Solutions TEST REPORT

Test Report No.: UL-RPT-RP-14978163-116-FCC-WLAN 2.4GHz

Applicant *	:	Robert Bosch GmbH
Model No. *	:	CTP3NA
FCC ID *	:	2AUXS-CTP3NA
Technology *	:	WLAN 2.4 GHz (802.11 b, g, n, ax)
Test Standard(s)	:	FCC Parts 15.209(a) & 15.247
		For details of applied tests refer to test result summary

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL International Germany GmbH.
- 2. The results in this report apply only to the sample tested.
- The test results in this report are traceable to the national or international standards. 3.
- 4. **Test Report Version 1.0**
- 5. Result of the tested sample: Pass
- 6. All information marked with a (*) were provided by customer / applicant or authorized representative

Prepared by: Muhammad Faiq Khan Title: Project Engineer Date: 09 November 2023

Approved by: Rachid, Acharkaoui Title: Operations Manager Date: 09 November 2023

Deutsche Akkreditierungsstelle D-PL-19381-02-00

This laboratory is accredited by DAkkS. The tests reported herein have been performed in accordance with its' terms of accreditation.

UL INTERNATIONAL GERMANY GMBH Hedelfinger Str. 61 70327 Stuttgart, Germany STU.CTECHLab@ul.com

This page has been left intentionally blank.

Table of Contents

1. Customer Information *	4
1.1. Applicant Information	4
1.2. Manufacturer Information	4
2. Summer of Testing	F
2. Summary of Testing	5 5
2.1. General monitation	Э Г
Applied Standards	Э Б
Localion Data Information	5
2.2. Summary of Toot Populto	6
2.2. Summary of results	6
2.1 Deviations from the Test Specification	6
	0
3. Equipment Under Test (EUT)	7
3.1. Identification of Equipment Under Test (EUT) *	7
3.2. Description of EUT *	7
3.3. Modifications Incorporated in the EUT	1
3.4. Additional Information Related to Testing *	8
3.5. Support Equipment	8
A. Support Equipment (In-nouse)	8
B. Support Equipment (Manufacturer supplied)	8
4. Operation and Monitoring of the EUT during Testing	9
4.1. Operating Modes	9
4.2. Configuration and Peripherals	9
5. Measurements. Examinations and Derived Results1	0
5.1. General Comments	0
5.2. Test Results 1	1
5.2.1. Transmitter Duty Cycle 1	1
5.2.2. Transmitter Radiated Emissions 1	5
5.2.3. Transmitter Band Edge Radiated Emissions 3	6
6. Measurement Uncertainty4	2
7. Used equipment4	3
8. Report Revision History4	4

1. Customer Information *

<u>1.1. Applicant Information</u>

Company Name:	Robert Bosch GmbH	
Company Address:	Robert-Bosch-Platz 1 70839 Gerlingen GERMANY	
Contact Person: Karin Silberhorn		
Contact E-Mail Address: karin.silberhorn@de.bosch.com		
Contact Phone No.:	ontact Phone No.: +49 5121-49-7662	

1.2. Manufacturer Information

Company Name:	Robert Bosch GmbH	
Company Address:	Robert-Bosch-Platz 1 70839 Gerlingen GERMANY	
Contact Person: Karin Silberhorn		
Contact E-Mail Address: karin.silberhorn@de.bosch.com		
Contact Phone No.:	+49 5121-49-7662	

2. Summary of Testing

2.1. General Information

Applied Standards

Specification Reference:	47CFR15.247
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247
Specification Reference:	47CFR15.209
Specification Title:Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Sections 15.209	

Location

Location of Testing:	L International Germany GmbH edelfinger Strasse. 61, 0327 Stuttgart, iERMANY	
Registration Number:	399704	

Date Information

Order Date:	19 September 2023
EUT Arrived:	20 September 2023
Test Dates:	20 September 2023 to 28 September 2023
EUT Returned:	

