidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference10dBAttenuator<br>Reference20dBAttenuator<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>SignalGeneratorMG3700A                             | conducted in th<br>(M&TE critical for<br>1D# (101919)<br>101547<br>101548<br>18N50W-10dB<br>18N50W-20dB<br>SN 7433<br>SN 549<br>ID #<br>6201052605                 | calibration)<br>Cal Date(Calibratec<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>13-Mar-19(CTTL,<br>13-Mar-19(CTTL,<br>26-Sep-18(SPEA<br>13-Dec-18(SPEA<br>Cal Date(Calibrat<br>27-Jun-18 (CTTL                    | y facility: enviror<br>by, Certificate No<br>No.J18X07447)<br>No.J18X07447)<br>No.J18X07447)<br>No.J19X01547)<br>No.J19X01548)<br>G,No.EX3-7433_6<br>G, No.DAE4-549_<br>ed by, Certificate N<br>No.J18X04776)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.) So<br>Ji<br>Ji<br>Ji<br>M<br>M<br>Sep18) S<br>Dec18) D<br>Dec18) D<br>Scl<br>J<br>J | cheduled Calibr<br>un-19<br>un-19<br>dar-20<br>dar-20<br>tar-20<br>bec -19<br>bec -19<br>heduled Calibrat<br>un-19           | ration |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference10dBAttenuator<br>Reference20dBAttenuator<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards                                                      | conducted in th<br>(M&TE critical for<br>101919<br>101547<br>101548<br>18N50W-10dB<br>18N50W-20dB<br>SN 7433<br>SN 549<br>ID #<br>6201052605<br>MY46110673         | calibration)<br>Cal Date(Calibratec<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>13-Mar-19(CTTL,<br>13-Mar-19(CTTL,<br>26-Sep-18(SPEA<br>13-Dec-18(SPEA<br>Cal Date(Calibrat<br>27-Jun-18 (CTTL<br>13-Jan-19 (CTTL | y facility: enviror<br>by, Certificate No<br>No.J18X07447)<br>No.J18X07447)<br>No.J18X07447)<br>No.J19X01547)<br>No.J19X01548)<br>G,No.EX3-7433_6<br>G, No.DAE4-549_<br>ed by, Certificate N<br>No.J18X04776)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.) So<br>Ji<br>Ji<br>Ji<br>M<br>M<br>Sep18) S<br>Dec18) D<br>Dec18) D<br>Scl<br>J<br>J | cheduled Calibr<br>un-19<br>un-19<br>un-19<br>far-20<br>far-20<br>far-20<br>bec -19<br>bec -19                               | ration |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference10dBAttenuator<br>Reference20dBAttenuator<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>SignalGeneratorMG3700A<br>Network Analyzer E5071C | conducted in th<br>(M&TE critical for<br>1D# (101919)<br>101547<br>101548<br>18N50W-10dB<br>18N50W-20dB<br>SN 7433<br>SN 549<br>ID #<br>6201052605                 | calibration)<br>Cal Date(Calibratec<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>13-Mar-19(CTTL,<br>13-Mar-19(CTTL,<br>26-Sep-18(SPEA<br>13-Dec-18(SPEA<br>Cal Date(Calibrat<br>27-Jun-18 (CTTL                    | y facility: environ<br>by, Certificate No<br>No.J18X07447)<br>No.J18X07447)<br>No.J18X07447)<br>No.J19X01547)<br>No.J19X01548)<br>G,No.EX3-7433_S<br>G, No.DAE4-549_<br>ed by, Certificate N<br>No.J18X04776)<br>No.J19X00285)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.) So<br>Ji<br>Ji<br>Ji<br>M<br>M<br>Sep18) S<br>Dec18) D<br>Dec18) D<br>Scl<br>J<br>J | cheduled Calibr<br>un-19<br>un-19<br>far-20<br>far-20<br>far-20<br>bec -19<br>bec -19<br>heduled Calibrat<br>un-19<br>an -20 | ration |
| All calibrations have been<br>humidity<70%.<br>Calibration Equipment used<br>Primary Standards<br>Power Meter NRP2<br>Power sensor NRP-Z91<br>Power sensor NRP-Z91<br>Reference10dBAttenuator<br>Reference20dBAttenuator<br>Reference Probe EX3DV4<br>DAE4<br>Secondary Standards<br>SignalGeneratorMG3700A                            | conducted in th<br>(M&TE critical for<br>101919<br>101547<br>101548<br>18N50W-10dB<br>18N50W-20dB<br>SN 7433<br>SN 549<br>ID #<br>6201052605<br>MY46110673<br>Name | calibration)<br>Cal Date(Calibratec<br>20-Jun-18 (CTTL,<br>20-Jun-18 (CTTL,<br>13-Mar-19(CTTL,<br>13-Mar-19(CTTL,<br>26-Sep-18(SPEA<br>13-Dec-18(SPEA<br>Cal Date(Calibrat<br>27-Jun-18 (CTTL<br>13-Jan-19 (CTTL<br>Function         | y facility: environ<br>by, Certificate No<br>No.J18X07447)<br>No.J18X07447)<br>No.J18X07447)<br>No.J19X01547)<br>No.J19X01548)<br>G,No.EX3-7433_S<br>G, No.DAE4-549_<br>ed by, Certificate N<br>No.J18X04776)<br>No.J19X00285)<br>gineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.) So<br>Ji<br>Ji<br>Ji<br>M<br>M<br>Sep18) S<br>Dec18) D<br>Dec18) D<br>Scl<br>J<br>J | cheduled Calibr<br>un-19<br>un-19<br>far-20<br>far-20<br>far-20<br>bec -19<br>bec -19<br>heduled Calibrat<br>un-19<br>an -20 | ration |

