

# **TEST REPORT**

| Client Information:   |                                                                           |
|-----------------------|---------------------------------------------------------------------------|
| Applicant:            | Preferred Security Components Inc. of PA                                  |
| Applicant add.:       | 510 West King Street, Shippensbrug, PA 17257 USA                          |
| Manufacturer:         | Preferred Security Components Inc. of PA                                  |
| Manufacturer add.:    | 510 West King Street, Shippensbrug, PA 17257 USA                          |
| Product Information:  |                                                                           |
| Product Name:         | CW Sounder                                                                |
| Model No./HVIN:       | CW-SOU                                                                    |
| Brand Name:           | Cartell                                                                   |
| FCC ID:               | 2AUXCCWSOU                                                                |
| IC:                   | 25651-CWSOU                                                               |
| Applicable standards: | FCC 47 CFR PART 15 SUBPART C 15.247<br>RSS-247 Issue 2<br>RSS-Gen Issue 5 |

Prepared By:

#### Dongguan Yaxu (AiT) Technology Limited

|                  | No.22, Jinqianling 3rd Street, Jitigang, Huangjiang,Dongguan, |                                          |  |  |  |
|------------------|---------------------------------------------------------------|------------------------------------------|--|--|--|
|                  | Guangdong, China                                              |                                          |  |  |  |
|                  | Tel.: +86-769-8202 0499                                       | Fax.: +86-769-8202 0495                  |  |  |  |
| Date of Receipt: | Aug. 13, 2022                                                 | Date of Test: Sep. 05, 2022~Sep. 16,2022 |  |  |  |
| Date of Issue:   | Sep. 16, 2022                                                 | Test Result: Pass                        |  |  |  |

This device described above has been tested by Dongguan Yaxu (AiT) Technology Limited and the test results show that the equipment under test (EUT) is in compliance with the FCC/ISED requirements. And it is applicable only to the tested sample identified in the report.

Note: This report shall not be reproduced except in full, without the written approval of Dongguan Yaxu (AiT) Technology Limited, this document may be altered or revised by Dongguan Yaxu (AiT) Technology Limited, personal only, and shall be noted in the revision of the document. This test report must not be used by the client to claim product endorsement.

Reviewed by: <u>Gimba Huang</u> Approved by: <u>Seal-Chen</u> Simba Huang

Seal.chen

Dongguan Yaxu (AiT) Technology Limited No. 22, Jinqianling Third Street, Jitigang, Huangjiang, Dongguan, Guangdong, China.



Page

## 1 Contents

| COVE                                                                                                  | R PAGE                                                                                                                                                                                                                                                                                   |        |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1 C                                                                                                   | ONTENTS                                                                                                                                                                                                                                                                                  | 2      |
| 2 TI                                                                                                  | EST SUMMARY                                                                                                                                                                                                                                                                              | 4      |
| 2.1<br>2.2                                                                                            | STATEMENT OF THE MEASUREMENT UNCERTAINTY<br>MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                      |        |
| 3 TI                                                                                                  | EST FACILITY                                                                                                                                                                                                                                                                             | 5      |
| 3.1<br>3.2<br>3.3                                                                                     | DEVIATION FROM STANDARD                                                                                                                                                                                                                                                                  | 5      |
| 4 G                                                                                                   | ENERAL INFORMATION                                                                                                                                                                                                                                                                       | 6      |
| 4.1<br>4.2<br>4.3<br>4.4                                                                              | GENERAL DESCRIPTION OF EUT<br>TEST FREQUENCIES<br>EUT PERIPHERAL LIST<br>TEST PERIPHERAL LIST                                                                                                                                                                                            | 7      |
| 5 D                                                                                                   | ESCRIPTION OF TEST CONDITIONS                                                                                                                                                                                                                                                            | 8      |
| 5.1                                                                                                   | E.U.T. OPERATION                                                                                                                                                                                                                                                                         | 8      |
| 6 E                                                                                                   | QUIPMENTS LIST FOR ALL TEST ITEMS                                                                                                                                                                                                                                                        | 9      |
| 7 TI                                                                                                  | EST RESULT                                                                                                                                                                                                                                                                               | 10     |
| <ul> <li>7.1</li> <li>6.1</li> <li>7.2</li> <li>7.3</li> <li>6.2</li> <li>7.4</li> <li>7.5</li> </ul> | ANTENNA REQUIREMENT<br>MAXIMUM CONDUCTED OUTPUT PEAK POWER MEASUREMENT<br>6 DB SPECTRUM BANDWIDTH MEASUREMENT<br>POWER SPECTRAL DENSITY<br>CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST<br>FIELD STRENGTH OF FUNDAMENTAL& FIELD STRENGTH OF UNWANTED EMISSIONS<br>OCCUPIED BANDWIDTH | 11<br> |
| 7.6                                                                                                   | CONDUCTED EMISSIONS AT MAINS TERMINALS 150 KHZ TO 30 MHZ                                                                                                                                                                                                                                 | -      |
| 8 P                                                                                                   | HOTOGRAPHS                                                                                                                                                                                                                                                                               |        |



### **Revision History**

| Revision | Issue Date    | Revisions     | Revised By |
|----------|---------------|---------------|------------|
| 000      | Sep. 16, 2022 | Initial Issue | Seal Chen  |
|          |               |               |            |
|          |               |               |            |



## 2 Test Summary

| Test Item                                              | Section in CFR 47                                   | Result |
|--------------------------------------------------------|-----------------------------------------------------|--------|
| Antenna requirement                                    | FCC §15.203, RSS-Gen Section<br>6.8                 | Pass   |
| Maximum Conducted Output Power                         | §15.247 (b)(3)<br>RSS-247 Section 5.4(a)            | Pass   |
| Power Spectral Density                                 | §15.247 (e)<br>RSS-247 Section 5.2(b)               | Pass   |
| 6dB Bandwidth                                          | §15.247 (a)(2)<br>RSS-247 Section 5.2(a)            | Pass   |
| Occupied Bandwidth                                     | RSS-Gen §6.7                                        | Pass   |
| Radiated Spurious<br>Emissions                         | §15.205/15.209<br>RSS-Gen Section §6.13/8.9         | Pass   |
| Conducted Spurious Emissions & Band<br>Edges Emissions | §15.205/15.209<br>RSS-247 Section 5.5/ Section 8.10 | Pass   |
| Conducted Emissions                                    | RSS-Gen§8.8                                         | Pass   |

Note

1. Test according to ANSI C63.10:2013 and RSS-Gen.

2. The measurement uncertainty is not included in the test result.

3. Test results in other test report (RF Exposure Evaluation Report)

## 2.1 Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the AiT quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

## 2.2 Measurement Uncertainty

| Test Item                    | Frequency Range                  | Measurement Uncertainty         | Notes     |
|------------------------------|----------------------------------|---------------------------------|-----------|
| Radiated Emission            | 0.009MHz-30MHz                   | 3.10dB                          | (1)       |
| Radiated Emission            | 30MHz-1GHz                       | 3.75dB                          | (1)       |
| Radiated Emission            | 1GHz-18GHz                       | 3.88dB                          | (1)       |
| Radiated Emission            | 18GHz-40GHz                      | 3.88dB                          | (1)       |
| AC Power Line Conducted      | 0.15MHz ~ 30MHz                  | 1.20dB                          | (1)       |
| Emission                     |                                  | 1.200D                          | (1)       |
| Note (1): The measurement un | certainty is for coverage factor | of k=2 and a level of confidenc | e of 95%. |



