

Roll-A-Shade

Pippin

FCC 15.231:2019

Low Power Radio

Report # RODE0001 Rev. 1

NVLAP LAB CODE: 200676-0

CERTIFICATE OF TEST

Last Date of Test: December 20, 2019

Roll-A-Shade EUT: Pippin

Radio Equipment Testing

Standards

Specification	Method
FCC 15.231:2019	ANSI C63.10:2013

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions (Transmitter)	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
01	Capitalized 'h' in MHz	2020-03-16	8
01	Revised range to 8 GHz	2020-03-16	13

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI - Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

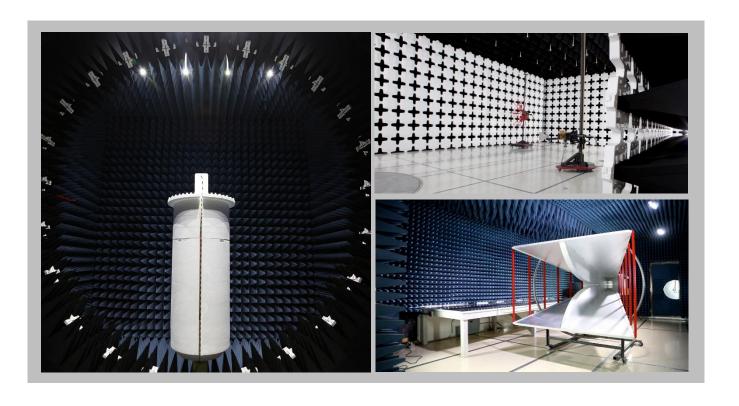
OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: https://www.nwemc.com/emc-testing-accreditations


FACILITIES

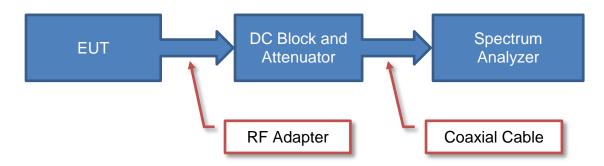
California Labs OC01-17 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	Oregon Labs EV01-12 6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 98011 (425)984-6600		
		NVLAP				
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innovation, Science and Economic Development Canada					
2834B-1, 2834B-3	2834E-1, 2834E-3	2834D-1	2834G-1	2834F-1		
		BSMI				
SL2-IN-E-1154R	SL2-IN-E-1152R	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
	VCCI					
A-0029	A-0109	A-0108	A-0201	A-0110		
Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	US0017	US0191	US0157		

MEASUREMENT UNCERTAINTY

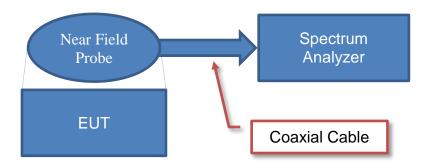
Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.1 dB	-5.1 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Roll-A-Shade
Address:	12101 Madera Way
City, State, Zip:	Riverside, CA 92503
Test Requested By:	Harsh Wanigaratne
EUT:	Pippin
First Date of Test:	December 20, 2019
Last Date of Test:	December 20, 2019
Receipt Date of Samples:	December 20, 2019
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:	
Remote control with a periodic 433MHz transmitter module.	

Testing Objective:

To demonstrate compliance to FCC 15.231 specifications.

CONFIGURATIONS

Configuration RODE0001-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Pippin	ROLL-A-SHADE	None	092019-00009

Configuration RODE0001- 2

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Pippin	ROLL-A-SHADE	None	092019-00002

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Field	Tested as	No EMI suppression	EUT remained at
1	2019-12-20	Strength of	delivered to	devices were added or	Element following the
		Fundamental	Test Station.	modified during this test.	test.
			Tested as	No EMI suppression	EUT remained at
2	2019-12-20	Duty Cycle	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Occupied	Tested as	No EMI suppression	EUT remained at
3	2019-12-20	Bandwidth	delivered to	devices were added or	Element following the
		Danuwium	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
4	2019-12-20	Radiated	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously Transmitting at 433.9 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

RODE0001 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	1000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	9-Sep-2019	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	2-Jul-2019	12 mo
Antenna - Biconilog	EMCO	3142B	AXK	30-Oct-2019	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	16-Dec-2019	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous un-modulated CW operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 3 orthogonal planes (per ANSI C63.10:2013).