Certificate No: Z19-68716

Page 1 of 11

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com



# Anbotek Product Safety

#### Report No.: SZAWW191010018-01

FCC ID: 2AUYC-SUITEPAD-8

#### Page 39 of 73



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

#### Glossary:

| TSL            | tissue simulating liquid                                                                       |
|----------------|------------------------------------------------------------------------------------------------|
| NORMx,y,z      | sensitivity in free space                                                                      |
| ConvF          | sensitivity in TSL / NORMx,y,z                                                                 |
| DCP            | diode compression point                                                                        |
| CF             | crest factor (1/duty_cycle) of the RF signal                                                   |
| A,B,C,D        | modulation dependent linearization parameters                                                  |
| Polarization Φ | $\Phi$ rotation around probe axis                                                              |
| Polarization 0 | θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i |
|                | $\theta$ =0 is normal to probe axis                                                            |

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

#### d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

- Methods Applied and Interpretation of Parameters:
- NORMx, y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx, y,z does not effect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z\* frequency\_response (see Frequency Response Chart). This
  linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
  frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
  phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
  probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z19-68716

Page 2 of 11

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com





FCC ID: 2AUYC-SUITEPAD-8

Page 40 of 73



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

# Probe EX3DV4

# SN: 7396

Calibrated: May 06, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: Z19-68716

Page 3 of 11

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com





FCC ID: 2AUYC-SUITEPAD-8

Page 41 of 73



 Add: No.51 Xueyuan Road. Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

## DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

#### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 0.54     | 0.53     | 0.50     | ±10.0%    |
| DCP(mV) <sup>B</sup>     | 97.8     | 104.5    | 102.5    |           |

#### **Modulation Calibration Parameters**

| UID | Communication<br>System Name |   | A<br>dB | B<br>dBõV | c   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------|
| 0   | CW                           | X | 0.0     | 0.0       | 1.0 | 0.00    | 199.9    | ±2.4%                     |
|     |                              | Y | 0.0     | 0.0       | 1.0 |         | 203.3    |                           |
|     |                              | Z | 0.0     | 0.0       | 1.0 |         | 195.0    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

<sup>A</sup> The uncertainties of Norm X, Y, Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Page 5 and Page 6). <sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>E</sup> Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z19-68716

