

ANTENNA MEASUREMENT REPORT 8000-6220126-230206-01

Characterisation of two

WLan Antennas

Ordered by

Robert Bosch Car Multi Media GmbH

Robert-Bosch-Str. 200 D-31132 Hildesheim Germany

perfomed at

IMST GmbH Test Centre Antennas Carl-Friedrich-Gauss-Str. 2-4 D-47475Kamp-Lintfort GERMANY

1 TABLE OF CONTENTS

1	Tc	able of Contents	2
2	Fig	gures	3
3	Тс	ables	4
4	G	eneral Information	5
5	Pr	eface	6
6	De	escription and Mounting of the DUTs	7
	6.1	DUT Type	7
	6.2	Measurement environment	
	6.3	Connection description	
7	3[D-Radiation Pattern and Matching Measurement	9
	7.1	Subject	
	7.2	Used measurement devices	
	7.3	Pattern Measurement Setup	10
	7.4	Coordinate System during Measurement	11
	7.5	Matching measurement	12
	7.6	Far field measurement report, results and accuracy	13
8	Fc	ar Field Measurement Report	13
9	Re	esults	14
	9.1	Max. gain and efficiency	
	9.2	Matching diagrams of the W701 antenna	15
	9.3	Matching diagram of the W702 antenna	
	9.4	Pattern diagrams of the W701 antenna	
	9.5	Pattern diagrams W702 antenna	25
	9.6	Intensity diagrams of the W701 antenna	31
	9.7	Intensity diagrams of the W702 antenna	49