## 3 Test Facility

# The test facility is recognized, certified or accredited by the following organizations: .CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2017 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on Aug.04, 2020

#### FCC-Registration No.: 703111 Designation Number: CCH-205313

Dongguan Yaxu (AiT) technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

#### IC —Registration No.: 6819A CAB identifier: CN0122

The 3m Semi-anechoic chamber of Dongguan Yaxu (AiT) technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 6819A

#### A2LA-Lab Cert. No.: 6317.01

Dongguan Yaxu (AiT) technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

## 3.1 Deviation from standard

None

## **3.2 Abnormalities from standard conditions**

None

## 3.3 Test Location

#### Dongguan Yaxu (AiT) Technology Limited

Address: No.22, Jinqianling 3rd Street, Jitigang, Huangjiang, Dongguan, Guangdong, China

Tel.: +86-769-8202 0499

Fax.: +86-769-8202 0495



## 4 General Information

## 4.1 General Description of EUT

| EUT Name:              | CW Sounder                                                                                                        |
|------------------------|-------------------------------------------------------------------------------------------------------------------|
| Model No./HVIN:        | CW-SOU                                                                                                            |
| Serial Model:          | N/A                                                                                                               |
| Test sample(s) ID:     | 22080910-1                                                                                                        |
| Sample(s) Status:      | N/A                                                                                                               |
| Serial No.:            | N/A                                                                                                               |
| Operation frequency:   | 915 MHz                                                                                                           |
| Channel Number:        | 1                                                                                                                 |
| Channel separation:    | N/A                                                                                                               |
| Modulation Technology: | ООК                                                                                                               |
| Antenna Type:          | Internal Antenna                                                                                                  |
| Antenna gain:          | Maximum 0 dBi                                                                                                     |
| Hardware version .:    | N/A                                                                                                               |
| Software version .:    | N/A                                                                                                               |
| Power supply Range:    | 83-305V 0.07A 47-63HZ 8W                                                                                          |
| Power Supply:          | 120V, 60Hz                                                                                                        |
| Model different:       | N/A                                                                                                               |
| Note:                  | For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. |



## 4.2 Test frequencies

EUT channels and frequencies list:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 00      | 915                | -       | -                  | -       | -                  |

## 4.3 EUT Peripheral List

| No. | Equipment | Manufacturer | EMC<br>Compliance | Model No. | Serial No. | Power cord | Signal cord |
|-----|-----------|--------------|-------------------|-----------|------------|------------|-------------|
| 1   | N/A       | N/A          | N/A               | N/A       | N/A        | N/A        | N/A         |

## 4.4 Test Peripheral List

| No. | Equipment | Manufacturer | EMC<br>Compliance | Model<br>No. | Serial No. | Power cord | Signal cord |
|-----|-----------|--------------|-------------------|--------------|------------|------------|-------------|
| 1   | N/A       | N/A          | N/A               | N/A          | N/A        | N/A        | N/A         |



## 5 Description of Test conditions

## 5.1 E.U.T. Operation

| Power supply:                         | 120V/60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature:                          | 20.0 -25.0 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Humidity:                             | 38-50 % RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Atmospheric Pressure:                 | 1000 -1010 mbar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test frequencies and frequency range: | <ul> <li>(i) Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in the table below:</li> <li>In measuring unwanted emissions, the spectrum shall be investigated from 30 MHz or the lowest radio frequency signal generated in the equipment, whichever is lower, without going below 9 kHz, up to at least the frequency given in the table below:</li> </ul> |

| Frequency range in which | Number of   | Location in frequency range     |
|--------------------------|-------------|---------------------------------|
| device operates          | frequencies | of operation                    |
| 1 MHz or less            | 1           | Middle                          |
| 1 MHz to 10 MHz          | 2           | 1 near top and 1 near bottom    |
| Mara than 10 Mile        | 2           | 1 near top, 1 near middle and 1 |
| More than 10 MHz         | 3           | near bottom                     |

#### Number of fundamental frequencies to be tested in EUT transmit band

#### Frequency range of radiated emission measurements

| Lowest frequency generated<br>in the device | Upper frequency range of measurement                         |
|---------------------------------------------|--------------------------------------------------------------|
| 9 kHz to below 10 GHz                       | 10th harmonic of highest fundamental frequency or to 40 GHz, |
|                                             | whichever is lower                                           |
| At or above 10 GHz to below                 | 5th harmonic of highest fundamental frequency or to 100 GHz, |
| 30 GHz                                      | whichever is lower                                           |
| At or above 30 GHz                          | 5th harmonic of highest fundamental frequency or to 200 GHz, |
| At of above 50 GHz                          | whichever is lower, unless otherwise specified               |

Remark: Test frequency is 915MHz.



## 6 Equipments List for All Test Items

| No   | Test Equipment                                          | Manufacturer | Model No            | Serial No                  | Cal. Date       | Cal. Due Date     |
|------|---------------------------------------------------------|--------------|---------------------|----------------------------|-----------------|-------------------|
| 1    | Spectrum Analyzer                                       | R&S          | FSV40               | 101470                     | 2022.09.02      | 2023.09.01        |
| 2    | EMI Measuring<br>Receiver                               | R&S          | ESR                 | 101660                     | 2022.09.02      | 2023.09.01        |
| 3    | Low Noise Pre Amplifier                                 | HP           | HP8447E             | 1937A01855                 | 2022.09.02      | 2023.09.01        |
| 4    | Low Noise Pre Amplifier                                 | Tsj          | MLA-0120-A02-<br>34 | 2648A04738                 | 2022.09.02      | 2023.09.01        |
| 5    | Passive Loop                                            | ETS          | 6512                | 00165355                   | 2022.09.04      | 2025.09.03        |
| 6    | TRILOG Super<br>Broadband test Antenna                  | SCHWARZBECK  | VULB9160            | 9160-3206                  | 2021.08.29      | 2024.08.28        |
| 7    | Broadband Horn Antenna                                  | SCHWARZBECK  | BBHA9120D           | 452                        | 2021.08.29      | 2024.08.28        |
| 8    | SHF-EHF Horn Antenna<br>15-40GHz                        | SCHWARZBECK  | BBHA9170            | BBHA917036<br>7d           | 2020.11.24      | 2023.11.23        |
| 9    | EMI Test Receiver                                       | R&S          | ESCI                | 100124                     | 2022.09.02      | 2023.09.01        |
| 10   | LISN                                                    | Kyoritsu     | KNW-242             | 8-837-4                    | 2022.09.02      | 2023.09.01        |
| 11   | LISN                                                    | R&S          | ESH3-Z2             | 0357.8810.54-<br>101161-S2 | 2022.09.02      | 2023.09.01        |
| 12   | Pro.Temp&Humi.chamber                                   | MENTEK       | MHP-150-1C          | MAA0811250<br>1            | 2022.09.02      | 2023.09.01        |
| 13   | RF Automatic Test<br>system                             | MW           | MW100-RFCB          | 21033016                   | 2022.09.02      | 2023.09.01        |
| 14   | Signal Generator                                        | Agilent      | N5182A              | MY50143009                 | 2022.09.02      | 2023.09.01        |
| 15   | Wideband Radio communication tester                     | R&S          | CMW500              | 1201.0002K5<br>0           | 2022.09.02      | 2023.09.01        |
| 16   | RF Automatic Test<br>system                             | MW           | MW100-RFCB          | 21033016                   | 2022.09.02      | 2023.09.01        |
| 17   | DC power supply                                         | ZHAOXIN      | RXN-305D-2          | 2807000255<br>9            | N/A             | N/A               |
| 18   | RE Software                                             | EZ           | EZ-EMC_RE           | Ver.AIT-03A                | N/A             | N/A               |
| 19   | CE Software                                             | EZ           | EZ-EMC_CE           | Ver.AIT-03A                | N/A             | N/A               |
| 20   | RF Software                                             | MW           | MTS 8310            | 2.0.0.0                    | N/A             | N/A               |
| 21   | temporary antenna<br>connector(Note)                    | NTS          | R001                | N/A                        | N/A             | N/A               |
| Note | e: The temporary antenna c<br>temporary antenna connect |              |                     | rd in order to p           | erform conducte | ed tests and this |





## 7 Test Result

## 7.1 Antenna Requirement

#### Standard requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

#### **RSS-GEN** section 6.8

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna.

Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power (e.i.r.p.) limits specified in the applicable standard (RSS) for the licence-exempt apparatus.

Testing shall be performed using the highest gain antenna of each combination of licence-exempt transmitter and antenna type, with the transmitter output power set at the maximum level.8 When a measurement at the antenna connector is used to determine RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna manufacturer. User manuals for transmitters equipped with detachable antennas shall also contain the following notice in a conspicuous location:

This radio transmitter (identify the device by certification number) has been approved by Industry Canada to operate with the antenna types listed below with the maximum permissible gain indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types approved for use with the transmitter, indicating the maximum permissible antenna gain (in dBi).

#### **EUT Antenna**

The antenna is Internal Antenna. The maximum gain of the antenna is 0 dBi.

#### Test result: The unit does meet the FCC &RSSrequirements.



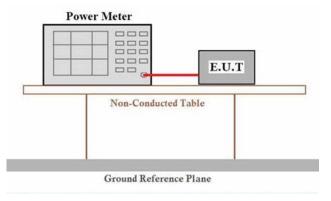
### 6.1 Maximum Conducted Output Peak Power Measurement

#### 6.3.1 Standard requirement:

For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point

operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.


#### 6.3.2 Measuring Instruments:

Please refer to equipment's list in this report.

#### 6.3.3 Test Procedures:

Maximum peak conducted output power, The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

#### 6.3.4 Test Setup Layout



#### 6.3.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

#### 6.3.6 Test result

PASS



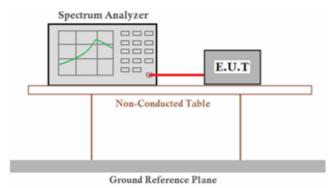
| Test Mode | Frequency | Peak Output Power<br>(dBm) | Limit<br>(dBm) | Result |
|-----------|-----------|----------------------------|----------------|--------|
| TX        | 915 MHz   | 10.35                      | 30             | Pass   |

#### The Lowest Channel 00: 915MHz

| Ref Level 20.00 dB   |              | RBW 3 MHz<br>VBW 10 MHz | Mode Auto FFT |            |                           |
|----------------------|--------------|-------------------------|---------------|------------|---------------------------|
| 1Pk Max              |              |                         |               |            |                           |
| 10 dBm               |              | M1                      | M1[1]         |            | 10.35 dBn<br>914.78290 MH |
| 10 ubili             |              |                         |               |            |                           |
| D dBm                |              |                         |               |            |                           |
| -10 dBm              |              |                         |               |            |                           |
| -20 dBm              |              |                         |               |            |                           |
| 30 dBm               |              | _                       |               | -          |                           |
| 40 dBm               |              |                         |               |            |                           |
| 50 dBm               |              |                         |               | -          |                           |
| 60 dBm               |              |                         |               |            |                           |
| 70 dBm               |              |                         |               |            |                           |
| CF 915.0 MHz         |              | 691 pt                  | s             |            | Span 5.0 MHz              |
| 1arker               |              |                         | 1             |            |                           |
| Type Ref Trc<br>M1 1 | 914.7829 MHz | Y-value<br>10.35 dBm    | Function      | Function I | Result                    |



## 7.2 6 dB Spectrum Bandwidth Measurement


7.2.1 Standard requirement:

DTSs include systems that employ digital modulation techniques resulting in spectral characteristics similar to direct sequence systems. The following applies to the bands 902-928 MHz and 2400-2483.5 MHz:

- a). The minimum 6 dB bandwidth shall be 500 kHz.
- 7.2.2 Measuring Instruments:

Please refer to equipment's list in this report.

- 7.2.3 Test Procedures
  - 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
  - 2. Set RBW/VBW = 100 KHz/300KHz.
  - 3. Measured the 6dB bandwidth by related function of the spectrum analyzer.
- 7.2.4 Test Setup Layout

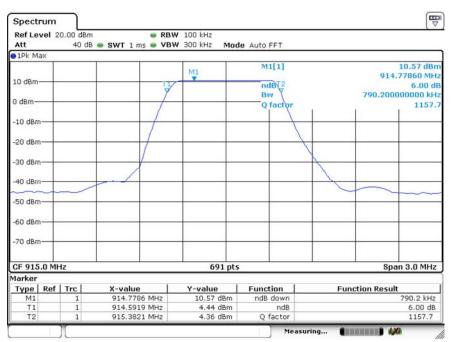


### 7.2.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



#### 7.2.6 Test results


Test Date: 2022-09-05

Atmospheric pressure: 1007 pha

Temperature: 26°C

Humidity: 60%

| Test Channel | Frequency | 6 dB Bandwidth | 99% Bandwidth | Limit |
|--------------|-----------|----------------|---------------|-------|
|              | (MHz)     | (KHz)          | (KHz)         | (KHz) |
| 00           | 915       | 790.2          | 651.23        | ≧500  |



#### Channel 0: 915MHz



#### Channel 0: 915MHz

| Spectr     |                   |                         |                      |                |     |               |                            |
|------------|-------------------|-------------------------|----------------------|----------------|-----|---------------|----------------------------|
| Ref Le     | vel 30.00 d<br>40 | 71991                   | 28W 30 kHz           | lode Auto FFT  |     |               |                            |
| 1Pk Ma     |                   | ab 341 03.2 µs •        | <b>BH</b> 100 KH2  H | Due Auto III   |     |               |                            |
|            |                   |                         |                      | M1[1]          |     | 914           | 10.52 dBm<br>80460 MHz     |
| 20 dBm-    |                   |                         | M1                   | Occ Bw         | Ϋ́. |               | 101303 kHz                 |
| 10 dBm-    |                   | -                       | TI                   | W <sup>2</sup> |     |               |                            |
| 0 dBm—     |                   |                         | 1                    |                |     |               |                            |
| -10 dBm·   | _                 |                         |                      |                |     |               |                            |
| -20 dBm·   |                   |                         |                      |                |     |               |                            |
| -30 dBm-   |                   |                         |                      |                | _   |               |                            |
| -40 dBm·   |                   |                         |                      |                |     |               |                            |
| -50 dBm-   |                   | runne                   |                      |                | han |               | 1000                       |
| -60 dBm-   |                   |                         |                      |                |     |               |                            |
| CF 915.    | 0 MHz             |                         | 691 pts              |                |     | Spa           | n 3.0 MHz                  |
| larker     |                   |                         |                      |                |     |               |                            |
| Type<br>M1 | Ref Trc           | X-value<br>914.8046 MHz | Y-value<br>10.52 dBm | Function       | Fur | nction Result | t                          |
| T1         | 1                 | 914.67004 MHz           | 3.10 dBm             | Occ Bw         |     | 651.2301      | 101303 kHz                 |
| T2         | 1                 | 915.32127 MHz           | 6.56 dBm             |                |     |               | e Ingenter stand som store |



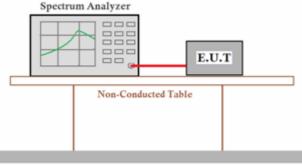
### 7.3 Power Spectral Density

#### 6.5.1 Standard requirement:

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### 6.5.2 Measuring Instruments and Setting:

Please refer to equipment's list in this report.


