

TEST REPORT

Test report no.: 1-6579_23-01-41_TR1_R01

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: +49 681 5 98 - 0 Fax: +49 681 5 98 - 9075

Internet: https://cetecomadvanced.com
e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number:

D-PL-12047-01-00.

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

Robert Bosch GmbH

Robert-Bosch-Straße 200 31139 Hildesheim / GERMANY

Phone: -/-

Contact: Thomas Dargel

e-mail: Thomas.Dargel@de.bosch.com

Manufacturer

Robert Bosch GmbH

Robert-Bosch-Straße 200 31139 Hildesheim / GERMANY

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Telematics Control Unit Generation 2

Model name: TCU2 NA IP30

FCC ID: 2AUXS-TCU2NAIP30 ISED certification number: 25847-TCU2NAIP30

Frequency: 5150 MHz to 5350 MHz & 5470 MHz to 5825 MHz

Technology tested: WLAN

Antenna: Two Integrated antennas with MIMO capability

Power supply: 12 V DC by external power supply

Temperature range: -40°C to +65°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
p.o.	
Michael Dorongovski	David Lang
Lab Manager	Lab Manager
Radio Labs	Radio Labs

1 Table of contents

1	Table o	f contents	2				
2	Genera	I information	3				
	2.1	Notes and disclaimer	3				
	2.2	Application details					
	2.3	Test laboratories sub-contracted	3				
3	Test st	andard/s, references and accreditations	4				
4	Reporti	ng statements of conformity – decision rule	4				
5	Test en	vironment	5				
6	Test ite	m	5				
	6.1	General description	5				
	6.2	Additional information					
7	Measu	rement uncertainty	6				
8	Summa	ary of measurement results	7				
9	Additional comments						
10	RF r	neasurements	9				
	10.1	Description of test setup					
	10.1.1	Conducted measurements					
	10.2	Parameters of DFS test signals					
	10.2.1	DFS Detection Thresholds for Master Devices as well as Client Devices With Radar Detection					
	10.2.2	DFS Response Requirement Values					
	10.2.3	Radar Test Waveforms					
	10.3	Test preparation					
	10.3.1	Channel loading					
	10.3.2	99% Bandwidth to determine the U-NII-bandwidth					
	10.3.3	Radar burst timing signal					
	10.4	Test results (prior to use of a channel)					
	10.5 10.5.1	Test results (during normal operation)					
	10.5.1	Non-Occupancy Period					
11	Obs	ervations	. 21				
12	Glos	sary	. 21				
13	Doc	ument history	. 22				

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

 Date of receipt of order:
 2023-08-30

 Date of receipt of test item:
 2024-04-02

 Start of test:*
 2024-04-24

 End of test:*
 2024-04-24

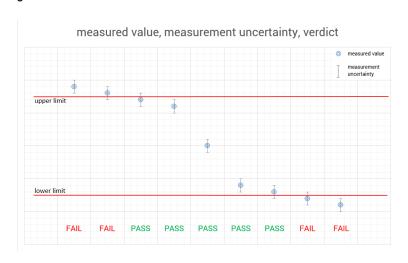
Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© cetecom advanced GmbH Page 3 of 22

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.


3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 3 Augus 2023		Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
Guidance	Version	Description
KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES American National Standard of Procedures for Compliance
ANSI C63.10-2013	-/-	Testing of Unlicensed Wireless Devices Compliance measurement procedures for unlicensed - national
UNII: KDB 905462 D02	v02	information infrastructure devices operating in the 5250 - 5350 MHz and 5470 - 5725 MHz bands incorporating dynamic
		frequency selection

4 Reporting statements of conformity - decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 8, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© cetecom advanced GmbH Page 4 of 22

5 Test environment

		T_nom	+22 °C during room temperature tests
Temperature	:	T_{max}	No testing under extreme temperature conditions required.
		T_{min}	No testing under extreme temperature conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V_{nom}	12.0 V DC by external power supply
Power supply	:	V_{max}	No testing under extreme voltage conditions required.
		V_{min}	No testing under extreme voltage conditions required.