I M S T

2 FIGURES

Figure 6-1: DUT with connector	7
Figure 6-2: Mounting of the DUT.	8
Figure 7-1: Standard setup for pattern measurement.	10
Figure 7-2: Pattern measurement setup	10
Figure 7-3: Theta/Phi coordinate system	11
Figure 7-4: Position of the DUT in the Theta/phi coordinate system	11
Figure 7-5: Matching measurement setup	12
Figure 9-1: Matching Diagram, W701 @ 2 4 GHz	15
Figure 9-2: Matching Diagram, W701 @ 5 GHz	16
Figure 9-3: Matching Diagram, W702 @ 2 4 GHz	17
Figure 9-4: Matching Diagram, W702 @ 5 GHz	18
Figure 9-5: F-Theta/F-Phi/Sum Polar Diagram W701 @ 2412 MHz	19
Figure 9-6: E-Theta/E-Phi/Sum Polar Diagram W701 @ 2448 MHz	20
Figure 9-7: E-Theta/E-Phi/Sum Polar Diagram W701 @ 2484 MHz	21
Figure 9-8: E-Theta/E-Phi/Sum Polar Diagram W701 @ 5180 MHz	22
Figure 9-9: E-Theta/E-Phi/Sum Polar Diagram W701 @ 5502 5 MHz	22
Figure 9 10: E Theta/E Phi/Sum Polar Diagram W701 @ 5825 MHz	20
Figure 9 11: E Theta/E Phi/Sum Polar Diagram, W702 @ 2012 MHz	24
Figure 9-11: E-Theta/E-Fhi/Sum Polar Diagram, W702 @ 2412 Milz	25
Figure 0.13, E Thata/E Phi/Sum Polar Diagram, W/702 @ 2440 Miriz	20
Figure 9-15: L-Theta/E-Phi/Sum Polar Diagram, W702 @ 2464 Miriz	27
Figure 9-14: L-Theld/L-Fhi/Sum Foldr Didgram, W/02 @ 5160 Mirz	20
Figure 9-15: L-Thela/L-Fhi/Sum Foldr Diagram, W/02 @ 5502.5 Miliz	27
Figure 9-10: E-Theta/E-Phi/Sum Polar Diagram, W702 @ 5625 MITZ	3U 21
Figure 9-17: E-Theta Intensity Diagram, W701 @ 2412 MIDZ	। ১০
	১∠ ১১
Figure 9-19: Sum intensity Diagram, $W/01 \oplus 2412 \text{ MHz}$	<u></u> ব্ব
Figure 9-20: E-Theta Intensity Diagram, $W/UT @ 2448 M \Pi Z$	34
Figure 9-21: E-Phi Intensity Diagram, W/U1 @ 2448 MHz	35
Figure 9-22: Sum Intensity Diagram, $W/01 @ 2448 MHz$	30
Figure 9-23: E-Thefa Intensity Diagram, $W/UT @ 2484$ MHz	3/
Figure 9-24: E-Phi Intensity Diagram, W/01 @ 2484 MHz	38
Figure 9-25: Sum Intensity Diagram, W/01 @ 2484 MHz	39
Figure 9-26: E-Theta Intensity Diagram, W/01 @ 5180 MHz	40
Figure 9-27: E-Phi Intensity Diagram, W/01 @ 5180 MHz	41
Figure 9-28: Sum Intensity Diagram, W/01 @ 5180 MHz	42
Figure 9-29: E-Theta Intensity Diagram, W/01 @ 5502.5 MHz	43
Figure 9-30: E-Phi Intensity Diagram, W/01 @ 5502.5 MHz.	44
Figure 9-31: Sum Intensity Diagram, W/01 @ 5502.5 MHz	45
Figure 9-32: E-Theta Intensity Diagram, W701 @ 5825 MHz	46
Figure 9-33: E-Phi Intensity Diagram, W701 @ 5825 MHz	47
Figure 9-34: Sum Intensity Diagram, W701 @ 5825 MHz	48
Figure 9-35: E-Theta Intensity Diagram, W702 @ 2412 MHz	49
Figure 9-36: E-Phi Intensity Diagram, W702 @ 2412 MHz	50
Figure 9-37: Sum Intensity Diagram, W702 @ 2412 MHz	51
Figure 9-38: E-Theta Intensity Diagram, W702 @ 2448 MHz	52
Figure 9-39: E-Phi Intensity Diagram, W702 @ 2448 MHz	53
Figure 9-40: Sum Intensity Diagram, W702 @ 2448 MHz	54
Figure 9-41: E-Theta Intensity Diagram, W702 @ 2484 MHz	55
Figure 9-42: E-Phi Intensity Diagram, W702 @ 2484 MHz	56
Figure 9-43: Sum Intensity Diagram, W702 @ 2484 MHz	57
Figure 9-44: E-Theta Intensity Diagram, W702 @ 5180 MHz	58
Figure 9-45: E-Phi Intensity Diagram, W702 @ 5180 MHz	59
Figure 9-46: Sum Intensity Diagram, W702 @ 5180 MHz	60
Figure 9-47: E-Theta Intensity Diagram, W702 @ 5502.5 MHz	61

Figure 9-48: E-Phi Intensity Diagram, W702 @ 5502.5 MHz	62
Figure 9-49: Sum Intensity Diagram, W702 @ 5502.5 MHz	63
Figure 9-50: E-Theta Intensity Diagram, W702 @ 5825 MHz	64
Figure 9-51: E-Phi Intensity Diagram, W702 @ 5825 MHz	65
Figure 9-52: Sum Intensity Diagram, W702 @ 5825 MHz	66

3 TABLES

Table 7-1: Devices used for calibration and measurement	9
Table 8-1: Far field measurement report	13
Table 9-1: S11, efficiency and maximum gain of the W701 at WLan 2.4 GHz	14
Table 9-2: \$11, efficiency and maximum gain of the W701 at WLan 5GHz	14
Table 9-3: \$11, efficiency and maximum gain of the W702 at WLan 2.4 GHz	14
Table 9-4: \$11, efficiency and maximum gain of the W702 at WLan 5 GHz	14

4 GENERAL INFORMATION

Customer	:	Robert Bosch Car Multi Media GmbH
		Mr. Ralf Eimertenbrink
		Robert-Bosch-Str. 200
		D-31132 Hildesheim
		Germany

Devices under test (DUT): Metal case equipped with two WLan antennas

Subject: Determination of the Gain, the 3D antenna pattern, the efficiency and the matching.