#### 6.5.3 Test Procedures

1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.

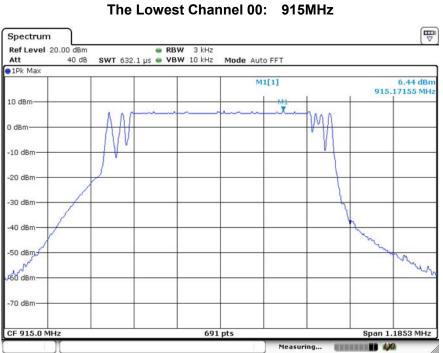
2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.

- 3. Set the RBW = 3 kHz.
- 4. Set the VBW  $\geq$  3\*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum power level.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 12. The resulting peak PSD level must be 8 dBm.

#### 6.5.4 Test Setup Layout



Ground Reference Plane


#### 6.5.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



#### 6.5.6 Test result

| Test | Channel frenqucy | Power Density | Limit      | <b>D</b> 11 |
|------|------------------|---------------|------------|-------------|
| Mode | (MHz)            | PSD           | (dBm/3kHz) | Result      |
|      |                  | (dBm/3kHz)    |            |             |
| TX   | 915              | 6.44          | 8          | Pass        |



PSD The Lowest Channel 00: 915MHz



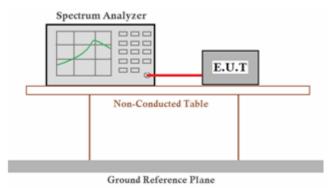
## 6.2 Conducted Spurious Emissions and Band Edges Test

#### 6.6.1 Standard requirement:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

#### 6.6.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of the spectrum analyzer.


| Spectrum Parameter                    | Setting       |
|---------------------------------------|---------------|
| Detector                              | Peak          |
| Attenuation                           | Auto          |
| RB / VB (Emission in restricted band) | 100KHz/300KHz |

#### 6.6.3 Test Procedures

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz

The spectrum from 9 kHz to 10GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

#### 6.6.4 Test Setup Layout



#### 6.6.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



#### 6.6.6 Test result



|                                                                                                                                                                                                                                                                                                                                                                                                                       |           | e RBN<br>9 μs e VBN | W 100 kHz<br>W 300 kHz | Mode Auto FFT         |            |      |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|------------------------|-----------------------|------------|------|------------------------------|
| 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                               |           |                     |                        |                       |            |      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                        | M1[1]                 |            |      | 10.40 dBn<br>83070 MH        |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                 |           | M1                  |                        |                       |            | 914. |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                        |                       |            |      |                              |
| dBm-                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                     |                        |                       |            |      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                        |                       |            |      |                              |
| 0 dBm D1 -9.60                                                                                                                                                                                                                                                                                                                                                                                                        | 0 dBm     |                     |                        |                       |            |      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       | /         |                     |                        |                       |            |      |                              |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                     |                        |                       |            |      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                        |                       |            |      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                        |                       |            |      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                        |                       |            |      |                              |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                     |                        |                       |            |      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                        |                       |            |      |                              |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                 | _         |                     |                        |                       |            |      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                        |                       |            |      |                              |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                     | ,                      |                       |            |      |                              |
| 242 2 40 404 CV                                                                                                                                                                                                                                                                                                                                                                                                       |           |                     |                        |                       |            |      |                              |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                     |                        |                       |            |      |                              |
| 100.000                                                                                                                                                                                                                                                                                                                                                                                                               |           |                     |                        |                       |            |      |                              |
| F 915.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                           |           |                     |                        |                       |            |      | n 1.5 MHz                    |
| pectrum                                                                                                                                                                                                                                                                                                                                                                                                               |           |                     | 691                    |                       | easuring 🚺 |      | 2                            |
| Ref Level 20.00 d                                                                                                                                                                                                                                                                                                                                                                                                     |           |                     | <b>W</b> 100 kHz       | Me                    |            |      |                              |
| pectrum<br>Ref Level 20.00 d<br>Att 30<br>IPk Max                                                                                                                                                                                                                                                                                                                                                                     |           | ● RB<br>1.7 ms ● VB | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | )<br>[Ę                      |
| RefLevel 20.00 d<br>Att 30                                                                                                                                                                                                                                                                                                                                                                                            |           |                     | <b>W</b> 100 kHz       | Me                    |            |      | 52.28 dBi                    |
| Ref Level 20.00 d<br>Att 30<br>IPk Max                                                                                                                                                                                                                                                                                                                                                                                |           |                     | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | 52.28 dB                     |
| Ref Level 20.00 d<br>Att 30<br>IPk Max                                                                                                                                                                                                                                                                                                                                                                                |           |                     | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | 52.28 dB                     |
| Ref Level 20.00 d<br>Att 30<br>IPk Max                                                                                                                                                                                                                                                                                                                                                                                |           |                     | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | 52.28 dBi                    |
| Ref Level         20.00 d           Att         30           IPk Max         30           0 dBm         30                                                                                                                                                                                                                                                                                                            | dB SWT 99 |                     | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | 52.28 dBi                    |
| Ref Level         20.00 d           Att         30           IPk Max         30           J dBm         30                                                                                                                                                                                                                                                                                                            | dB SWT 99 |                     | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | 52.28 dBi                    |
| Ref Level 20.00 d           Att 30           JPk Max           0 dBm           0 dBm           0 dBm           0 dBm                                                                                                                                                                                                                                                                                                  | dB SWT 99 |                     | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | 52.28 dBi                    |
| Ref Level 20.00 d           Att 30           JPk Max           0 dBm           0 dBm           0 dBm           0 dBm                                                                                                                                                                                                                                                                                                  | dB SWT 99 |                     | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | 52.28 dBi                    |
| Ref Level         20.00 d           Att         30           Pk Max         30           dBm         30           dBm         30           0 dBm         01 -9.60           0 dBm         01 -9.60                                                                                                                                                                                                                    | dB SWT 99 |                     | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | 52.28 dBi                    |
| Ref Level 20.00 d           Att 30           JPk Max           J dBm           J dBm           O dBm           0 dBm           0 dBm           0 dBm           0 dBm                                                                                                                                                                                                                                                  | dB SWT 99 |                     | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | 52.28 dBi                    |
| Ref Level         20.00 d           Att         30           JPk Max         30           J dBm         30           dBm         30           0 dBm         30                                                                                                                 | dB SWT 99 |                     | <b>W</b> 100 kHz       | Mode Auto Sw          |            |      | 52.28 dBi                    |
| Ref Level         20.00 d           Att         30           JD         Att           JD         dBm           JD         dBm           O         dBm                                                                 | dB SWT 99 |                     | <b>W</b> 100 kHz       | Mode Auto Sw<br>M1[1] | eep        |      | 52.28 dBi                    |
| Ref Level         20.00 d           Att         30           JD         Att           JD         dBm           JD         dBm           O         dBm                                                                 | 0 dBm     | 9.7 ms • VB         | W 100 kHz<br>W 300 kHz | Mode Auto Sw          | eep        |      |                              |
| Ref Level         20.00 d           Att         30           IPk Max         30           0 dBm         30                                                                                                                                                                                                                                                                                                            | 0 dBm     |                     | <b>W</b> 100 kHz       | Mode Auto Sw<br>M1[1] | eep        |      | 52.28 dB<br>5.0540 GH        |
| Ref Level 20.00 d           Att 30           Att 30           IPk Max           0 dBm                                                                                                 | 0 dBm     | 9.7 ms • VB         | W 100 kHz<br>W 300 kHz | Mode Auto Sw<br>M1[1] | eep        |      | 52.28 dB<br>5.0540 GH        |
| Ref Level         20.00 d           Att         30           John         30           John         30           O dBm         01 -9.60           O dBm         00                                                                                                             | 0 dBm     | 9.7 ms • VB         | W 100 kHz<br>W 300 kHz | Mode Auto Sw<br>M1[1] | eep        |      | 52.28 dB<br>5.0540 GH        |
| Ref Level 20.00 d           Att 30           Att 30           IPk Max           0 dBm                                                                                                 | 0 dBm     | 9.7 ms • VB         | W 100 kHz<br>W 300 kHz | Mode Auto Sw<br>M1[1] | eep        |      | 52.28 dB<br>5.0540 GH        |
| Ref Level 20.00 d           Att 30           Att 30           IPk Max           0 dBm           0 dBm | 0 dBm     | 9.7 ms • VB         | W 100 kHz<br>W 300 kHz | Mode Auto Sw<br>M1[1] | eep        |      | 52.28 dBi                    |
| Ref Level 20.00 d           Att 30           Att 30           IPk Max           0 dBm                                                                                                 | 0 dBm     | 9.7 ms • VB         | W 100 kHz              | Mode Auto Sw<br>M1[1] |            |      | (E<br>52.28 dBr<br>5.0540 GF |