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 100 mSec Pulsewidth of Type 1 Pulse = .385 mSec Pulsewidth of Type 2 Pulse = .770 mSec Number of Type 1 Pulses = 40 Number of Type 2 Pulses = 24

Duty Cycle = $20 \log [((40)(.385) + (24)(.770)/100] = -9.4 dB$

The duty cycle correction factor of -9.4 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

FIELD STRENGTH OF FUNDAMENTAL

										EmiR5 2019.08.15.1		PSA-ESC	CI 2019.05.10	
Wo	rk Order:		DE0001		Date:		c-2019				-			
	Project:		lone		perature:		5 °C	1	-					
	Job Site: Number:		C10 9-00002		Humidity: tric Pres.:		% RH	-	Castad bu	Calvaday	`-l			
Seriai		Pippin	9-00002	Daronne	tric Pres.:	1025	mbar		Tested by:	Salvadoi S	olorzano			
Confi	guration:													
	ustomer:		ade											
	ttendees:													
	T Power:													
	ng Mode:	Continuo	usly Transmit	ting at 433	.9 MHz									
De	eviations:	None												
Co	mments:	None												
Test Specif	fications						Test Meth	ad						
FCC 15.231							ANSI C63.							
Run #	2	Test D	istance (m)	3	Antonno	Hoisekto)		1 to 4(m)		Results	- F	ass		
		I est D	istance (m)	3	Antenna	Height(s)		1 to 4(m)		Results		a55		
110 —]	
100													-	
100														
90 +														
80 +														
70														
70										•				
60														
50 +													1	
10						100						10	000	
						MHz				■ PK	◆ AV	• (QP	
					D		5							
					Duty Cycle Correction	External	Polarity/ Transducer		Distance			Com	pared to	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Factor	Attenuation	Туре	Detector	Adjustment	Adjusted	Spec. Limit	S	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(dB)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	((dB) Comments	
433.937	60.4	25.9	1.0	230.0	-9.4	0.0	Horz	AV	0.0	76.9	80.8		-3.9 EUT on Side	
433.935	59.2	25.9	1.3	161.0	-9.4	0.0	Vert	AV	0.0	75.7	80.8		-5.1 EUT Vert	
433.938	58.2	25.9	1.2	60.0	-9.4	0.0	Vert	AV	0.0	74.7	80.8		-6.1 EUT Horz	
433.940	58.1	25.9	1.0	187.0	-9.4	0.0	Horz	AV	0.0	74.6	80.8		-6.2 EUT Horz -8.0 EUT Vert	
433.935 433.930	56.3 51.5	25.9 25.9	2.1 1.3	298.0 168.0	-9.4 -9.4	0.0 0.0	Horz Vert	AV AV	0.0 0.0	72.8 68.0	80.8 80.8		-8.0 EUT Vert 12.8 EUT on Side	
433.937	60.4	25.9	1.0	230.0	-3.4	0.0	Horz	PK	0.0	86.3	100.8		14.5 EUT on Side	
433.935	59.2	25.9	1.3	161.0		0.0	Vert	PK	0.0	85.1	100.8		15.7 EUT Vert	
433.938	58.2	25.9	1.2	60.0		0.0	Vert	PK	0.0	84.1	100.8		16.7 EUT Horz	
433.940	58.1	25.9	1.0	187.0		0.0	Horz	PK	0.0	84.0	100.8		16.8 EUT Horz	
433.935 433.930	56.3 51.5	25.9 25.9	2.1 1.3	298.0 168.0		0.0 0.0	Horz Vert	PK PK	0.0 0.0	82.2 77.4	100.8 100.8		18.6 EUT Vert 23.4 EUT on Side	
433.930	31.5	∠5.9	1.3	100.0		0.0	veri	r.v.	0.0	11.4	100.8	-2	20.4 LUT OIT SIDE	

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2019.05.10

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously Transmitting at 433.9 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

RODE0001 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency	30 MHz	Stop Frequency	8000 MHz
Clart I requeries	JOU IVII IZ	Olop i requeries	10000 IVII IZ