Page 4 of 11

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com





FCC ID: 2AUYC-SUITEPAD-8

Page 42 of 73



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.en

## DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                                  | 0.89                               | 9.82    | 9.82    | 9.82    | 0.30               | 0.85                       | ±12.1%         |
| 835                  | 41.5                                  | 0.90                               | 9.71    | 9.71    | 9.71    | 0.15               | 1.36                       | ±12.1%         |
| 900                  | 41.5                                  | 0.97                               | 9.87    | 9.87    | 9.87    | 0.16               | 1.37                       | ±12.1%         |
| 1750                 | 40.1                                  | 1.37                               | 8.61    | 8.61    | 8.61    | 0.25               | 1.04                       | ±12.1%         |
| 1900                 | 40.0                                  | 1.40                               | 8.13    | 8.13    | 8.13    | 0.24               | 1.01                       | ±12.1%         |
| 2100                 | 39.8                                  | 1.49                               | 8.14    | 8.14    | 8.14    | 0.24               | 1.04                       | ±12.1%         |
| 2300                 | 39.5                                  | 1.67                               | 7.85    | 7.85    | 7.85    | 0.40               | 0.75                       | ±12.1%         |
| 2450                 | 39.2                                  | 1.80                               | 7.57    | 7.57    | 7.57    | 0.50               | 0.75                       | ±12.1%         |
| 2600                 | 39.0                                  | 1.96                               | 7.38    | 7.38    | 7.38    | 0.64               | 0.68                       | ±12.1%         |
| 5250                 | 35.9                                  | 4.71                               | 5.33    | 5.33    | 5.33    | 0.45               | 1.30                       | ±13.3%         |
| 5600                 | 35.5                                  | 5.07                               | 4.89    | 4.89    | 4.89    | 0.45               | 1.35                       | ±13.3%         |
| 5750                 | 35.4                                  | 5.22                               | 4.92    | 4.92    | 4.92    | 0.45               | 1.45                       | ±13.3%         |

<sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

<sup>F</sup> At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z19-68716

Page 5 of 11

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com



FCC ID: 2AUYC-SUITEPAD-8

Page 43 of 73



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

## DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

#### Calibration Parameter Determined in Body Tissue Simulating Media

| f <b>[MHz]</b> <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>⊦</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|-----------------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                         | 55.5                                  | 0.96                               | 10.09   | 10.09   | 10.09   | 0.30               | 0.90                       | ±12.1%         |
| 835                         | 55.2                                  | 0.97                               | 9.88    | 9.88    | 9.88    | 0.19               | 1.32                       | ±12.1%         |
| 900                         | 55.0                                  | 1.05                               | 9.82    | 9.82    | 9.82    | 0.23               | 1.15                       | ±12.1%         |
| 1750                        | 53.4                                  | 1.49                               | 8.24    | 8.24    | 8.24    | 0.24               | 1.06                       | ±12.1%         |
| 1900                        | 53.3                                  | 1.52                               | 7.97    | 7.97    | 7.97    | 0.19               | 1.24                       | ±12.1%         |
| 2100                        | 53.2                                  | 1.62                               | 8.18    | 8.18    | 8.18    | 0.19               | 1.39                       | ±12.1%         |
| 2300                        | 52.9                                  | 1.81                               | 7.88    | 7.88    | 7.88    | 0.55               | 0.80                       | ±12.1%         |
| 2450                        | 52.7                                  | 1.95                               | 7.53    | 7.53    | 7.53    | 0.46               | 0.89                       | ±12.1%         |
| 2600                        | 52.5                                  | 2.16                               | 7.38    | 7.38    | 7.38    | 0.52               | 0.80                       | ±12.1%         |
| 5250                        | 48.9                                  | 5.36                               | 4.93    | 4.93    | 4.93    | 0.45               | 1.80                       | ±13.3%         |
| 5600                        | 48.5                                  | 5.77                               | 4.19    | 4.19    | 4.19    | 0.48               | 1.90                       | ±13.3%         |
| 5750                        | 48.3                                  | 5.94                               | 4.52    | 4.52    | 4.52    | 0.48               | 1.95                       | ±13.3%         |

<sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

<sup>F</sup> At frequency below 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\varepsilon$  and  $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z19-68716