| Ref Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.00 dBr | n 🖷 I                                | RBW 100 kHz                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------|--------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Att                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40 di     |                                      |                                                  | lode Auto FFT                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                      | MB                                               | M3[1]                                 | 10.52 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4         |                                      |                                                  |                                       | 914.710 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 747597870200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                      |                                                  | M1[1]                                 | -48.08 dBr<br>902.000 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                      |                                                  | 1                                     | 902.000 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -10 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01 .9 490 | dBm                                  |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 0011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01 9.100  |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| So abiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -         |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| March Marcul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | arriver m | MI Miner marine                      | markowand ha                                     | M2                                    | museres and and a for any and a series and and a series and a series of the series of |
| -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CF 915.0 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1Hz       |                                      | 691 pts                                          |                                       | Span 100.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| larker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                                      |                                                  |                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Type   Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f Trc     | X-value                              | Y-value                                          | Function                              | Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1         |                                      |                                                  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| and the second se |           |                                      |                                                  | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 902.0 MHz<br>928.0 MHz<br>914.71 MHz | Y-value<br>-48.08 dBm<br>-48.06 dBm<br>10.52 dBm | Function                              | suring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



## 7.4 Field Strength of Fundamental& Field Strength of Unwanted Emissions

#### 6.8.1 Standard requirement:

15.205 (a)& RSS-Gen Section 8.9, Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090-0.110       | 16.42-16.423        | 399.9-410     | 4.5-5.15    |
| \1\ 0.495-0.505   | 16.69475-16.69525   | 608-614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |
| 4.125-4.128       | 25.5-25.67          | 1300-1427     | 8.025-8.5   |
| 4.17725-4.17775   | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |
| 4.20725-4.20775   | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |
| 6.215-6.218       | 74.8-75.2           | 1660-1710     | 10.6-12.7   |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175-6.31225   | 123-138             | 2200-2300     | 14.47-14.5  |
| 8.291-8.294       | 149.9-150.05        | 2310-2390     | 15.35-16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2690-2900     | 22.01-23.12 |
| 8.41425-8.41475   | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |
| 12.29-12.293.     | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240-285             | 3345.8-3358   | 36.43-36.5  |
| 12.57675-12.57725 | 322-335.4           | 3600-4400     | (\2\)       |
| 13.36-13.41       |                     |               |             |

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

According to §15.247 (d)& RSS-247 Section 5.5: 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance |
|----------------------|--------------------------------------|----------------------|
|                      |                                      | (meters)             |
| 0.009~0.490          | 2400/F(KHz)                          | 300                  |
| 0.490~1.705          | 24000/F(KHz)                         | 30                   |
| 1.705~30.0           | 30                                   | 30                   |
| 30~88                | 100                                  | 3                    |
| 88~216               | 150                                  | 3                    |
| 216~960              | 200                                  | 3                    |
| Above 960            | 500                                  | 3                    |



#### 6.8.2 Measuring Instruments and Setting:

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

| Spectrum Parameter                        | Setting                                           |
|-------------------------------------------|---------------------------------------------------|
| Attenuation                               | Auto                                              |
| Start Frequency                           | 1000 MHz                                          |
| Stop Frequency                            | 10 <sup>th</sup> carrier harmonic                 |
| RB / VB (Emission in restricted band)     | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average |
| RB / VB (Emission in non-restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average |

| Receiver Parameter     | Setting                                    |
|------------------------|--------------------------------------------|
| Attenuation            | Auto                                       |
| Start ~ Stop Frequency | 9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG  |
| Start ~ Stop Frequency | 150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB/VB 120kHz/1MHz for QP   |

#### 6.8.3 Test Procedures

#### 1) Sequence of testing 9 kHz to 30 MHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

#### Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position ( $0^{\circ}$  to  $360^{\circ}$ ) and by rotating the elevation axes ( $0^{\circ}$  to  $360^{\circ}$ ).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.



#### 2) Sequence of testing 30 MHz to 1 GHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.

--- The EUT was set into operation.

#### Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.



#### 3) Sequence of testing 1 GHz to 18 GHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

#### Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.



#### 4) Sequence of testing above 18 GHz

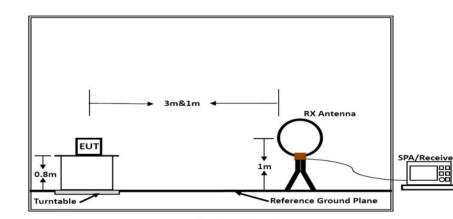
#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

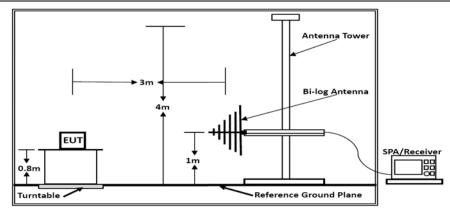
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.


#### Premeasurement:

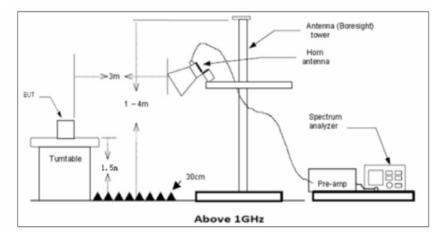
--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

#### **Final measurement:**

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.