Date of measurement: 02. - 06.02.2023

Performed: Stefan Weitz

Quotation-No.: 5220070-B

Order-No.: 4503413016

Project-No.: 8000_6220126

Department: Antennas & EM Modelling

Responsible:

+49-2842-981-337

Aline Friedrich

Performed: Star Whit

Reviewed:....

Stefan Weitz

Test engineer

Aline Friedrich Head of laboratory

The test results are only related to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

5 PREFACE

In this measurement campaign two dual band WLan antennas in a metal case have been measured as described in the following.

The patterns of the DUTs (Devices Under Test) have been measured three-dimensional at WLan frequencies. The measurements have been done with two orthogonal polarisations of the measurement antenna. After the measurement the efficiencies of the DUT has been determined.

The results are documented as tables and diagrams in chapter 9.

<u>Copyright Notice & Disclaimer</u>: No part of this test report may be reproduced without written permission of IMST GmbH. The test results herein only refer to the tested sample(s). IMST GmbH cannot be made responsible for any generalizations or conclusions drawn from the test results presented herein concerning further samples of the tested device. Modification of the tested sample(s) leads to invalidity of this report.

M S

6 DESCRIPTION AND MOUNTING OF THE DUTS

6.1 DUT Type

The DUT consisted of a metal case with two dual band WLan antennas and an inseparably mounted RF-cable with a SMA male connector. The antennas operates in the 2.4 GHz and 5 GHz WLan frequency range. See Figure 6-1.

Figure 6-1: DUT with connector

Because of the inseparably mounted RF-cable antenna and cable has been treated as one unit.

The test results are only related to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

6.2 Measurement environment

The measurements have been performed in the air conditioned and completely shielded anechoic chamber (Range II) B83117-A1431-T161 of IMST GmbH. This minimizes measurement errors caused by variations in temperature, disturbing signals and reflections.

Movement of the DUT has been done by a "Roll over Azimuth"-positioner. The Mast that carries the roll axis is made from Kevlar[™]. The accuracy of the azimuth positioner is 0.03°. During measurement the azimuth positioner is covered with absorbers.

The following figure shows the mounting of the DUT for the measurement.

Figure 6-2: Mounting of the DUT.

During measurement the DUT was mounted on a ROHACELL® bracket. ROHACELL® is a rigid foam material which has nearly the same ϵ_R as air.

The distance between the measurement antenna and the rotation centre of the DUT was ca. 2.23 m during measurement (Far field conditions).

6.3 Connection description

To minimize errors caused by mismatching the feeding cable was equipped with an attenuator with a very low VSWR. The SMA connector of the attenuator was the reference plane for the pattern measurement.

During measurement no actions were taken to suppress surface waves.

7 3D-RADIATION PATTERN AND MATCHING MEASUREMENT

7.1 Subject

The three-dimensional antenna pattern measurements with two orthogonal polarisations of the measurement antenna enable the determination of the gain and the efficiency.

The matching measurement shows the S_{11} of the DUT over measured frequency range.

7.2 Used measurement devices

All calibrations and measurements have been done with the devices that are stated in the following table. The date of the last calibration is shown in the column "Cal. Date".

Туре	Device	Ser. No.	Cal. Date
ZVL	Network/Spectrum analyser	10114	07.2019
Rohde & Schwarz	9 kHz – 13.6 GHz		
SH800	Dual ridged Horn (Ref. Ant.)	157	08.2019
Satimo	0.8 -12.0GHz		
SH800	Dual ridged Horn (Meas. Ant.)	78	08.2019
Satimo	0.8 -12.0GHz		
SH800	Dual ridged Horn (Meas. Ant.)	77	08.2019
Satimo	0.8 -12.0GHz		
B83117-A1431-T161	Anechoic Chamber	Project No. 007-	N/A
Siemens Matsushita		A34-089/99A	
AL-DBDR-3G/AL-560	Roll-over-azimuth positioner	434	N/A
Orbit/FR			
AL-4164-MC	Controller	25	N/A
Orbit/FR			
DARIC 2.0	Control and measurement software		N/A
IMST			
Rohacell bracket	Free space mounting		N/A
\$8150	2 Port Vector Network analyzer	21280020	08.2021
Copper Mountain	100 kHz - 18 GHz		
02CK10A-150	Calibration Kit	U3901	07.2019
Rosenberger	DC – 40 GHz		