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	10-Jan-2019	12 mo
Antenna - Double Ridge	EMCO	3115	AHB	28-Mar-2018	24 mo
Cable	Northwest EMC	1-8GHz RE Cables	OCJ	10-Jan-2019	12 mo
Antenna - Biconilog	EMCO	3142B	AXK	30-Oct-2019	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	2-Jul-2019	12 mo
Cable	Northwest EMC	10kHz-1GHz RE Cables	OCH	9-Sep-2019	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	16-Dec-2019	12 mo

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

```
QP = Quasi-Peak Detector
PK = Peak Detector
AV = RMS Detector
```

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

```
Where "On time" = N1L1 +N2L2 +....
```

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

```
Period = <_Pd_> mSec
Pulsewidth of Type 1 Pulse = <_PW1_> mSec
Pulsewidth of Type 2 Pulse = <_PW2_> mSec
Pulsewidth of Type 3 Pulse = <_PW3_> mSec
Number of Type 1 Pulses = <_Pn1_>
Number of Type 2 Pulses = <_Pn2_>
Number of Type 3 Pulses = <_Pn3_>
```

Duty Cycle = $20 \log [((Pn1)(PW1) + (Pn2)(PW2) + (Pn3)(PW3))/Pd] = <-__> dB$

The duty cycle correction factor of <-___ > dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