--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.




#### 6.8.4 Test Setup Layout

Below 30MHz









Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

#### 6.8.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

#### 6.8.6 Test result

| Temperature   | <b>24.4</b> °C | Humidity       | 52.4%            |
|---------------|----------------|----------------|------------------|
| Test Engineer | Simba Huang    | Configurations | IEEE 802.11b/g/n |

Remarks:

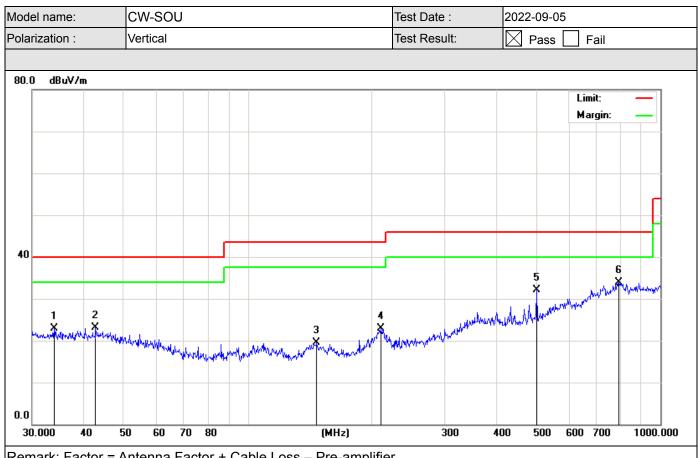
- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.



#### Results of Radiated Emissions (9 KHz~30MHz)

| Freq. | Level  | Over Limit | Over Limit | Remark   |
|-------|--------|------------|------------|----------|
| (MHz) | (dBuV) | (dB)       | (dBuV)     |          |
| -     | -      | -          | -          | See Note |

Note:


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and the permissible value has no need to be reported.

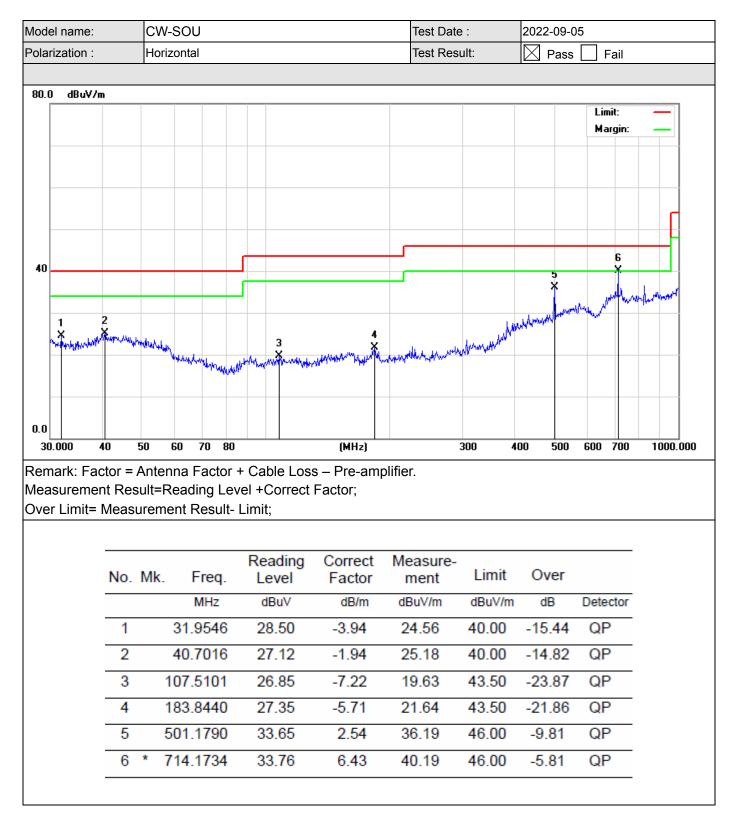
Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.



#### Results of Radiated Emissions (30MHz~1GHz)

Pre-scan all test modes, worst case test result recorded.




Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier. Measurement Result=Reading Level +Correct Factor;

Over Limit= Measurement Result- Limit;

| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |    | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 33.9174  | 27.80            | -4.91             | 22.89            | 40.00  | -17.11 | QP       |
| 2   |    | 42.7496  | 27.55            | -4.42             | 23.13            | 40.00  | -16.87 | QP       |
| 3   |    | 146.8877 | 27.04            | -7.46             | 19.58            | 43.50  | -23.92 | QP       |
| 4   |    | 210.0482 | 26.83            | -3.93             | 22.90            | 43.50  | -20.60 | QP       |
| 5   |    | 501.1790 | 33.11            | -1.01             | 32.10            | 46.00  | -13.90 | QP       |
| 6   | *  | 793.3960 | 27.06            | 6.83              | 33.89            | 46.00  | -12.11 | QP       |

Dongguan Yaxu (AiT) Technology Limited No. 22, Jinqianling Third Street, Jitigang, Huangjiang, Dongguan, Guangdong, China.







#### **Results for Radiated Emissions (1-10GHz)**

| Te | est channel: |               |        | Lowest         | channel  |        |               |
|----|--------------|---------------|--------|----------------|----------|--------|---------------|
| Н  |              |               |        |                |          |        |               |
|    | Frequency    | Meter Reading | Factor | Emission Level | Limits   | Margin | Detector Type |
|    | (MHz)        | (dBµV/m)      | (dB/m) | (dBµV/m)       | (dBµV/m) | (dB)   | Delector Type |
|    | 1830.400     | 67.37         | -9.42  | 57.95          | 74.00    | -16.05 | peak          |
|    | 1830.400     | 56.28         | -9.42  | 46.86          | 54.00    | -7.14  | AVG           |
|    | 2745.600     | 52.78         | -3.13  | 49.65          | 74.00    | -24.35 | peak          |
|    | 2745.600     | 40.91         | -3.13  | 37.78          | 54.00    | -16.22 | AVG           |
| V  |              |               |        |                |          |        |               |
|    | Frequency    | Meter Reading | Factor | Emission Level | Limits   | Margin |               |
|    | (MHz)        | (dBµV/m)      | (dB/m) | (dBµV/m)       | (dBµV/m) | (dB)   | Detector Type |
|    | 1830.400     | 64.33         | -9.42  | 54.91          | 74.00    | -19.09 | peak          |
|    | 1830.400     | 52.64         | -9.42  | 43.22          | 54.00    | -10.78 | AVG           |
|    | 2745.600     | 50.42         | -3.13  | 47.29          | 74.00    | -26.71 | peak          |
|    | 2745.600     | 40.71         | -3.13  | 37.58          | 54.00    | -16.42 | AVG           |

Remarks:

1). Measuring frequencies from 9 KHz - 10<sup>th</sup> harmonic or 10GHz (which is less), No emission found between lowest internal used/generated frequency to 30MHz.

2). Radiated emissions measured in frequency range from 9 KHz~10th harmonic or 26.5GHz (which is less) were made with an instrument using Peak detector mode.

3). Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. 4). Margin= Final Level – Limit

5). Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

6). All the modes have been tested and the only shows the worst case GFSK mode



## 7.5 Occupied Bandwidth

#### Standard requirement:

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz. According to RSS-Gen section 6.7: The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

#### Measuring Instruments:

Please refer to equipment's list in this report.