Page 6 of 11

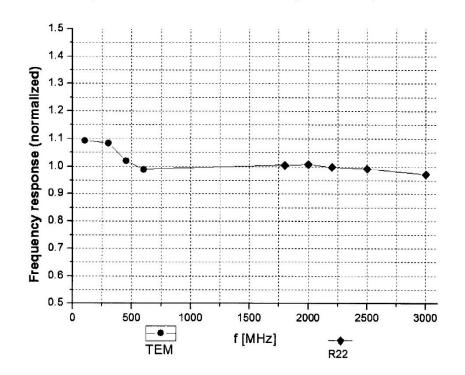
#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com



FCC ID: 2AUYC-SUITEPAD-8

Page 44 of 73



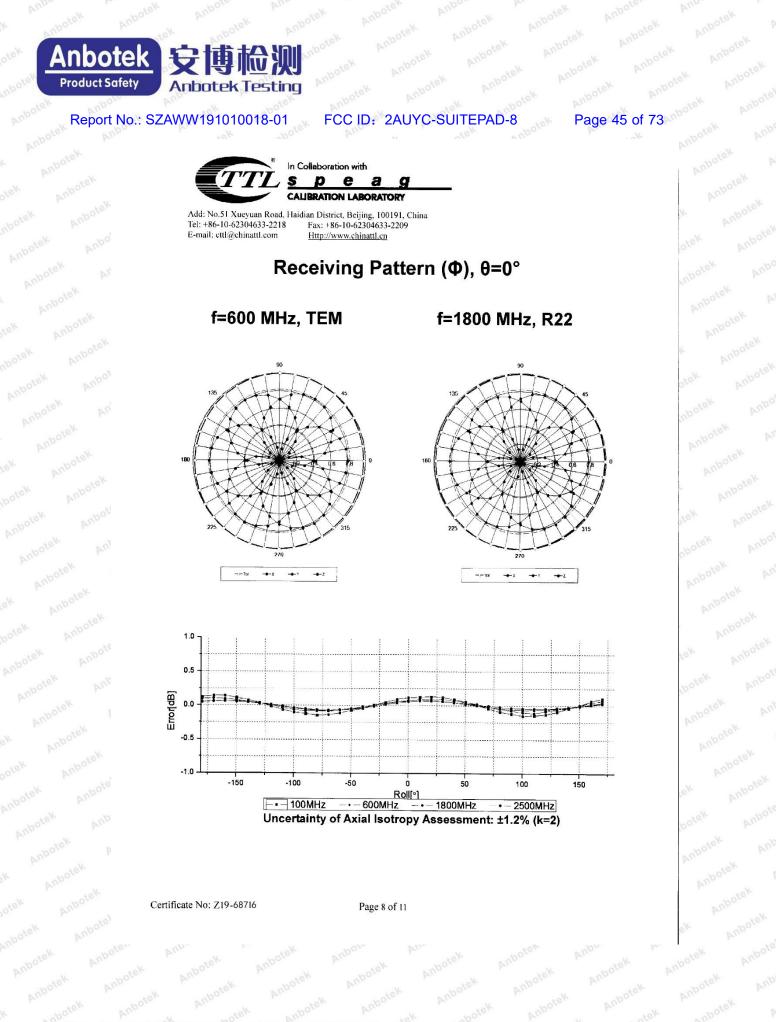

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tcl: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