2.2. Summary of Test Results

DIGITAL TRANSMISSION SYSTEMS (DTS): 2400-2483.5 MHz						
FCC Part 15	FCC Part 15 Clause Compliance Test Description		Test Result			
Clause			N.C.	N.P.	N.A.	
15.207	Transmitter AC Power Line Conducted Emissions ⁽¹⁾				\boxtimes	
Part 15.247(a)(2)	Transmitter Minimum 6 dB Bandwidth (3)			\boxtimes		
Part 15.35(c)	Transmitter Duty Cycle ⁽²⁾					
Part 15.247(e)	Transmitter Power Spectral Density (3)			\boxtimes		
Part 15.247(b)(3)	Transmitter Maximum (Peak) Output Power ⁽³⁾			\boxtimes		
15.247(d) & 15.209(a)	Transmitter Radiated Emissions	\boxtimes				
15.247(d) & 15.209(a) Transmitter Band Edge Radiated Emissions		\boxtimes				
C: COMPLIED N.C.: NOT COMPLIED N.P.: NOT PERFORMED N.A.: NOT APPLICABLE						

Decision rule:

If the decision rule is not included in the applied customer specification or testing standard, the binary statement for simple acceptance, as defined in ILAC G8: 2019 Section 4.2.1, is applied as the decision rule for a pass/ fail statement.

If the measured value is on the limit, the result is defined as a pass. In this case the risk of a false positive is 50%. For further information regarding risk assessment refer to ILAC G8: 2019.

Note(s):

- 1. The EUT is vehicular equipment and will be powered by the battery of the vehicle, therefore no AC conducted emission tests are required.
- 2. The measurement was performed to assist the other average measurements.
- 3. At the client's request, only partial testing was performed for the radiated spurious emissions and the band edge radiated emissions as the EUT is a host product that contains a pre-certified radio module (Model: ATC6NPL002C)

2.3. Methods and Procedures

Reference:	ANSI C63.10-2013		
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices		
Reference:	FCC KDB 558074 D01 DTS Meas. Guidance v05r02 April 2, 2019		
Title:	Guidance for compliance measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC rules		

2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT) *

Brand Name:	Bosch
Model Name:	СТРЗЛА
Model Number:	CTP3NA Ext
Test Sample Serial Number:	1150003350
Hardware Version:	C2
Software Version:	DAIMLER_CTP3_ISTANBUL_RC2_HF2_S.010
FCC ID:	2AUXS-CTP3NA

3.2. Description of EUT *

The equipment under test was an In-Vehicle-Telematic-Unit, contains Model Name: CTP3NA, supporting WLAN 2.4 GHz, WLAN 5 GHz, Bluetooth LE and Bluetooth BR/EDR technologies.

While testing Bluetooth LE EUT were operating in 2400-2483.5 MHz ISM band. All other supported radio technologies were either switched off or were in idle mode.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

ISSUE DATE: 09 NOVEMBER 2023

3.4. Additional Information Related to Testing *

Category of Equipment:	WLAN 2.4 GHz (IEEE 802.11b, g, n, ax)			
Type of Radio Device:	Transceiver			
Highest internally generated clock and/ or oscillator frequency:	radio frequency: WiFi 5GHz: 5825 MHz internal clock frequency: 125MHz			
Power Supply Requirement(s):	Nominal 24 V DC via external power supply			
Tested Data rates:	802.11b	1 Mbps (Note 1)	2 Mbps (Note 1)	
	802.11g	54 Mbps (Note 1)		
	802.11n HT40	MCS0 (Note 1)		
	802.11ax40	MCS0 (RU484	_65) (Note 1)	
Nominal Channel Bandwidth:	20 MHz, 40MHz, 80MHz			
Declared Antenna Gain:	6.2 dBi			
Antenna Type:	combinatorial Antenna			
Antenna Details:	A 006 820 39 75			
Transmit Frequency Range:	2412 MHz to 2462 MHz			
Transmit Channels Tested:Channel IDChan20 MHzChanNuml		Channel Number	Frequency (MHz)	
	Bottom	1 (Note 1)	2412	
	Middle	6 (Note 1)	2437	
	Top 11 ^(Note 1) 2462			
Transmit Channels Tested: 40 MHz	Channel ID	Channel Number	Frequency (MHz)	
	Bottom	3	2422	
	Тор	9	2452	
^(Note 1) At the client's request, only partial testing was customer.	s performed on worst-ca	ase data rates de	efined by	

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

A. Support Equipment (In-house)

Item	Description	Brand Name	Model Name or Number	Serial Number
1	-/-	-/-	-/-	-/-

B. Support Equipment (Manufacturer supplied) *

Item	Description	Brand Name	Model Name or Number	Serial Number
1	Laptop	Fujitsu	H770	DS1U006875

ISSUE DATE: 09 NOVEMBER 2023

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

⊠ Transmitter / Modulated Carrier Continuous Transmissions Mode WLAN 2.4 GHz, Worst Case:

- 802.11b I 20 MHz I 1 Mbps | Bottom Channel (1)
- 802.11b I 20 MHz I 2 Mbps | Bottom/Top Channel (2)
- 802.11g I 20 MHz I 54 Mbps | Bottom/Middle/Top Channel (1)
- 802.11n I 40 MHz I MCS0 | Bottom Channel ⁽²⁾
- 802.11ax I 40 MHz I MCS0 (RU484_65) | Top Channel ⁽²⁾

⁽¹⁾ According to customer declaration the unwanted (spurious) radiated emissions measurement was performed on this mode.