6 Test item

6.1 General description

Kind of test item :	Telematics Control Unit Generation 2
Model name :	TCU2 NA IP30
HMN :	N/A
PMN :	TCU2 NA IP30
HVIN :	TCU2 NA IP30
FVIN :	N/A
S/N serial number :	2750003683
Hardware status :	4186H06
Software status :	23.04.S.010.4
Frequency band :	5150 MHz to 5350 MHz & 5470 MHz to 5825 MHz
Type of radio transmission:	OFDM
Use of frequency spectrum:	OT DIVI
Type of modulation :	(D)BPSK, (D)QPSK, 16 - QAM, 64 - QAM
Number of channels :	24 (20 MHz), 11 (40 MHz), 5 (80 MHz)
Antenna :	Two Integrated antennas with MIMO capability
Power supply :	12 V DC by external power supply
Temperature range :	-40°C to +65°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-6579_23-01-08_AnnexA

© cetecom advanced GmbH Page 5 of 22

7 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Frequency accuracy (radar burst)	0.2 Hz				
Level accuracy (radar burst)	± 1.83 dB				

© cetecom advanced GmbH Page 6 of 22

8 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
\boxtimes	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
DFS-Testing	CFR Part 15, FCC 06-96	Pass	2024-04-30	DFS only
	RSS-247, Issue 3	1 400	20210100	Di O Oilly

Test Standard Clause	Test Case	Bandwidth	С	NC	NA	NP	Remark
7.8.1* ³	U-NII Detection Bandwidth	-/-			\boxtimes		* 1 * 2 * 3
§15.407 (h)(2)	DFS Detection Threshold	-/-			X		* 1 * 2 * 3
§15.407 (h)(2) (ii) & 7.8.2* ³	Channel Availability Check Time	-/-			\boxtimes		* 1 * 3
§15.407 (h)(2) (iv) & 7.8.3* ³	Non-Occupancy Period	80 MHz	X				* ²
§15.407 (h)(2) (iii)	Channel Move Time / Channel Closing Transmission Time	80 MHz	\boxtimes				*2
7.8.3 & 7.8.4* ³	In-Service Monitoring / Statistical Performance Check	-/-			\boxtimes		* 2 * 3

Abbreviations/References:

C Compliant

NC Not compliant

NA Not applicable

NP Not performed

*1 Prior to use of a channel

*2 During normal operation

*3 Not applicable for Client Devices without radar detection.

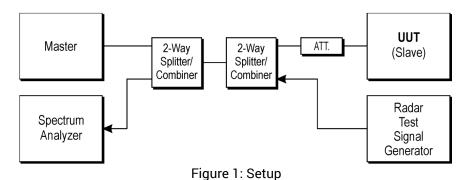
© cetecom advanced GmbH Page 7 of 22

9 Additional comments

Reference docume	nts:	None			
Special test descrip	otions:	All tests except the In-Service Monitoring are conducted with Pulse Type 0.			
		A sample with temporary antenna connector was provided to perform the measurements in a conducted way.			
Configuration descriptions:		Iperf was used to generate the required channel load (duty cycle greater 17 percent).			
DFS functionality:		 □ Master device □ Client with radar detection ☑ Client without radar detection 			
EUT selection:	\boxtimes	Only one device available			
		Devices selected by the customer			
		Devices selected by the laboratory (Randomly)			

© cetecom advanced GmbH Page 8 of 22

10 RF measurements


10.1 Description of test setup

10.1.1 Conducted measurements

Setup

Figure 1 shows a setup whereby the UUT is a RLAN device operating in slave mode, without Radar Interference Detection function. This setup also contains a RLAN device operating in master mode. The radar test signals are injected into the master device. The UUT (slave device) is associated with the master device.

Figure 1 shows an example

RPP = SG - CA

(RPP-radar pulse power; SG-signal generator power; CA-loss signal path)

Example calculation:

RPP [dBm] = -30.0 [dBm] - 33.0 [dB] = -63.0 [dBm]

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Vector Signal Generator	SMU200A	R&S	101633	300003496	vlKI!	04.01.2022	31.01.2025
2	А	Spectrum Analyzer 9kHz to 30GHz - 140+30dBm	FSP30	R&S	100886	300003575	vlKI!	07.12.2022	31.12.2024
3	Α	DFS-test site	div. Splitter, Cables, Attenuators	Mini-Circuits	na	300004557	ev	-/-	-/-
4	А	Notebook	Latitude 15 6000 Series	Dell		300004737	ne	-/-	-/-
5	А	Dual Band Gigabit Router	RT-AC68U	Asus	F1IMOH056666	400001244	ne	-/-	-/-
6	Α	PC	ExOne	F+W	2890296v001	300005102	ne	-/-	-/-
7	Α	RF-Cable DFS-Tester Receiver	ST18/SMAm/SMAm /24	Huber & Suhner	Batch no. 1308650	400001252	ev	-/-	-/-
8	А	RF-Cable DFS-Tester SMU	1520.9927.00			400001253	ev	-/-	-/-
9	Α	RF-Cable DFS-Tester No. 1	Enviroflex 316 D	Huber & Suhner	Batch no. 1560522	400001257	ev	-/-	-/-