SPURIOUS RADIATED EMISSIONS

							1		EmiR5 2019.08.15.1		PSA-ESCI 2019.05.10	1	
W	ork Order:	RODE0001	_	Date:		c-2019	1	1,					
	Project:	None	Те	mperature:		5 °C		7-1	0	1			
Conic	Job Site:	OC10 092019-00002	Baram	Humidity: etric Pres.:	39.89		-	Footod by	Calvadar C	alarzana]	
Seria		Pippin	Daroni	enic Fres	1025	IIIDai		Tested by:	Salvauui S	Olorzano		-	
Con	figuration:											=	
		Roll-A-Shade										-	
	Attendees:											-	
	UT Power:											=	
		Continuously Tran	smitting at 43	3.9 MHz								<u>-</u>	
Opera	ting Mode:	,	Ü										
Г	Deviations:	None										_	
_	Jevialions.											_	
,	Comments:	None											
•	Jonnie III.												
T 1 O	. '6'					T (M - ()	1					I	
	cifications					Test Meth						-	
FCC 15.23	31.2019					ANSI C63.	10.2013						
						-						_	
Run #	3	Test Distance	(m) 3	Antenna	Height(s)		1 to 4(m)		Results	P	ass	-	
Г													
80							———————————————————————————————————————			— n			
		III	11 11 1										
		III	11 11 1			ىالىلىكا ك	ш	_ " _			, (10)		
70 +			11 11										
		III	11 11 1										
60		╢──┤├	╢							- 1 0			
		III	11 11 1										
		III	11 11 1				ш	_ " _			, 100		
50 +			11 11										
				•		• .							
40							•						
						₹							
30 +													
							\$						
20													
10													
10 T													
0 +													
100	U				1000						10000		
					MHz						QP		
									■ PK	AV	- Qi		
				Duty Cycle		Polarity/			■ PK	◆ AV	- Qi		
F	America	5	Initials A to the	Duty Cycle Correction	External	Polarity/ Transducer	2	Distance			Compared to		
Freq	Amplitude (dBuV)	Factor Antenna I		Correction Factor	Attenuation		Detector	Adjustment	Adjusted	Spec. Limit	Compared to Spec.		
(MHz)	(dBuV)	(dB) (mete	rs) (degrees)	Correction Factor (dB)	Attenuation (dB)	Transducer Type		Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments	
(MHz) 1301.805	(dBuV) 49.4	(dB) (mete	(degrees)	Correction Factor (dB)	Attenuation (dB)	Transducer Type Vert	AV	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	EUT Vert	
(MHz) 1301.805 1301.787	(dBuV) 49.4 48.2	-2.4 1.0 -2.4 1.4	(degrees) 216.0 340.0	Correction Factor (dB) -9.4 -9.4	Attenuation (dB) 0.0 0.0	Transducer Type Vert Horz	AV AV	Adjustment (dB) 0.0 0.0	Adjusted (dBuV/m) 37.6 36.4	Spec. Limit (dBuV/m) 54.0 54.0	Compared to Spec. (dB) -16.4 -17.6	EUT Vert EUT on Side	
(MHz) 1301.805 1301.787 1735.757	(dBuV) 49.4 48.2 44.2	-2.4 1.0 -2.4 1.4 0.4 1.0	216.0 340.0 158.0	Correction Factor (dB)	0.0 0.0 0.0	Transducer Type Vert Horz Horz	AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 37.6 36.4 35.2	Spec. Limit (dBuV/m) 54.0 54.0 60.8	Compared to Spec. (dB) -16.4 -17.6 -25.6	EUT Vert EUT on Side EUT on Side	
(MHz) 1301.805 1301.787	(dBuV) 49.4 48.2	-2.4 1.0 -2.4 1.4	216.0 340.0 158.0 216.0	Correction Factor (dB) -9.4 -9.4	Attenuation (dB) 0.0 0.0	Transducer Type Vert Horz	AV AV	Adjustment (dB) 0.0 0.0	Adjusted (dBuV/m) 37.6 36.4	Spec. Limit (dBuV/m) 54.0 54.0	Compared to Spec. (dB) -16.4 -17.6	EUT Vert EUT on Side	
(MHz) 1301.805 1301.787 1735.757 1301.805 867.860 1735.737	49.4 48.2 44.2 49.4 25.4 42.3	-2.4 1.0 -2.4 1.4 -2.4 1.4 0.4 1.0 -2.4 1.0 17.4 1.0 0.4 1.2	(degrees) 216.0 340.0 158.0 216.0 167.0 298.0	Correction Factor (dB) -9.4 -9.4 -9.4 -9.4 -9.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vert Horz Vert Horz Vert Horz Vert Vert	AV AV AV PK AV AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 37.6 36.4 35.2 47.0 33.4 33.3	Spec. Limit (dBuV/m) 54.0 54.0 60.8 74.0 60.8 60.8	Compared to Spec. (dB) -16.4 -17.6 -25.6 -27.0 -27.4 -27.5	EUT Vert EUT on Side EUT on Side EUT Vert EUT on Side EUT Vert	
(MHz) 1301.805 1301.787 1735.757 1301.805 867.860 1735.737 867.873	49.4 48.2 44.2 49.4 25.4 42.3 25.1	-2.4 1.0 -2.4 1.4 0.4 1.0 -2.4 1.4 0.4 1.0 -2.4 1.0 0.4 1.2 17.4 1.0	(degrees) 216.0 340.0 158.0 216.0 167.0 298.0 27.0	-9.4 -9.4 -9.4 -9.4 -9.4	Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz	AV AV AV PK AV AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 37.6 36.4 35.2 47.0 33.4 33.3 33.1	Spec. Limit (dBuV/m) 54.0 54.0 60.8 74.0 60.8 60.8 60.8	Compared to Spec. (dB) -16.4 -17.6 -25.6 -27.0 -27.4 -27.5 -27.7	EUT Vert EUT on Side EUT on Side EUT Vert EUT on Side EUT Vert EUT Horz	