⁽²⁾ According to customer declaration this mode was used for Band edge measurements.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

EUT Power Supply:

• The EUT was powered with 24V DC via an external AC/DC power supply

Test Mode Activation:

- The EUT can be connected to the Test laptop via USB supplied by the customer.
- The test modes were activated by the terminal software "xxx". The commands to setup the respective modes and power were defined by the customer.

Radiated Measurements:

- As per the applicant's declaration &/operational description of the EUT, the EUT is a tabletop equipment for its intended application. Therefore, EUT's test setup placement was performed in accordance with ANSI C63.10 section 6.2.3.2 & section 6.12 Figure 4.
- The worst case position was declared by the costumer.
- Radiated measurements below 30 MHz were performed with the EUT positioned on the turn table and rotating 360 degrees while the loop antenna height was set at 100 cm.
- Radiated measurements above 30 MHz were performed with the EUT positioned on the turn table and rotating 360° while the antenna height varies from 1 to 4 m over the measurement frequency range.
- o R&S® EMC32 V11.30 Software was used for the Radiated spurious emission measurements.

Duty Cycle Correction Details:

- As the continuous transmission of the EUT (*D* ≥ 98%) can be achieved and EUT was transmitting continuously at Duty Cycles of 100 % (duty cycle variations are less than ±2% at the respective data rate) for b-mode 2 Mbps. Therefore, No Duty Cycle Correction Factors were added to all average measurements.
- o As the continuous transmission of the EUT (*D* ≥ 98%) cannot be achieved and EUT was transmitting continuously at Duty Cycles of 97.64 % and 40.12% (duty cycle variations are less than ±2% at the respective data rate) for n-mode HT40 MCS0 and ax-mode HT40 MCS0 respectively. Therefore, Duty Cycle Correction Factor of 0.10 dB and 3.97 dB was added to all average measurements, to compute the corrected average values of the emissions that would have been measured had the test been performed at 100% Duty Cycle.

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6 *Measurement Uncertainty* for details.

In accordance with DAkkS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2. Test Results

5.2.1. Transmitter Duty Cycle

Test Summary:

Test Engineer:	Muhammad Faiq Khan	Test Date:	21 September 2023 & 28 September 2023
Test Sample Serial Number:	1150003350		
Test Site Identification	SR 1/2		

FCC Reference:	Part 15.35(c)
Test Method Used:	FCC KDB 558074 Section 9.b) referencing ANSI C63.10 Section 7.5

Environmental Conditions:

Temperature (°C):	23.8 to 24.8
Relative Humidity (%):	45.1 to 52.1

Notes:

1. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by using the following calculation:

Duty Cycle (%) = 100 X [On Time (T_{ON})] / [Period $(T_{ON}+T_{OFF})$ or 100ms whichever is the lesser]

Duty Cycle Correction Factor= 10 log 1 / [On Time (T_{ON})] / [Period(T_{ON}+ T_{OFF}) or 100ms whichever is the lesser]

- Duty Cycle Correction Factor for b-mode 2 Mbps: 0.00 dB
- Duty Cycle Correction Factor for n-mode HT40 MCS0: 0.10 dB
- Duty Cycle Correction Factor for ax-mode HT40 MCS0: 3.97 dB

<u>Test Setup:</u>

Transmitter Duty Cycle (continued)

Results: AC-DC Power Supply / 802.11b / 20 MHz / 2 Mbps / PWR 12

Duty Cycle	Duty Cycle Correction Factor
(%)	(dB)
100.00	0.00

							I
MultiView	Receiver	× Spectrum	×				•
Ref Level 12 Att Input	1.90 dBµV Offset 25 dB ● SWT 1 AC PS	:-5.10 dB ● RBW 3 MHz 100 ms ● VBW 10 MHz On Notch Off			Fre	equency 2.41	20000 GHz
1 Zero Span							●1Pk View
120 dBhA							
110 dBµ∨———							
100 dBµV							
90 dBµV							
зи авµv							
70 dBµY							
60 dBµ∀							
50 dBµY							
40 авру							
30 dBµY							
CF 2.412 GHz			1001	pts			10.0 ms/
				- Measuring	 2023-09	-21 Ref Level	RBW
04:10:15 PM	09/21/2023				10.10		