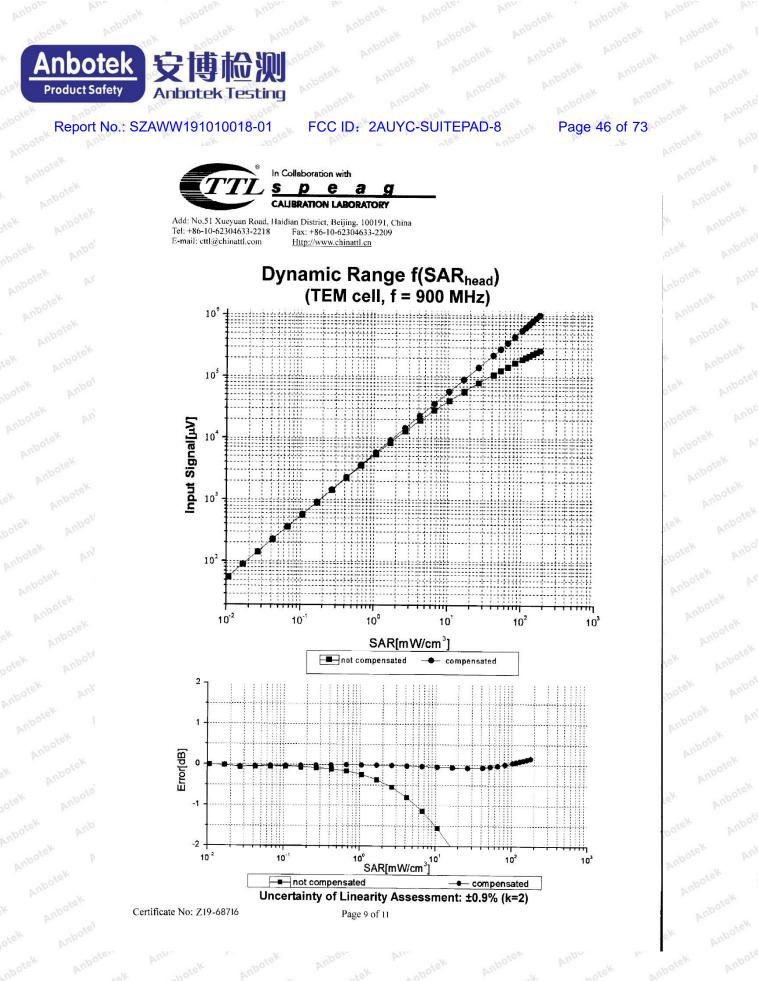
## Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)





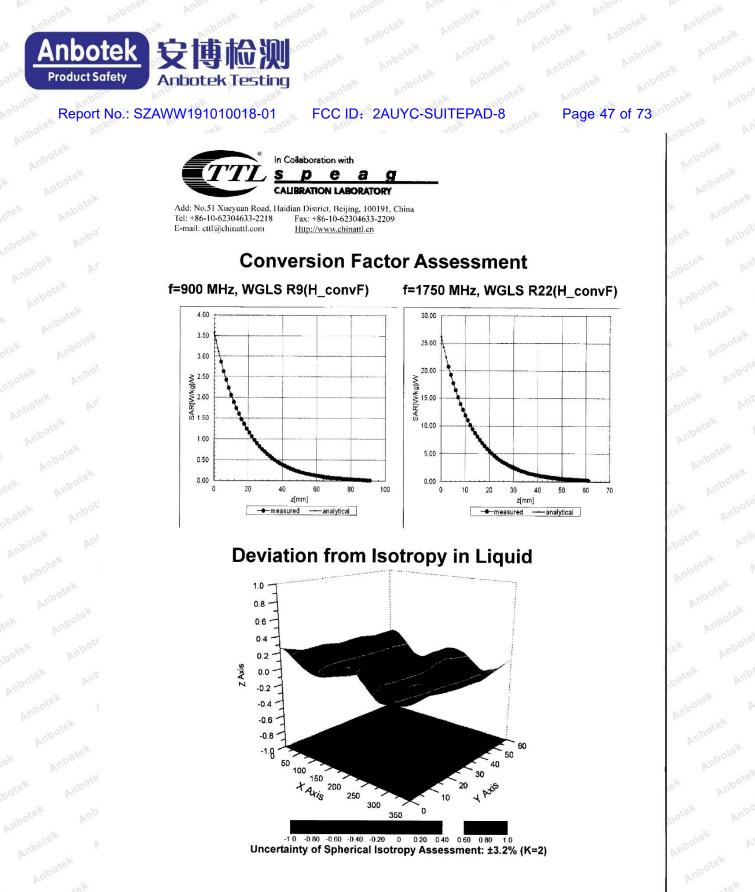

Certificate No: Z19-68716

Page 7 of 11


#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com




#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com



#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com



Certificate No: Z19-68716

Page 10 of 11

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com

# Anbotek Product Safety

#### Report No.: SZAWW191010018-01

FCC ID: 2AUYC-SUITEPAD-8

Page 48 of 73



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2218
 Fax: +86-10-62304633-2209