#### **Test Procedures**

Frequency separation test procedure :

1). Place the EUT on the table and set it in transmitting mode.

2). Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Spectrum Analyzer.

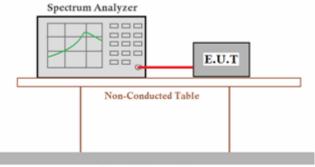
3). Set center frequency of Spectrum Analyzer = middle channel.

4). Set the Spectrum Analyzer Span = wide enough to capture the peaks of two adjacent channels, Sweep = auto.

5). Max hold, mark 2 peaks of hopping channel and record the 2 peaks frequency.

6dB bandwidth test procedure :

- 1). Span = approximately 2 to 3 times the 6 dB bandwidth, centered on a hopping channel.
- 2). RBW ≥1% of the 6 dB bandwidth, VBW ≥RBW.
- 3). Detector function = peak.
- 4). Trace = max hold.


99% bandwidth test procedure :

1). The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.

- 2). Set RBW = 1%~5% OBW; VBW≥3\*RBW;
- 3). Measured the 99% occupied bandwidth by related function of the spectrum analyzer.

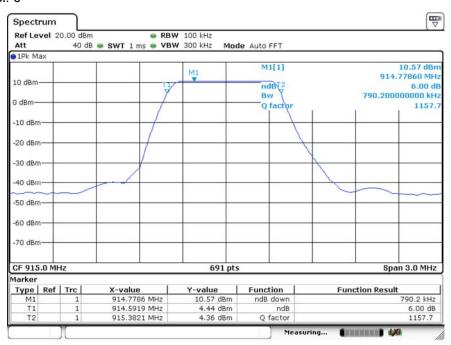


#### **Test Setup Layout**



**Ground Reference Plane** 

#### **EUT Operation during Test**


The EUT was programmed to be in continuously transmitting mode.



#### **Test result**

| Test Mode | Channel | Frequency<br>(MHz) | 6dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) | Limit<br>(kHz) |
|-----------|---------|--------------------|------------------------|------------------------|----------------|
| TX        | 00      | 915                | 0.7902                 | 0.6512                 | ≥500           |

6dB bandwidth Channel: 0



#### 99% bandwidth Channel: 0

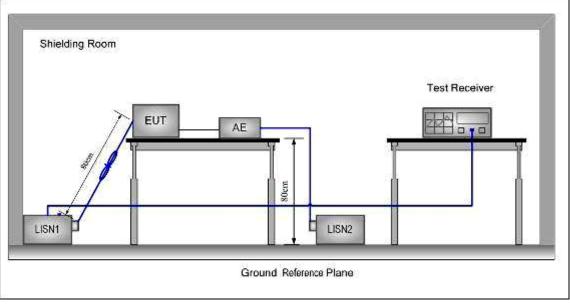
|          | evel  | 30.00 dBr |                               | BW 30 kHz             |                 |     | ( -                                           |
|----------|-------|-----------|-------------------------------|-----------------------|-----------------|-----|-----------------------------------------------|
| Att      | av.   | 40 d      | B SWT 63.2 µs 🖷 🕻             | /BW 100 kHz M         | lode Auto FFT   |     |                                               |
| 20 dBm   |       |           |                               | M1                    | M1[1]<br>Occ Bw |     | 10.52 dBr<br>914.80460 MH<br>651.230101303 kH |
| 10 dBm·  | +     |           |                               | TH I                  | 12              | -   |                                               |
| 0 dBm—   | +     |           |                               | ¥[                    |                 |     |                                               |
| -10 dBm  | +     |           |                               |                       |                 |     |                                               |
| -20 dBm  | -     |           |                               |                       |                 | _   |                                               |
| -30 dBm  | -     |           |                               |                       |                 |     |                                               |
| -40 dBm  | +     |           |                               |                       |                 |     |                                               |
| -50 dBm  | -     | min       | mm                            |                       | 0               | how | m                                             |
| -60 dBm  | -     |           |                               |                       |                 | -   |                                               |
| CF 915   | .0 MH | łz        |                               | 691 pts               | 8               |     | Span 3.0 MHz                                  |
| larker   |       |           |                               |                       |                 |     |                                               |
| Туре     | Ref   | Trc       | X-value                       | Y-value               | Function        | Fun | ction Result                                  |
| M1<br>T1 |       | 1         | 914.8046 MHz<br>914.67004 MHz | 10.52 dBm<br>3.10 dBm | Occ Bw          |     | 651.230101303 kHz                             |
| T2       |       | 1         | 915.32127 MHz                 | 6.56 dBm              |                 |     |                                               |



## 7.6 Conducted Emissions at Mains Terminals 150 kHz to 30 MHz

| Test Requirement: | Section 15.207(a)&RSS-Gen 8.8                                  |
|-------------------|----------------------------------------------------------------|
| TEST METHOD:      | Section 15.207(a)&RSS-Gen clause 8.8 & ANSI C63.10: Clause 6.2 |
| Frequency Range:  | 150 kHz to 30 MHz                                              |
| Detector:         | for pre-scan (9 kHz Resolution Bandwidth)                      |
| Test Limit        |                                                                |

#### Limits for conducted disturbance at the mains ports of class B


| Frequency Range                                                                                            | Class B Limit dB(μV) |          |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------|----------|--|--|--|--|
| (MHz)                                                                                                      | Quasi-peak           | Average  |  |  |  |  |
| 0.15 to 0.50                                                                                               | 66 to 56             | 56 to 46 |  |  |  |  |
| 0.50 to 5                                                                                                  | 56                   | 46       |  |  |  |  |
| 5 to 30                                                                                                    | 60                   | 50       |  |  |  |  |
| NOTE 1 The limit decreases linearly with the logarithm of the frequency in the range 0,15 MHz to 0,50 MHz. |                      |          |  |  |  |  |

EUT Operation:

Test in normal operating mode. For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.



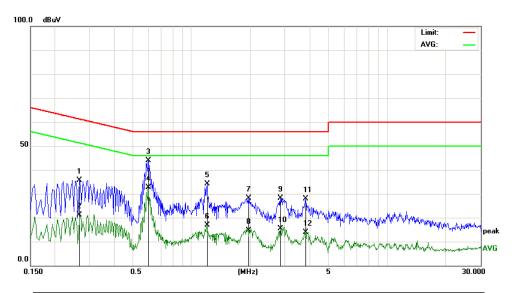
#### **Test Configuration:**



#### Test procedure:

1. The mains terminal disturbance voltage test was conducted in a shielded room.

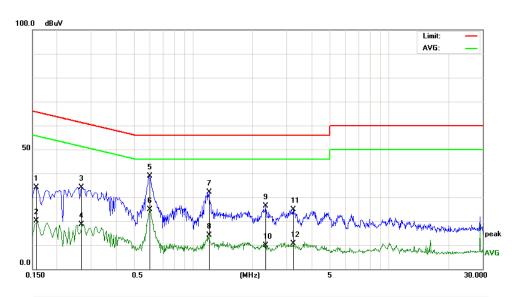
2. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a  $50\Omega/50\mu$ H +  $5\Omega$  linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.


3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.

4. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0,4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0,8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0,8 m from the LISN 2.