TEST REPORT VERSION 1.0

Transmitter Duty Cycle (continued)

Results: AC-DC Power Supply / 802.11n / 40 MHz / MCS0 / PWR 8

Pulse On Time (T _{ON})	Pulse Period (T _{ON} +T _{OFF})	Duty Cycle	Duty Cycle Correction Factor
(ms)	(ms)	(%)	(dB)
0.6640	0.6800	97.64	0.10

TEST REPORT VERSION 1.0

Transmitter Duty Cycle (continued)

Results: AC-DC Power Supply / 802.11ax / 40 MHz / MCS0 / PWR 5

Pulse On Time (T _{ON})	Pulse Period (T _{ON} +T _{OFF})	Duty Cycle	Duty Cycle Correction Factor
(ms)	(ms)	(%)	(dB)
0.06700	0.16700	40.12	3.97

5.2.2. Transmitter Radiated Emissions

Test Summary:

Test Engineer:	Abbas Al-Hussainy Test Date:		26 September 2023	
Test Sample Serial Number:	1150003350			
Test Site Identification	SR 1/2			

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	FCC KDB 558074 Sections 8.5 & 8.6 referencing ANSI C63.10 Sections 11.11 and 11.12 ANSI C63.10:2013 Sections 6.3 and 6.4
Frequency Range	9 kHz to 30 MHz

Environmental Conditions:

Temperature (°C):	23.7
Relative Humidity (%):	45.7

Notes:

- 1. In accordance with FCC KDB 414788 D01 Radiated Test Site & ANSI C63.10 clause 5.2 an alternative test site that can demonstrate equivalence to an open area test site may be used. Therefore, the measurement was performed in a Semi Anechoic Chamber. (The OATS / SAC comparison data is available upon request).
- 2. The limits are specified at a test distances of 30 and 300 metres. However, as specified in FCC Section 15.31 (f)(2) & ANSI C63.10 clause 6.4.3, measurements may be performed at a closer distance and the measured level extrapolated to the specified measurement distance using the method described in clauses 6.4.4, specifically sub-clause 6.4.4.1 which specifies that the measured level shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 40 dB/decade.

Therefore, measurements were performed at a measurement distance of 3 m.

- 3. Therefore, the limit values are extrapolated to a measurement distance of 3 m.
 - 9 kHz- 490 kHz: limits extrapolated from 300 m to 3 m by adding 80 dB at 40 dB /decade.
 - 490 kHz-1705 kHz: limits extrapolated from 30 m to 3 m by adding 40 dB at 40 dB /decade.
- 4. Measurements below 30 MHz were performed in a semi-anechoic chamber SR1/ 2 (Asset Number 1603665) at a distance of 3 m. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. The measurement loop antenna height was 100 cm.
- 5. The radiated emissions measurements were performed with the EUT set to the following worst-case mode.
 - WLAN 2.4 GHz | b-Mode | 20 MHz | 1 Mbps | Bottom channel | PWR 12
 - WLAN 2.4 GHz | g-Mode | 20 MHz | 54 Mbps | Bottom/Middle/Top channel | PWR 8/12/8
- 6. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 7. Pre-scans were performed, and markers placed on the highest measured levels. The test receiver was set to:
 - Frequency range: 9 kHz-150 kHz: RBW: 1 kHz /VBW: 3 kHz
 - Frequency range: 150 kHz 30 MHz: RBW: 10 kHz /VBW: 30 kHz
 - Detector: Max-Peak detector
 - Trace Mode: Max Hold

ISSUE DATE: 09 NOVEMBER 2023

Transmitter Radiated Emissions (continued)

Test Setup:

Transmitter Radiated Emissions (continued)

Results: 802.11b / 20 MHz / 1 Mbps / Bottom Channel / PWR 12

Frequency (MHz)	Loop Antenna Orientation	MaxPeak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
0.101567	90° to the EUT	37.08	106.18	69.09	Complied
0.144995	0° to the EUT	34.88	103.24	68.36	Complied
0.288915	0° to the EUT	39.21	97.78	58.57	Complied