© cetecom advanced GmbH Page 9 of 22

10	Α	RF-Cable DFS-Tester No. 2	Enviroflex 316 D	Huber & Suhner	Batch no. 1560522	400001258	ev	-/-	-/-
11	Α	RF-Cable DFS-Tester No. 3	Enviroflex 316 D	Huber & Suhner	Batch no. 1560522	400001259	ev	-/-	-/-
12	Α	RF-Cable DFS-Tester No. 5	Enviroflex 316 D	Huber & Suhner	Batch no. 1560522	400001261	ev	-/-	-/-
13	Α	RF-Cable DFS-Tester No. 6	Enviroflex 316 D	Huber & Suhner	Batch no. 1560522	400001262	ev	-/-	-/-
14	Α	DC Power Supply	HMP2020	Rohde & Schwarz	101073	300005264	k	05.12.2022	31.12.2024

^{*} FCC ID: MSQ-RTAC68U

© cetecom advanced GmbH Page 10 of 22

10.2 Parameters of DFS test signals

10.2.1 DFS Detection Thresholds for Master Devices as well as Client Devices With Radar Detection

Maximum Transmit Power EIRP	Value (see note)
≥ 200 mW	-64 dBm
< 200 mW and power spectral density < 10 dBm/MHz	-62 dBm
< 200 mW and	
That do not meet the power spectral density < 10	-64 dBm
dBm/MHz	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

10.2.2 DFS Response Requirement Values

Parameter	Value	
Non-occupancy period	minimum 30 minutes	
Channel Availability Check Time	60 seconds	
Channel Move Time	10 seconds See Note 1.	
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.	
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.	

- Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.
- Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning
 - of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.
- Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

© cetecom advanced GmbH Page 11 of 22

10.2.3 Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance.

Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518- 3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \begin{bmatrix} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^6}{PRI_{\mu sec}}\right) \end{bmatrix} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Rada	r Types 1-4)	-	-	80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4.

© cetecom advanced GmbH Page 12 of 22

Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency	Pulse Repetition Frequency	Pulse Repetition Interval
Number	(Pulses Per Second)	(Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms.

© cetecom advanced GmbH Page 13 of 22

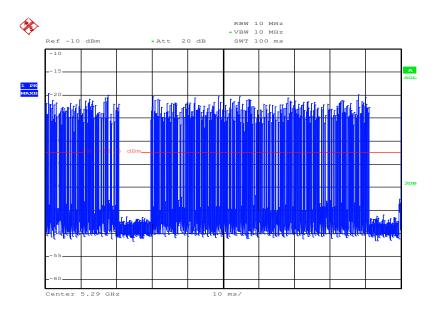
Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined.

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set.

© cetecom advanced GmbH Page 14 of 22



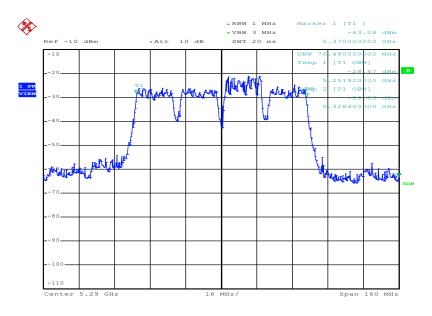
10.3 Test preparation

10.3.1 Channel loading

Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater. For example, channel loading can be estimated by setting the spectrum analyzer for zero span and approximate the Time On/ (Time On + Off Time). This can be done with any appropriate channel BW and modulation type.

HT80-Mode: Calculated duty cycle = 18%

Date: 24.APR.2024 14:22:03

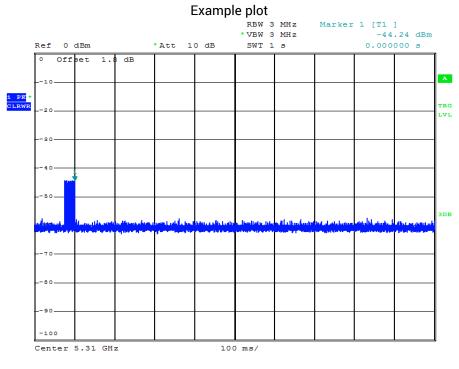

Plot 1

© cetecom advanced GmbH Page 15 of 22

10.3.299% Bandwidth to determine the U-NII-bandwidth

VHT80-Mode: 76,48 MHz

Date: 24.APR.2024 14:22:39


Plot 2

© cetecom advanced GmbH Page 16 of 22

10.3.3 Radar burst timing signal

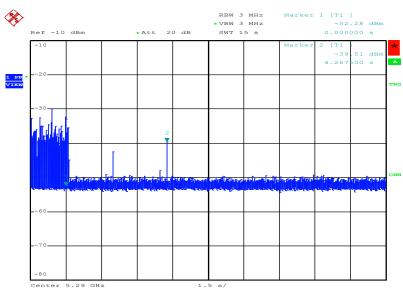
To accurately determine the channel closing time and channel closing transmission time the spectrum analyser is triggered at the end of the radar burst (see marker at t = 0ms).