### 7.6.1 Test Result


| Power :       | 120V/60Hz | Phase :       | Line  |
|---------------|-----------|---------------|-------|
| Test Mode 1 : | TX CH00   | Temperature : | 26 °C |
| Memo :        |           | Humidity :    | 59%   |



| 1         0.2660         24.80         10.84         35.64         61.24         -25.60           2         0.2660         10.29         10.84         21.13         51.24         -30.11           3         *         0.6020         33.99         9.99         43.98         56.00         -12.02           4         0.6020         22.58         9.99         32.57         46.00         -13.43           5         1.1980         24.30         9.95         34.25         56.00         -21.75           6         1.1980         7.01         9.95         16.96         46.00         -29.04           7         1.9580         18.09         9.99         28.08         56.00         -27.92           8         1.9580         4.58         9.99         14.57         46.00         -31.43           9         2.8500         18.21         10.03         28.24         56.00         -27.76 |         |    | Over   | Limit | Measure-<br>ment | Correct<br>Factor | Reading<br>Level | Freq.  | Mk. | No. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|--------|-------|------------------|-------------------|------------------|--------|-----|-----|
| 2         0.2660         10.29         10.84         21.13         51.24         -30.11           3         *         0.6020         33.99         9.99         43.98         56.00         -12.02           4         0.6020         22.58         9.99         32.57         46.00         -13.43           5         1.1980         24.30         9.95         34.25         56.00         -21.75           6         1.1980         7.01         9.95         16.96         46.00         -29.04           7         1.9580         18.09         9.99         28.08         56.00         -27.92           8         1.9580         4.58         9.99         14.57         46.00         -31.43           9         2.8500         18.21         10.03         28.24         56.00         -27.76                                                                                                   | etector | De | dB     | dBuV  | dBuV             | dB                | dBuV             | MHz    |     |     |
| 3 *       0.6020       33.99       9.99       43.98       56.00       -12.02         4       0.6020       22.58       9.99       32.57       46.00       -13.43         5       1.1980       24.30       9.95       34.25       56.00       -21.75         6       1.1980       7.01       9.95       16.96       46.00       -29.04         7       1.9580       18.09       9.99       28.08       56.00       -27.92         8       1.9580       4.58       9.99       14.57       46.00       -31.43         9       2.8500       18.21       10.03       28.24       56.00       -27.76                                                                                                                                                                                                                                                                                                             | QP      |    | -25.60 | 61.24 | 35.64            | 10.84             | 24.80            | 0.2660 |     | 1   |
| 4       0.6020       22.58       9.99       32.57       46.00       -13.43         5       1.1980       24.30       9.95       34.25       56.00       -21.75         6       1.1980       7.01       9.95       16.96       46.00       -29.04         7       1.9580       18.09       9.99       28.08       56.00       -27.92         8       1.9580       4.58       9.99       14.57       46.00       -31.43         9       2.8500       18.21       10.03       28.24       56.00       -27.76                                                                                                                                                                                                                                                                                                                                                                                                  | AVG     |    | -30.11 | 51.24 | 21.13            | 10.84             | 10.29            | 0.2660 |     | 2   |
| 5         1.1980         24.30         9.95         34.25         56.00         -21.75           6         1.1980         7.01         9.95         16.96         46.00         -29.04           7         1.9580         18.09         9.99         28.08         56.00         -27.92           8         1.9580         4.58         9.99         14.57         46.00         -31.43           9         2.8500         18.21         10.03         28.24         56.00         -27.76                                                                                                                                                                                                                                                                                                                                                                                                                 | QP      |    | -12.02 | 56.00 | 43.98            | 9.99              | 33.99            | 0.6020 | *   | 3   |
| 6         1.1980         7.01         9.95         16.96         46.00         -29.04           7         1.9580         18.09         9.99         28.08         56.00         -27.92           8         1.9580         4.58         9.99         14.57         46.00         -31.43           9         2.8500         18.21         10.03         28.24         56.00         -27.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AVG     |    | -13.43 | 46.00 | 32.57            | 9.99              | 22.58            | 0.6020 |     | 4   |
| 71.958018.099.9928.0856.00-27.9281.95804.589.9914.5746.00-31.4392.850018.2110.0328.2456.00-27.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QP      |    | -21.75 | 56.00 | 34.25            | 9.95              | 24.30            | 1.1980 |     | 5   |
| 8         1.9580         4.58         9.99         14.57         46.00         -31.43           9         2.8500         18.21         10.03         28.24         56.00         -27.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AVG     |    | -29.04 | 46.00 | 16.96            | 9.95              | 7.01             | 1.1980 |     | 6   |
| 9 2.8500 18.21 10.03 28.24 56.00 -27.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QP      |    | -27.92 | 56.00 | 28.08            | 9.99              | 18.09            | 1.9580 |     | 7   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVG     |    | -31.43 | 46.00 | 14.57            | 9.99              | 4.58             | 1.9580 |     | 8   |
| 10 2.8500 5.25 10.03 15.28 46.00 -30.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QP      |    | -27.76 | 56.00 | 28.24            | 10.03             | 18.21            | 2.8500 |     | 9   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AVG     |    | -30.72 | 46.00 | 15.28            | 10.03             | 5.25             | 2.8500 |     | 10  |
| 11 3.8340 17.81 10.05 27.86 56.00 -28.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QP      |    | -28.14 | 56.00 | 27.86            | 10.05             | 17.81            | 3.8340 |     | 11  |
| 12 3.8340 3.85 10.05 13.90 46.00 -32.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AVG     |    | -32.10 | 46.00 | 13.90            | 10.05             | 3.85             | 3.8340 |     | 12  |



| Power :       | 120V/60Hz | Phase :       | Neutral |
|---------------|-----------|---------------|---------|
| Test Mode 1 : | TX CH00   | Temperature : | 26 °C   |
| Memo :        |           | Humidity :    | 59 %    |



| No. Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|---------|--------|------------------|-------------------|------------------|-------|--------|----------|
|         | MHz    | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1       | 0.1580 | 22.34            | 11.75             | 34.09            | 65.56 | -31.47 | QP       |
| 2       | 0.1580 | 8.34             | 11.75             | 20.09            | 55.56 | -35.47 | AVG      |
| 3       | 0.2660 | 23.33            | 10.84             | 34.17            | 61.24 | -27.07 | QP       |
| 4       | 0.2660 | 7.91             | 10.84             | 18.75            | 51.24 | -32.49 | AVG      |
| 5 *     | 0.5980 | 28.94            | 9.99              | 38.93            | 56.00 | -17.07 | QP       |
| 6       | 0.5980 | 14.96            | 9.99              | 24.95            | 46.00 | -21.05 | AVG      |
| 7       | 1.1980 | 22.27            | 9.95              | 32.22            | 56.00 | -23.78 | QP       |
| 8       | 1.1980 | 4.24             | 9.95              | 14.19            | 46.00 | -31.81 | AVG      |
| 9       | 2.3420 | 16.48            | 10.00             | 26.48            | 56.00 | -29.52 | QP       |
| 10      | 2.3420 | -0.22            | 10.00             | 9.78             | 46.00 | -36.22 | AVG      |
| 11      | 3.2380 | 14.91            | 10.04             | 24.95            | 56.00 | -31.05 | QP       |
| 12      | 3.2380 | 0.67             | 10.04             | 10.71            | 46.00 | -35.29 | AVG      |

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.



## 8 Photographs

Refer to Test Setup Photos \*\*End of Report\*\*