(MHz) 1301.805 1301.787 1735.757 1301.805 867.860 1735.737 867.873 867.845	(dBuV) 49.4 48.2 44.2 49.4 25.4 42.3 25.1 24.7	-2.4 1.0 -2.4 1.4 0.4 1.0 -2.4 1.0 17.4 1.0 0.4 1.2 17.4 1.0 17.4 1.0	216.0 340.0 158.0 216.0 167.0 298.0 27.0 122.0	Correction Factor (dB) -9.4 -9.4 -9.4 -9.4 -9.4	Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vert Horz	AV AV AV PK AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 37.6 36.4 35.2 47.0 33.4 33.3 33.1 32.7	Spec. Limit (dBuV/m) 54.0 54.0 60.8 74.0 60.8 60.8 60.8 60.8	Compared to Spec. (dB) -16.4 -17.6 -25.6 -27.0 -27.4 -27.5 -27.7 -28.1	EUT Vert EUT on Side EUT on Side EUT Vert EUT on Side EUT Vert EUT Horz EUT Vert	
(MHz) 1301.805 1301.787 1735.757 1301.805 867.860 1735.737 867.873	49.4 48.2 44.2 49.4 25.4 42.3 25.1	-2.4 1.0 -2.4 1.4 0.4 1.0 -2.4 1.4 0.4 1.0 -2.4 1.0 0.4 1.2 17.4 1.0	216.0 340.0 158.0 216.0 167.0 298.0 27.0 122.0 340.0	-9.4 -9.4 -9.4 -9.4 -9.4	Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz	AV AV AV PK AV AV	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Adjusted (dBuV/m) 37.6 36.4 35.2 47.0 33.4 33.3 33.1	Spec. Limit (dBuV/m) 54.0 54.0 60.8 74.0 60.8 60.8 60.8	Compared to Spec. (dB) -16.4 -17.6 -25.6 -27.0 -27.4 -27.5 -27.7	EUT Vert EUT on Side EUT on Side EUT Vert EUT on Side EUT Vert EUT Horz	
1301.805 1301.787 1735.757 1301.805 867.860 1735.737 867.873 867.873 867.845 1301.787 867.833 867.833	49.4 48.2 44.2 49.4 25.4 42.3 25.1 24.7 48.2 24.1 23.4	-2.4 1.0 -2.4 1.4 0.4 1.0 -2.4 1.0 17.4 1.0 17.4 1.0 17.4 1.0 -2.4 1.4 17.4 1.0 17.4 1.0 17.4 1.0 17.4 1.0	216.0 340.0 158.0 216.0 216.0 298.0 27.0 122.0 340.0 78.0 323.0	Correction Factor (dB) -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.	Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Vert Vert	AV AV PK AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 37.6 36.4 35.2 47.0 33.4 33.3 33.1 32.7 45.8 32.1 31.4	Spec. Limit (dBuV/m) 54.0 54.0 60.8 74.0 60.8 60.8 60.8 60.8 60.8 60.8	Compared to Spec. (dB) -16.4 -17.6 -25.6 -27.0 -27.4 -27.5 -27.7 -28.1 -28.2 -28.7 -29.4	EUT Vert EUT on Side EUT on Side EUT on Side EUT Vert EUT on Side EUT Vert EUT Horz EUT Vert EUT on Side EUT Vert EUT On Side EUT Vert EUT ON SIDE EUT Vert EUT Horz	
1301.805 1301.787 1735.757 1301.805 867.860 1735.737 867.873 867.845 1301.787 867.833 867.830	49.4 48.2 44.2 49.4 25.4 42.3 25.1 24.7 48.2 24.1 23.4 22.7	-2.4 1.0 -2.4 1.4 0.4 1.0 -2.4 1.4 17.4 1.0 17.4 1.0 17.4 1.0 17.4 1.0 17.4 1.0 17.4 1.0 17.4 1.3 17.4 1.3	216.0 340.0 158.0 216.0 167.0 298.0 27.0 122.0 340.0 78.0 323.0 267.0	Correction Factor (dB) -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.	Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Vert Vert Vert	AV AV PK AV AV AV AV AV AV AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 37.6 36.4 35.2 47.0 33.4 33.3 33.1 32.7 45.8 32.1 31.4 30.7	Spec. Limit (dBuV/m) 54.0 54.0 60.8 74.0 60.8 60.8 60.8 60.8 60.8 60.8 60.8 60	Compared to Spec. (dB) -16.4 -17.6 -25.6 -27.0 -27.4 -27.5 -27.7 -28.1 -28.2 -28.7 -29.4 -30.1	EUT Vert EUT on Side EUT on Side EUT vert EUT on Side EUT Vert EUT Horz EUT Vert EUT on Side EUT Vert EUT Horz EUT Horz EUT On Side	
(MHz) 1301.805 1301.787 1735.757 1301.805 867.860 1735.737 867.873 867.845 1301.787 867.833 867.830 2169.652	49.4 48.2 44.2 49.4 25.4 42.3 25.1 24.7 48.2 24.1 23.4 22.7 32.6	(dB) (mete -2.4 1.4 0.4 1.0 -2.4 1.0 17.4 1.0 0.4 1.2 17.4 1.0 17.4 1.0 17.4 1.0 17.4 1.0 17.4 1.0 2.4 1.4 17.4 1.3 17.4 1.2 2.2 2.4	216.0 340.0 158.0 216.0 298.0 27.0 122.0 340.0 78.0 323.0 267.0 249.0	Correction Factor (dB) -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.	Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Transducer Type Vert Horz Horz Vert Horz Vert Horz Vert Horz Vert Horz Horz Vert Horz Vert Vert Vert Horz	AV A	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 37.6 36.4 35.2 47.0 33.4 33.3 33.1 32.7 45.8 32.1 31.4 30.7 25.4	Spec. Limit (dBuV/m) 54.0 54.0 60.8 74.0 60.8 60.8 60.8 60.8 60.8 60.8 60.8 60	Compared to Spec. (dB) -16.4 -17.6 -25.6 -27.0 -27.4 -27.5 -27.7 -28.1 -28.2 -28.7 -29.4 -30.1 -35.4	EUT Vert EUT on Side EUT on Side EUT on Side EUT Vert EUT on Side EUT Vert EUT Horz EUT Vert EUT on Side EUT Vert EUT on Side EUT Vert EUT on Side EUT Vort EUT Horz EUT Horz EUT On Side	