ISSUE DATE: 09 NOVEMBER 2023

Transmitter Radiated Emissions (continued)

Results: 802.11g / 20 MHz / 54 Mbps / Bottom Channel / PW	२ ८
---	-----

Frequency (MHz)	Loop Antenna Orientation	MaxPeak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
0.101496	90° to the EUT	36.55	106.18	69.63	Complied
0.144713	0° to the EUT	37.71	103.26	65.55	Complied

Plot: 9 kHz - 30 MHz: Results: 802.11g / 20 MHz / 54 Mbps / Bottom Channel / PWR 8

Transmitter Radiated Emissions (continued)

Frequency (MHz)	Loop Antenna Orientation	MaxPeak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
0.101496	90° to the EUT	36.11	106.18	70.07	Complied
0.144783	0° to the EUT	37.45	103.25	65.80	Complied

Plot: 9 kHz - 30 MHz: Results: 802.11g / 20 MHz / 54 Mbps / Middle Channel / PWR 12

Transmitter Radiated Emissions (continued)

Frequency (MHz)	Loop Antenna Orientation	MaxPeak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
0.101496	90° to the EUT	36.30	106.18	69.88	Complied
0.144854	0° to the EUT	36.34	103.25	66.91	Complied

Plot: 9 kHz - 30 MHz: Results: 802.11g / 20 MHz / 54 Mbps / Top Channel / PWR 8

ISSUE DATE: 09 NOVEMBER 2023

Transmitter Radiated Emissions (continued)

Test Summary:

Test Engineer:	Muhammad Faiq Khan	Test Date:	22 September 2023
Test Sample Serial Number:	1150003350		
Test Site Identification	SR 1/2		

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	FCC KDB 558074 Sections 8.5 & 8.6 referencing
	ANSI C63.10:2013 Sections 6.3 and 6.5
Frequency Range:	30 MHz to 1000 MHz

Environmental Conditions:

Temperature (°C):	23.8
Relative Humidity (%):	53.0

Note(s):

- 1. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 2. The radiated measurements were performed with EUT set to the following worst-case mode.
 - WLAN 2.4 GHz | b-Mode | 20 MHz | 1 Mbps | Bottom channel | PWR 12
 - WLAN 2.4 GHz | g-Mode | 20 MHz | 54 Mbps | Bottom/Middle/Top channel | PWR 8/12/8
- 3. Pre-scans were performed, and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
- 4. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 5. All other emissions shown on the pre-scan plot were investigated and found to be below the measurement system noise floor.

<u>Test Setup:</u>

ISSUE DATE: 09 NOVEMBER 2023

Transmitter Radiated Emissions (continued)

Results: 802.11b / 20 MHz / 1 Mbps / Bottom Channel / PWR 12

Frequency (MHz)	Antenna Polarization	MaxPeak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
747.750000	Horizontal	31.29	46.00	14.71	Complied

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11g / 20 MHz / 54 Mbps / Bottom Channel / PWR 8

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11g / 20 MHz / 54 Mbps / Middle Channel / PWR 12

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11g / 20 MHz / 54 Mbps / Top Channel / PWR 8

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

Transmitter Radiated Emissions (continued)

Test Summary:

Test Engineer:	Muhammad Faiq Khan	Test Date:	20 September 2023 & 27 September 2023
Test Sample Serial Number:	1150003350		
Test Site Identification	SR 1/2		

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	FCC KDB 558074 Sections 8.5 & 8.6 referencing
	ANSI C63.10 Sections 11.11 and 11.12
	ANSI C63.10:2013 Sections 6.3 and 6.6
Frequency Range:	1 GHz to 26.5 GHz

Environmental Conditions:

Temperature (°C):	23.2 to 24.0
Relative Humidity (%):	47.4 to .50.0

Notes:

- Pre-scans above 1 GHz were performed in a semi-anechoic chamber SR1/2 (Asset Number 1603665) with RF absorbers on the floor at a distance of 3 m. The EUT was placed at a height of 1.5 m above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 m above the test chamber floor, in line with the EUT. Final measurements above 1 GHz were performed in a semi-anechoic chamber SR1/2 (Asset Number 1603665) with absorber on the floor at a distance of 3 m. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 m to 4 m.
- 2. The radiated measurements were performed with the EUT set to the following worst-case mode.
 - WLAN 2.4 GHz | b-Mode | 20 MHz | 1 Mbps | Bottom channel | PWR 12
 - WLAN 2.4 GHz | g-Mode | 20 MHz | 54 Mbps | Bottom/Middle/Top channel | PWR 8/12/8
- 3. Pre-scans were performed, and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz the sweep time was set to auto.
- 4. The emissions shown at frequencies approximately 2.4 GHz to 2.4835 GHz on the 1 GHz to 18 GHz plots are the EUT fundamental for the tested channel.
- 5. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 6. In accordance with ANSI C63.10-2013 Section 5.3.3 & 6.5.3 measurements above 18 GHz were performed at closer distance (1 m); because at specified measurement distance (3m) for compliance the instrumentation noise floor was typically close to the radiated emission limit.
- For frequency range between 18 GHz and 25 GHz, no critical emissions were found. All emissions shown on the pre-scans were investigated and found to be below the noise floor of the measurement system

Transmitter Radiated Emissions (continued)

Test Setup:

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11b / 20 MHz / 1 Mbps / Bottom Channel / PWR 12

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11g / 20 MHz / 54 Mbps / Bottom Channel / PWR 8

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11g / 20 MHz / 54 Mbps / Middle Channel / PWR 12

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11g / 20 MHz / 54 Mbps / Top Channel / PWR 8

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11b / 20 MHz / 1 Mbps / Bottom Channel / PWR 12

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

Plot: 18 GHz - 26.5 GHz: 802.11b / 20 MHz / 1 Mbps / Bottom Channel / PWR 12

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11g / 20 MHz / 54 Mbps / Bottom Channel / PWR 8

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

Plot: 18 GHz - 26.5 GHz: 802.11g / 20 MHz / 54 Mbps / Bottom Channel / PWR 8

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11g / 20 MHz / 54 Mbps / Middle Channel / PWR 12

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

Plot: 18 GHz - 26.5 GHz: 802.11g / 20 MHz / 54 Mbps / Middle Channel / PWR 12

TEST REPORT VERSION 1.0

Transmitter Radiated Emissions (continued)

Results: 802.11g / 20 MHz / 54 Mbps / Top Channel / PWR 8

Frequency	Antenna	Peak Level	Limit	Margin	Result	
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)		
All emissions were below the level of the measurement system noise floor.						

Plot: 18 GHz – 26.5 GHz: 802.11g / 20 MHz / 54 Mbps / Top Channel / PWR 8

5.2.3. Transmitter Band Edge Radiated Emissions

Test Summary:

Test Engineer:	Muhammad Faiq Khan	Test Date:	21 September 2023 & 27 September 2023
Test Sample Serial Number:	1150003350		
Test Site Identification	SR 1/2		

FCC Reference:	Parts 15.247(d), 15.209(a) & 15.205(a)
	DTS emissions in non-restricted frequency bands: FCC KDB 558074 Section 8.5 referencing ANSI C63.10:2013 Sections 11.11
Test Method Used:	DTS emissions in restricted frequency bands: FCC KDB 558074 Section 8.6 referencing ANSI C63.10:2013 Sections 11.12
	ANSI C63.10:2013 Sections 6.10.4, 6.10.5

Environmental Conditions:

Temperature (°C):	23.8 to 24.8
Relative Humidity (%):	45.1 to 52.1

Note(s):

- 1. The measurements were in a semi-anechoic chamber SR1/2 (Asset Number 1603665) with RF absorbers on the floor at a distance of 3 m. The EUT was placed at a height of 1.5 m above the test chamber floor in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 m to 4 m
- As the lower band edge falls within a non-restricted band, measurements were performed in accordance with FCC KDB 558074 Section 8.5 referencing ANSI C63.10 Section 11.11. Since maximum conducted (Peak) output power was previously measured in accordance with ANSI C63.10 Section 11.11.1(a) lower band edge measurement was performed with a peak detector and the -20 dBc limit applied.
- 3. As the lower band edge falls within a non-restricted band, only peak measurements are required. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for 300 sweeps in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. Marker frequencies and levels were recorded.
- 4. The restricted band peak measurements were performed in accordance with ANSI C63.10 Section 11.12.2.4.
- 5. As the EUT continuous transmission of the EUT ($D \ge 98\%$) cannot be achieved and the duty cycle is constant (duty cycle variations are less than ±2%), the restricted band average measurements were performed in accordance with ANSI C63.10 Section 11.12.2.5.2.
- 6. As the upper band edge falls within a restricted band both peak and average measurements were recorded by placing a marker at the edge of the band. For peak measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. For average measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A RMS detector in power averaging mode was used. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded.