Table 7-1: Devices used for calibration and measurement

Meas.-Report_Bosch_Car_Multi_Media_8000_6220126_2300206_01.docx/24.02.2023/V1.0\SW

7.3 Pattern Measurement Setup

Figure 7-1 shows the principle setup for the pattern measurement.

Figure 7-1: Standard setup for pattern measurement.

Figure 7-2 shows the mechanical pattern measurement setup. It is a standard setup for small antenna measurement. Additional setup information could be found in chapter 6.2.

Figure 7-2: Pattern measurement setup.

For calibration and pattern measurement broad band horns type SH800 from Satimo (Microwave Vision Company, MVC) has been used.

Before the calibration was done the position of the measurement and the calibration antenna was checked by a positioning laser. The same procedure was used for the positioning of the DUT.

Meas.-Report_Bosch_Car_Multi_Media_8000_6220126_2300206_01.docx/24.02.2023/V1.0\SW

7.4 Coordinate System During Measurement

For the measurements the theta/phi coordinate system has been used as shown in Figure 7-3. Also the movement of the measurement antenna (MA) with its polarisations are shown.

Figure 7-3: Theta/Phi coordinate system.

In Figure 7-4 the position of the DUT in the theta/phi coordinate system is shown which has been used for measurement and evaluation.

Figure 7-4: Position of the DUT in the theta/phi coordinate system

M S

7.5 Matching measurement

The following picture shows the setup of the matching (S_{11}/S_{22}) measurement.

Figure 7-5: Matching measurement setup.

During matching measurement the DUT was located on a Styrofoam block. This minimizes external influence of the measurement results. The matching measurement was performed over a frequency range from 1000 MHz up to 7000 MHz with a resolution of 24001 points. The 2-port NWA S5810 from Copper Mountain was calibrated with a full-two-port calibration. The calibration was performed with the 02CK10-ARPC-2.92 calibration kit from Rosenberger.

Frequencies / MHz

1000 - 7000

2412 - 2484

5180 - 5825

24001 points

3 points

3 points

7.6 Far field measurement report, results and accuracy

The "Far field measurement report" in chapter 8 gives an overview about the performed measurements.

The results of the 3d antenna pattern measurement, the efficiency evaluation and the matching measurement are shown in chapter 9.

The accuracy of the measurement results has been specified with ± 1 dB.

8 FAR FIELD MEASUREMENT REPORT

FF-Measurement-Report

	51. IVa	
	S2: Bosch_CMM.dam	f2:
Operator: SW		f3:
Date from: 03 06.02.2023		
Project: 8000_6220126		
Object: Two dual band WLan antennas		
Temp: 23°C +/-1°		

	· · · · · · · · · · · · · · · · · · ·		MeasAxis	Step-Axis	5	ĺ	S	
No.	File	Frequency /MHz	Roll/°	Azimuthl/°	Polarisation	Remarks	stupfile	
1	Bosch_Matching.s2p	f1	n/a	n/a	n/a			
2	20230202_114824_Dualband_WLan_W701.cal.dmdf	f2, f3	0/+355 (5)	0/+180 (5)	Theta/Phi		S2	
3	20230202_133426_Dualband_WLan_W702.cal.dmdf		"	"	II.		"	

Setup-Files

Table 8-1: Far field measurement report

9 RESULTS

9.1 Max. gain and efficiency

The following table shows the matching and efficiency values of the DUT. Also measurement angles with maximum gain values are shown.