(MHz) 1301.805 1301.787 1735.757 1301.805 867.860 1735.737 867.873 867.845 1301.787 867.833 867.830 867.930 2169.652 1735.757	49.4 48.2 44.2 49.4 25.4 42.3 25.1 24.7 48.2 24.1 23.4 22.7 32.6 44.2	-2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.4 -2.4 1.4 -2.4 1.4 -2.4 1.4 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0	(degrees) 216.0 340.0 158.0 216.0 167.0 298.0 27.0 122.0 340.0 78.0 323.0 267.0 249.0 158.0	Correction Factor (dB) -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.	Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Vert Vert Vert Vert Horz Horz	AV AV PK AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 37.6 36.4 35.2 47.0 33.4 33.3 33.1 32.7 45.8 32.1 31.4 30.7 25.4 44.6	Spec. Limit (dBuV/m) 54.0 54.0 60.8 74.0 60.8 60.8 60.8 60.8 60.8 60.8 60.8 80.8	Compared to Spec. (dB) -16.4 -17.6 -25.6 -27.0 -27.4 -27.5 -27.7 -28.1 -28.2 -28.7 -29.4 -30.1 -35.4 -36.2	EUT Vert EUT on Side EUT on Side EUT vert EUT on Side EUT Vert EUT Horz EUT Vert EUT on Side EUT Vert EUT Horz EUT Horz EUT On Side	
(MHz) 1301.805 1301.787 1735.757 1301.805 867.860 1735.737 867.873 867.843 1301.787 867.833 867.833 867.830 2169.652 1735.757 2169.652 1735.757 2169.617	49.4 48.2 44.2 49.4 25.4 42.3 25.1 24.7 48.2 24.1 23.4 22.7 32.6	(dB) (mete -2.4 1.4 0.4 1.0 -2.4 1.0 17.4 1.0 0.4 1.2 17.4 1.0 17.4 1.0 17.4 1.0 17.4 1.0 2.4 1.4 17.4 1.0	216.0 340.0 158.0 216.0 298.0 27.0 122.0 340.0 78.0 323.0 267.0 249.0 158.0 220.0 167.0	Correction Factor (dB) -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.	Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vert Horz Vert Horz Vert Horz Vert Horz Vert Horz Horz Horz Vert Horz Vert Vert Vert Horz Horz Horz Horz	AV A	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 37.6 36.4 35.2 47.0 33.4 33.3 33.1 32.7 45.8 32.1 31.4 30.7 25.4 44.6 23.5 42.8	Spec. Limit (dBuV/m) 54.0 54.0 60.8 74.0 60.8 60.8 60.8 60.8 60.8 60.8 60.8 60	Compared to Spec. (dB) -16.4 -17.6 -25.6 -27.0 -27.4 -27.5 -27.7 -28.1 -28.2 -28.7 -29.4 -30.1 -35.4	EUT Vert EUT on Side EUT on Side EUT von Side EUT Vert EUT on Side EUT Vert EUT Horz EUT Vert EUT on Side EUT Vert EUT on Side EUT Vert EUT on Side	
(MHz) 1301.805 1301.787 1735.757 1301.805 867.860 1735.737 867.873 867.845 1301.787 867.833 867.830 867.930 2169.652 1735.757 2169.617	49.4 48.2 44.2 49.4 25.4 42.3 25.1 24.7 48.2 24.1 23.4 22.7 32.6 44.2 30.7	-2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.1 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.4 1.0 -2.2 2.4 -2.2 2.4 -2.2 1.0	(degrees) 216.0 340.0 158.0 216.0 167.0 298.0 27.0 122.0 340.0 78.0 323.0 267.0 249.0 158.0 220.0 167.0 298.0	Correction Factor (dB) -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.4 -9.	Attenuation (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Vert Horz Vert Horz Vert Horz Vert Horz Vert Vert Vert Vert Vert Vert Vert Vert	AV AV PK AV	Adjustment (dB) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Adjusted (dBuV/m) 37.6 36.4 35.2 47.0 33.4 33.3 33.1 32.7 45.8 32.1 31.4 30.7 25.4 44.6 23.5	Spec. Limit (dBuV/m) 54.0 54.0 60.8 74.0 60.8 60.8 60.8 60.8 60.8 60.8 60.8 60	Compared to Spec. (dB) -16.4 -17.6 -25.6 -27.0 -27.4 -27.5 -27.7 -28.1 -28.2 -28.7 -29.4 -30.1 -35.4 -36.2 -37.3	EUT Vert EUT on Side EUT on Side EUT on Side EUT Vert EUT on Side EUT Vert EUT Horz EUT Vert EUT on Side EUT Vert EUT on Side EUT Vert EUT on Side	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
867.845	24.7	17.4	1.0	122.0		0.0	Horz	PK	0.0	42.1	8.08	-38.7	EUT Vert
867.833	24.1	17.4	1.3	78.0		0.0	Vert	PK	0.0	41.5	80.8	-39.3	EUT Vert
867.830	23.4	17.4	1.0	323.0		0.0	Vert	PK	0.0	40.8	80.8	-40.0	EUT Horz
867.930	22.7	17.4	1.2	267.0		0.0	Vert	PK	0.0	40.1	8.08	-40.7	EUT on Side
2169.652	32.6	2.2	2.4	249.0		0.0	Horz	PK	0.0	34.8	80.8	-46.0	EUT on Side
2169.617	30.7	2.2	1.0	220.0		0.0	Vert	PK	0.0	32.9	80.8	-47.9	EUT Vert