Transmitter Band Edge Radiated Emissions (continued)

Note(s): (continued)

- 7. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with their respective detectors. Markers were placed on the highest point on each trace.
- 8. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- **As the EUT was transmitting continuously with a Duty Cycle of ≤ 98 %, following Duty Cycle Correction Factor were added to all average measurements. Duty Cycle Correction Details (as mentioned below):
 - 802.11n(HT40) I MCS0: 97.67 % (duty cycle variations are less than ±2%). Therefore, a Duty Cycle Correction Factor of 0.10 dB was added to all average measurements
 - 802.11ax(HT40) I MCS0: 40.12 % (duty cycle variations are less than ±2%). Therefore, a Duty Cycle Correction Factor of 3.97 dB was added to all average measurements

to compute the corrected average values of the emissions that would have been measured had the test been performed at 100% Duty Cycle.

Test Setup:

Transmitter Band Edge Radiated Emissions (Continued)

Results: AC-DC Power Supply / 802.11b / 20 MHz / 2 Mbps / PWR 12

Results: Lower Band Edge / Peak

Frequency (MHz)	Peak Level (dBµV/m)	-20 dBc Limit (dBµV/m)	Margin (dB)	Result
2397.00	47.68	75.66	27.98	Complied
2400.00	39.52	75.66	36.14	Complied

Results: Lower Band Edge / 2310 to 2390 MHz Restricted Band / Peak

Frequency	Peak Level	Peak Limit	Margin	Result
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	
2387.40	43.58	74.00	30.42	Complied

Results: Lower Band Edge / 2310 to 2390 MHz Restricted Band / Average

Frequency	Average Level	Average Limit	Margin	Result
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	
2389.72	31.73	54.00	22.27	Complied

Results: Upper Band Edge / Peak

Frequency (MHz)	Peak Level (dBμV/m)	Peak Limit (dBμV/m)	Margin (dB)	Result
2483.50	50.46	74.00	23.54	Complied
2483.58	52.20	74.00	21.80	Complied

Results: Upper Band Edge / Average

Frequency (MHz)	Peak Level (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)	Result
2483.50	40.90	54.00	13.10	Complied
2483.58	40.71	54.00	13.29	Complied

TEST REPORT VERSION 1.0

Transmitter Band Edge Radiated Emissions (Continued) Results: AC-DC Power Supply / 802.11b / 20 MHz / 2 Mbps / PWR 12

Lower Band Edge Peak Measurement

MultiView Image: Control Science X Perfected 10000 Science 512 Sto 18000 1914t 5 Perfected 10000 Science 512 Sto 18000 1914t 5 Perfected 10000 Science 100 Store 0 Image: Store 1 Store	
Part to 2000 Gb, or Officer 512 GB = Barry 1914c Perception 1200/200 Prequency 2.3500000 G Input 120 PS 0n Value 300/200 Frequency 2.3500000 G 1 Frequency 2 0n Value 300/200 Frequency 2.3500000 G 2 Barry 0n Value 300/200 Silk Versu 300/200 2 Barry 0 0.0000 G 2.389/700 G 10 Barry 0 0 0.0000 G 3 Barry 0 0 0 10 Barry 0 0 0 0 10 Barry 0 0 0	iew 🎫 Receive
If Frequency Sweep 0.18 West 3 Em is a Milling 4.55 dt 2.88 V/30 C 2.88 V/30 C 0.8 // 2.98 V/30 C <t< th=""><th>vel 100.00 d5,// C 20 dB S 1 40 P</th></t<>	vel 100.00 d5,// C 20 dB S 1 40 P
NIIII 1000000000000000000000000000000000000	ency Sweep
10 5.07 10 5.07 2.3897200 6 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07 10 5.07	
10 Sec. 10 Sec	
10 5.07 10 5.000 fbp	
a la constativo en esta de la constativita de la constativita de la constativa de la constativa de la constativ	
	and the second
33 (6,3)	
v1236.0k	
CF 2.35 GHz 1001 pts 8.0 VHz/ Span 80.0 M	GHz
- Measuring 14:00:01 • •	-
D4:05:02 FH 09/21/2023	2 PH 09/21/2023

Restricted Band Edge Measurement

Result: Pass

Upper Band Edge Measurement

Δ

Transmitter Band Edge Radiated Emissions (Continued)