	f	S11	η	Max. G	Max. Gain at Polarisation Θ			ain at Polarisa	ation Φ	Max. Gain absolut		
	MHz	dB	%	dBi	Θ[°]	Φ[°]	dBi	Θ[°]	Φ[°]	dBi	Θ[°]	Φ[°]
W701 Wlan 2.4 GHz	2412	-9.08	25.8	-2.0	5	270	-1.2	25	360	-1.0	25	345
	2448	-15.70	31.8	-1.4	5	275	-0.4	35	355	-0.3	35	355
	2484	-8.89	26.0	-2.5	5	275	-1.6	30	355	-1.4	60	60

Table 9-1: S11, efficiency and maximum gain of the W701 at WLan 2.4 GHz.

	f	S11	η	Max. Gain at Polarisation Θ			Max. G	ain at Polarisa	ation Φ	Max. Gain absolut			
	MHz	dB	%	dBi	Θ[°]	Φ[°]	dBi	Θ[°]	Φ[°]	dBi	Θ[°]	Φ[°]	
W701 Wlan 5GHz	5180	-20.57	45.5	1.7	35	70	-0.6	95	70	3.1	35	70	
	5502.5	-8.77	32.9	2.0	60	35	-1.0	60	35	3.1	40	60	
	5825	-8.63	18.1	-0.5	40	65	-3.3	65	30	0.5	50	50	

Table 9-2: S11, efficiency and maximum gain of the W701 at WLan 5GHz.

	f	S11	η	Max. G	ain at Polarisa	ation Θ	Max. G	ain at Polarisa	ation Φ	Max. Gain absolut			
	MHz	dB	%	dBi	Θ[°]	Φ[°]	dBi	Θ[°]	Φ[°]	dBi	Θ[°]	Φ[°]	
W702 Wlan 2.4 GHz	2412	-9.90	41.2	-0.1	0	275	1.2	35	360	1.2	35	5	
	2448	-12.00	47.0	0.4	0	270	1.6	25	360	1.6	25	360	
	2484	-5.09	35.0	-1.1	0	265	0.0	40	360	0.0	60	295	

Table 9-3: S11, efficiency and maximum gain of the W702 at WLan 2.4 GHz.

	f	S11	η	Max. G	ain at Polarisa	ation O	Max. G	ain at Polarisa	ation Φ	Max. Gain absolut		
	MHz	dB	%	dBi	Θ[°]	Φ[°]	dBi	Θ[°]	Φ[°]	dBi	Θ[°]	Φ[°]
W702 Wlan 5GHz	5180	-10.97	69.7	3.0	50	105	0.5	45	360	3.9	55	75
	5502.5	-15.67	72.6	4.3	45	90	1.3	55	25	5.4	50	65
	5825	-6.20	44.7	2.4	50	75	0.0	60	25	3.4	50	55

Table 9-4: S11, efficiency and maximum gain of the W702 at WLan 5 GHz.

9.2 Matching diagrams of the W701 antenna

Figure 9-1: Matching Diagram, W701 @ 2.4 GHz

Figure 9-2: Matching Diagram, W701 @ 5 GHz

9.3 Matching diagram of the W702 antenna

Figure 9-3: Matching Diagram, W702 @ 2.4 GHz

The test results are only related to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Figure 9-4: Matching Diagram, W702 @ 5 GHz