OCCUPIED BANDWIDTH

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

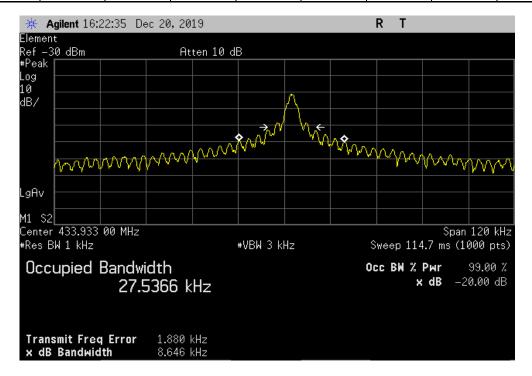
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	EMCO	7405	IPI	NCR	NCR
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	16-Dec-19	16-Dec-20

TEST DESCRIPTION

A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer. The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

OCCUPIED BANDWIDTH


OCCUPIED BANDWIDTH

433.93 MHz

Value Limit
(kHz) (kHz) Result

8.646 < 1084 Pass

XMit 2019.09.05

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	EMCO	7405	IPI	NCR	NCR
Analyzer - Spectrum Analyzer	Agilent	E4446A	AAY	16-Dec-19	16-Dec-20

TEST DESCRIPTION

A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = **100** mSec Pulsewidth of Type 1 Pulse = **.385** mSec Pulsewidth of Type 2 Pulse = **.770** mSec Number of Type 1 Pulses = **40** Number of Type 2 Pulses = **24**

Duty Cycle = $20 \log [((40)(.385) + (24)(.770)/100] = -9.4 dB$

The duty cycle correction factor of **-9.4 dB** was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