Plot 3

© cetecom advanced GmbH Page 17 of 22

10.4 Test results (prior to use of a channel)

Not applicable.


10.5 Test results (during normal operation)

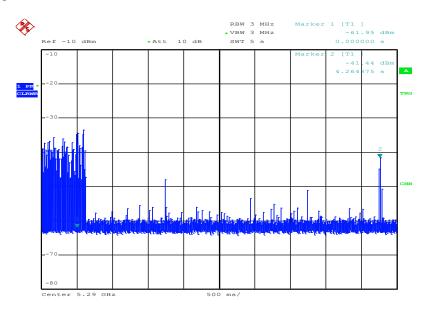
10.5.1 Channel move time / channel closing transmission time

After a radar's presence is detected, all transmissions shall cease on the operating channel within 10 seconds. Transmissions during this period shall consist of normal traffic for a maximum of 200 ms after detection of the radar signal. In addition, intermittent management and control signals can be sent during the remaining time to facilitate vacating the operating channel not exceeding 60ms.

The test is performed during normal operation with the highest bandwidth supported by the DUT.

Channel Closing Time

Date: 24.APR.2024 15:48:52


Plot 4

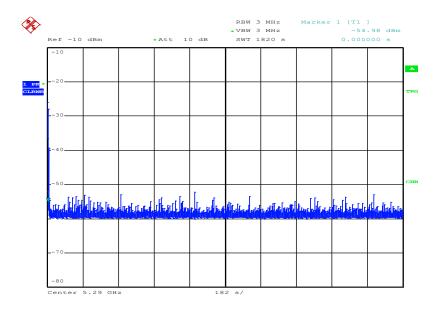
Note: With Marker 1 at the end of the radar pulse (*t* = 0ms) the Channel Closing Time is determined by Setting a Delta-Marker to the point where the last transmission occurred. The Channel Closing Time is 4.26s.

© cetecom advanced GmbH Page 18 of 22

Channel Closing Transmission Time

Date: 24.APR.2024 16:08:46

Note: The accumulated transmission time is calculated by the number of bins occurring after t = 0ms multiplied with the Time-per-sweep point-factor resulting from the Sweep Time and number of Sweep Points of the Spectrum Analyser.


The Channel Closing Transmission Time is 1.9ms.

© cetecom advanced GmbH Page 19 of 22

10.5.2 Non-Occupancy Period

A channel that has been flagged as containing a radar system, either by a channel availability check or inservice monitoring, is subject to a non-occupancy period of at least 30 minutes. The non occupancy period starts at the time when the radar system is detected.

Date: 24.APR.2024 14:54:37

Plot 5

© cetecom advanced GmbH Page 20 of 22

11 Observations

No observations except those reported with the single test cases have been made.

12 Glossary

AVG	Average
C	Compliant
CAC	Channel availability check
CW	Clean wave
DC	Duty cycle
DFS	Dynamic frequency selection
DSSS	Dynamic sequence spread spectrum
DUT	Device under test
EN	European Standard
EMC	Electromagnetic Compatibility
EUT	Equipment under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
FHSS	Frequency hopping spread spectrum
FVIN	Firmware version identification number
HMN	Host marketing name
HVIN	Hardware version identification number
HW	Hardware
IC	Industry Canada
Inv. No.	Inventory number
MC	Modulated carrier
NA	Not applicable
NC	Not compliant
NOP	Non occupancy period
NP	Not performed
OBW	Occupied bandwidth
00	Operating channel
OCW	Operating channel bandwidth
OFDM	Orthogonal frequency division multiplexing
OOB	Out of band
OP	Occupancy period
PER	Packet error rate
PMN	Product marketing name
PP	Positive peak
QP	Quasi peak
S/N or SN	Serial number
SW	Software
UUT	Unit under test
WLAN	Wireless local area network

© cetecom advanced GmbH Page 21 of 22

13 Document history

Version	Applied changes	Date of release
-/-	Initial release	2024-04-30

© cetecom advanced GmbH Page 22 of 22