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

## DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7396

#### **Other Probe Parameters**

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 156.9      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disable    |
| Probe Overall Length                          | 337mm      |
| Probe Body Diameter                           | 10mm       |
| Tip Length                                    | 9mm        |
| Tip Diameter                                  | 2.5mm      |
| Probe Tip to Sensor X Calibration Point       | 1mm        |
| Probe Tip to Sensor Y Calibration Point       | 1mm        |
| Probe Tip to Sensor Z Calibration Point       | 1mm        |
| Recommended Measurement Distance from Surface | 1.4mm      |

Certificate No: Z19-68716

Page 11 of 11

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com



|                                                 | 18-01 F                           | FCC ID: 2AUYC-SU                                                                             | JITEPAD-8            |                        | e 49 of 7               |
|-------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|----------------------|------------------------|-------------------------|
|                                                 | In Colla                          | aboration with                                                                               | - Manual Contraction |                        | 中国认可                    |
|                                                 |                                   | D C A G<br>RATION LABORATORY                                                                 | Hac MR               | CNAS                   | 国际互认校准                  |
| Tel: +86-10-62                                  | 2304633-2512 Fa                   | District, Beijing, 100191, China<br>x: +86-10-62304633-2504                                  | The Andrewing        |                        | CALIBRATIC<br>CNAS L057 |
| E-mail: cttl@c                                  |                                   | ttp://www.chinattl.cn                                                                        | Certificate M        | o: Z19-60066           |                         |
| CALIBRATION                                     | CERTIFIC                          | ATE                                                                                          |                      |                        |                         |
| Object                                          | DAF                               | 4 - SN: 1549                                                                                 |                      |                        |                         |
| Calibration Procedure(s                         |                                   |                                                                                              |                      |                        |                         |
| Calibration Procedure(s                         | FF-Z                              | 211-002-01<br>pration Procedure for the<br>Ex)                                               | Data Acquisit        | ion Electronics        |                         |
| Calibration date:                               | Marc                              | ch 19, 2019                                                                                  |                      |                        |                         |
| measurements(SI). The pages and are part of the | measurements ar<br>e certificate. | e traceability to national st<br>nd the uncertainties with cor<br>n the closed laboratory fa | nfidence probab      | oility are given on th | e following             |
| Calibration Equipment u                         | sed (M&TE critica                 | l for calibration)                                                                           |                      |                        |                         |
|                                                 | ID# C                             | Cal Date(Calibrated by, Cert                                                                 | ificate No.)         | Scheduled Calibra      | ation                   |
| Primary Standards                               |                                   |                                                                                              |                      |                        |                         |
| Primary Standards Process Calibrator 753        | 1971018                           | 20-Jun-18 (CTTL, No.J18                                                                      | 3X05034)             | June-19                |                         |
|                                                 | 1971018                           | 20-Jun-18 (CTTL, No.J1                                                                       | 3X05034)             | June-19                |                         |
|                                                 | 1971018<br>Name<br>Yu Zongying    | Function                                                                                     | 3X05034)             | June-19<br>Signature   | <u>.</u>                |
| Process Calibrator 753                          | Name                              | Function                                                                                     | 8X05034)             |                        |                         |

Certificate No: Z19-60066

P

Page 1 of 3

# Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755–26066440 Fax:(86)755–26014772 Email:service@anbotek.com



# Nbotek 文博检测 Product Safety Anbotek Testing

Report No.: SZAWW191010018-01

FCC ID: 2AUYC-SUITEPAD-8

Page 50 of 73



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

#### Glossary:

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

#### Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z19-60066

Page 2 of 3

#### Shenzhen Anbotek Compliance Laboratory Limited

Address: 1/F, Building D, Sogood Science and Technology Park, SanweiCommunity, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86)755-26066440 Fax:(86)755-26014772 Email:service@anbotek.com