Results: AC-DC Power Supply / 802.11n / 40 MHz / MCS0 / PWR 8

Results: Lower Band Edge / Peak

Frequency (MHz)	Peak Level (dBµV/m)	-20 dBc Limit (dBµV/m)	Margin (dB)	Result
2398.30	44.60	69.43	24.83	Complied
2400.00	39.05	69.43	30.38	Complied

Results: Lower Band Edge / 2310 to 2390 MHz Restricted Band / Peak

Frequency	Peak Level	Peak Limit	Margin	Result
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	
2389.56	51.10	74.00	22.90	Complied

Results: Lower Band Edge / 2310 to 2390 MHz Restricted Band / Average

Frequency (MHz)	Average Level (dBµV/m)	Duty Cycle Correction Factor (dB)	Corrected Average Level (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)	Result
2389.96	36.17	0.10	36.27**	54.00	17.73	Complied

Results: AC-DC Power Supply / 802.11ax / 40 MHz / MCS0 / PWR 5

Results: Upper Band Edge / Peak

Frequency (MHz)	Peak Level (dBµV/m)	Peak Limit (dBµV/m)	Margin (dB)	Result
2483.50	51.94	74.00	22.06	Complied
2483.90	53.35	74.00	20.65	Complied

Results: Upper Band Edge / Average

Frequency (MHz)	Peak Level (dBµV/m)	Duty Cycle Correction Factor (dB)	Corrected Average Level (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)	Result
2483.50	33.37	3.97	37.34**	54.00	16.66	Complied
2487.20	33.85	3.97	37.82**	54.00	16.18	Complied

Transmitter Band Edge Radiated Emissions (Continued) Results: AC-DC Power Supply / 802.11n / 40 MHz / MCS0 / PWR 8

Lower Band Edge Peak Measurement

Restricted Band Edge Measurement

Result: Pass

Results: AC-DC Power Supply / 802.11ax / 40 MHz / MCS0 / PWR 5

Upper Band Edge Measurement

6. Measurement Uncertainty

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Confidence Level (%)	Calculated Uncertainty	
Radiated Spurious Emissions	95%	±3.10 dB	
Band Edge Radiated Emissions	95%	±3.10 dB	
Transmitter Duty Cycle	95%	±3.4%	

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

TEST REPORT VERSION 1.0

7. Used equipment

Test site: SR 1/2

ID	Manufacturer	Туре	Model	Serial	Calibration Date	Cal. Cycle (months)
1	Rohde & Schwarz	Antenna, Loop	HFH2-Z2	831247/012	18/07/2023	36
377	BONN Elektronik	Amplifier, Low Noise Pre	BLMA 0118-1A	025294B	18/07/2023	12
423	Bonn Elektronik	Amplifier, Low Noise Pre	BLMA 1840-1A	55929	18/07/2023	12
460	Deisel	Turntable	DT 4250 S	n/a	n/a	n/a
465	Schwarzbeck	Antenna, Trilog Broadband	VULB 9168	9168-240	02/09/2020	42
496	Rohde & Schwarz	Antenna, log periodical	HL050	100297	22/08/2022	24
588	Maturo	Controller	NCD	029/7180311	n/a	n/a
591	Rohde & Schwarz	Receiver	ESU 40	100244/040	13/07/2023	12
669	Rohde & Schwarz	EMI Test Receiver	ESW 44	103087	13/07/2023	18
607	Schwarzbeck	Antenna broadband horn antenna	BBHA 9170	9170-561	15/10/2019	48
608	Rohde & Schwarz	Switch Matrix	OSP 120	101227	lab verification	n/a
628	Maturo	Antenna mast	ntenna mast CAM 4.0-P 224/19590716		n/a	n/a
629	Maturo	Kippeinrichtung	KE 2.5-R-M MAT002 n/a		n/a	n/a
-/-	Testo	Thermo-Hygrometer 608-H1 01		01	lab verification	n/a
328	SPS	AC/DC power distribution system	PAS 5000	A2464 00/2 0200	lab verification	n/a
1603665	Siemens Matsushita Components	semi-anechoic chamber SR1/ 2	-/-	B83117-A1421- T161	n/a	n/a
681	Maturo	Antenna mast, tilting	BAM4.5-P	402/0718.1	n/a	n/a

ISSUE DATE: 09 NOVEMBER 2023

8. Report Revision History

Version Number	Revision Details			
	Page No(s)	Clause	Details	
1.0	44	-	Initial Version	

--- END OF REPORT ---