6. February 2023 Page 19 of 66

9.4 Pattern diagrams of the W701 antenna

Figure 9-5: E-Theta/E-Phi/Sum Polar Diagram, W701 @ 2412 MHz

Figure 9-6: E-Theta/E-Phi/Sum Polar Diagram, W701 @ 2448 MHz

Figure 9-7: E-Theta/E-Phi/Sum Polar Diagram, W701 @ 2484 MHz

Figure 9-8: E-Theta/E-Phi/Sum Polar Diagram, W701 @ 5180 MHz

Figure 9-9: E-Theta/E-Phi/Sum Polar Diagram, W701 @ 5502.5 MHz

Figure 9-10: E-Theta/E-Phi/Sum Polar Diagram, W701 @ 5825 MHz

6. February 2023 Page 25 of 66

9.5 Pattern diagrams W702 antenna

90°

Figure 9-11: E-Theta/E-Phi/Sum Polar Diagram, W702 @ 2412 MHz

Figure 9-12: E-Theta/E-Phi/Sum Polar Diagram, W702 @ 2448 MHz

Figure 9-13: E-Theta/E-Phi/Sum Polar Diagram, W702 @ 2484 MHz

Figure 9-14: E-Theta/E-Phi/Sum Polar Diagram, W702 @ 5180 MHz

Figure 9-15: E-Theta/E-Phi/Sum Polar Diagram, W702 @ 5502.5 MHz

Figure 9-16: E-Theta/E-Phi/Sum Polar Diagram, W702 @ 5825 MHz

Bosch, WLan antennas

9.6 Intensity diagrams of the W701 antenna

Figure 9-17: E-Theta Intensity Diagram, W701 @ 2412 MHz

Figure 9-18: E-Phi Intensity Diagram, W701 @ 2412 MHz

Figure 9-19: Sum Intensity Diagram, W701 @ 2412 MHz

Figure 9-20: E-Theta Intensity Diagram, W701 @ 2448 MHz

Figure 9-21: E-Phi Intensity Diagram, W701 @ 2448 MHz

Figure 9-22: Sum Intensity Diagram, W701 @ 2448 MHz

Figure 9-23: E-Theta Intensity Diagram, W701 @ 2484 MHz

Figure 9-24: E-Phi Intensity Diagram, W701 @ 2484 MHz

Figure 9-25: Sum Intensity Diagram, W701 @ 2484 MHz

Figure 9-26: E-Theta Intensity Diagram, W701 @ 5180 MHz

Figure 9-27: E-Phi Intensity Diagram, W701 @ 5180 MHz

Bosch, WLan antennas

Figure 9-28: Sum Intensity Diagram, W701 @ 5180 MHz

The test results are only related to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Figure 9-29: E-Theta Intensity Diagram, W701 @ 5502.5 MHz

Figure 9-30: E-Phi Intensity Diagram, W701 @ 5502.5 MHz

Figure 9-31: Sum Intensity Diagram, W701 @ 5502.5 MHz

Bosch, WLan antennas

Figure 9-32: E-Theta Intensity Diagram, W701 @ 5825 MHz

Figure 9-33: E-Phi Intensity Diagram, W701 @ 5825 MHz

Figure 9-34: Sum Intensity Diagram, W701 @ 5825 MHz

Bosch, WLan antennas

9.7 Intensity diagrams of the W702 antenna

Figure 9-35: E-Theta Intensity Diagram, W702 @ 2412 MHz

Figure 9-36: E-Phi Intensity Diagram, W702 @ 2412 MHz

Figure 9-37: Sum Intensity Diagram, W702 @ 2412 MHz

Figure 9-38: E-Theta Intensity Diagram, W702 @ 2448 MHz

Figure 9-39: E-Phi Intensity Diagram, W702 @ 2448 MHz

Figure 9-40: Sum Intensity Diagram, W702 @ 2448 MHz

Figure 9-41: E-Theta Intensity Diagram, W702 @ 2484 MHz

Figure 9-42: E-Phi Intensity Diagram, W702 @ 2484 MHz

Figure 9-43: Sum Intensity Diagram, W702 @ 2484 MHz

Figure 9-44: E-Theta Intensity Diagram, W702 @ 5180 MHz

Figure 9-45: E-Phi Intensity Diagram, W702 @ 5180 MHz

Figure 9-46: Sum Intensity Diagram, W702 @ 5180 MHz

Figure 9-47: E-Theta Intensity Diagram, W702 @ 5502.5 MHz

Figure 9-48: E-Phi Intensity Diagram, W702 @ 5502.5 MHz

Figure 9-49: Sum Intensity Diagram, W702 @ 5502.5 MHz

Figure 9-50: E-Theta Intensity Diagram, W702 @ 5825 MHz

Figure 9-51: E-Phi Intensity Diagram, W702 @ 5825 MHz

Figure 9-52: Sum Intensity Diagram, W702 @ 5825 MHz