EUT: Pippin

Serial Number: 092019-00009

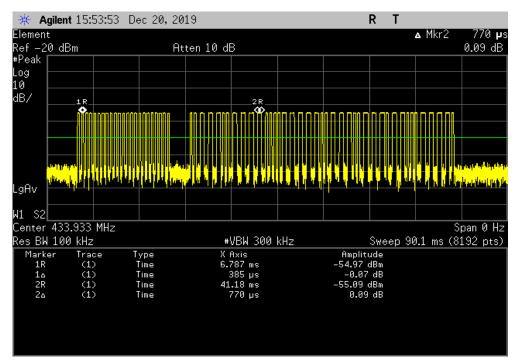
Customer: Roll-A-Shade

Attendees: None

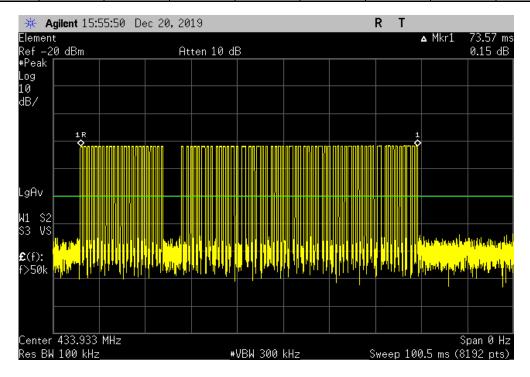
Project: None

Tested by: Mark Baytan

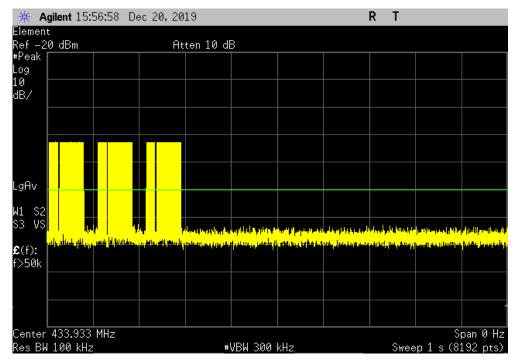
TEST SPECIFICATIONS Work Order: RODE0001


Date: 20-Dec-19

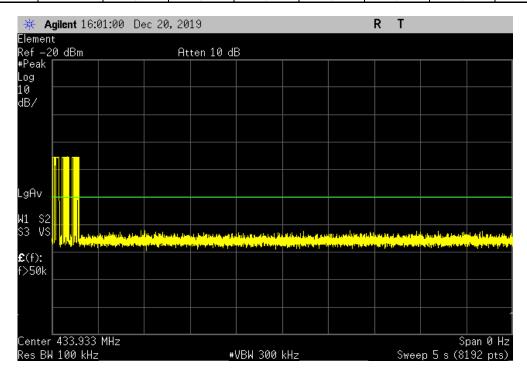
Temperature: 21.3 °C

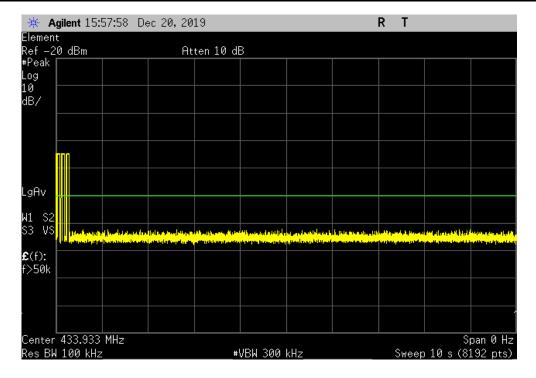

Humidity: 36.4% RH

Barometric Pres.: 1024 mbar Power: Battery
Test Method Job Site: OC07 FCC 15.231:2019 ANSI C63.10:2013 COMMENTS DEVIATIONS FROM TEST STANDARD 1464 Configuration # Signature Number of Type 1 Pulses Type 1 Pulse Length (ms) 0.385 Type 2 Pulse Length (ms) 0.770 Number of Type 2 Pulses DCCF Result -9.4 N/A N/A N/A N/A N/A N/A N/A N/A 1 Period Interval 100 ms Interval 1 s Interval 5 s Interval N/A 10 s Interval N/A



			100 ms Interval				
	Number of Type	Type 1 Pulse	Number of Type	Type 2 Pulse			
	1 Pulses	Length (ms)	2 Pulses	Length (ms)	DCCF	Result	
1	N/A	N/A	N/A	N/A	N/A	N/A	




1 s Interval Number of Type Type 1 Pulse Number of Type Type 2 Pulse Length (ms) 1 Pulses Length (ms) 2 Pulses DCCF Result N/A N/A N/A N/A N/A

5 s Interval							
Number of Type	Type 1 Pulse	Number of Type	Type 2 Pulse				
 1 Pulses	Length (ms)	2 Pulses	Length (ms)	DCCF	Result		
N/A	N/A	N/A	N/A	N/A	N/A		

