

Report No.: JYTSZ-R12-2301713

FCC REPORT

(ZIGBEE)

Report No.:	JYTSZ-R12-2301713		
Applicant:	Hangzhou Roombanker Technology Co., Ltd.		
Address of Applicant:	A#801 Wantong center, Hangzhou, China.		
Equipment Under Test (E	UT)		
Product Name:	Home Security Hub(Station)		
Model No.: Trade Mark:	RBGW-202-915(US), RBGW-202-915(LA), RBGW-202- 915(AU), RBGW-202-915(XX)/YYY: (X:0~9 or X:A~Z)/(Y:0~9 or Y:A~Z), RBGW-202-915(XX)/YYY:(X:0~9 or X:A~Z)/(Y:0~9 or Y:A~Z or blank) Roombanker		
FCC ID:	2AUXBRBGW-202		
Applicable Standards:	FCC CFR Title 47 Part 15C (§15.247)		
Date of Sample Receipt:	23 Nov., 2023		
Date of Test:	24 Nov., 2023 to 19 Jan., 2024		
Date of Report Issued:	22 Jan., 2024		
Test Result:	PASS		

Project by:	Project Engineer	Date:	22 Jan., 2024
Reviewed by:	Servor Enginee	Date:	22 Jan., 2024
Approved by:	Janot-Wei Manager	_ Date:	22 Jan., 2024

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	22 Jan., 2024	Original

3 Contents

			Page
1	CO\	/ER PAGE	1
2	VER	SION	2
3		NTENTS	
4		NERAL INFORMATION	
	4.1	CLIENT INFORMATION	
	4.2	GENERAL DESCRIPTION OF E.U.T.	
	4.3	TEST ENVIRONMENT AND MODE	
	4.4	DESCRIPTION OF SUPPORT UNITS	
	4.5	MEASUREMENT UNCERTAINTY	5
	4.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	5
	4.7	LABORATORY FACILITY	6
	4.8	LABORATORY LOCATION	
	4.9	TEST INSTRUMENTS LIST	7
5	ME	ASUREMENT SETUP AND PROCEDURE	9
	5.1	TEST CHANNEL	9
	5.2	TEST SETUP	9
	5.3	TEST PROCEDURE	11
6	TES	T RESULTS	12
	6.1	SUMMARY	12
	6.1.	1 Clause and Data Summary	
	6.1.2	2 Test Limit	13
	6.2	ANTENNA REQUIREMENT	14
	6.3	AC POWER LINE CONDUCTED EMISSION	
	6.4	EMISSIONS IN RESTRICTED FREQUENCY BANDS	
	6.5	EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	21

4 General Information

4.1 Client Information

Applicant: Hangzhou Roombanker Technology Co., Ltd.	
Address: A#801 Wantong center, Hangzhou, China.	
Manufacturer/Factory:	Zhejiang dusun electron co., ltd.
Address:	No.640 Feng Qing St, DeQing Zhejiang China.

4.2 General Description of E.U.T.

Product Name:	Home Security Hub(Station)
Model No.:	RBGW-202-915(US), RBGW-202-915(LA), RBGW-202-915(AU) RBGW-202-915(XX)/YYY: (X:0~9 or X:A~Z)/(Y:0~9 or Y:A~Z), RBGW- 202-915(XX)/YYY:(X:0~9 or X:A~Z)/(Y:0~9 or Y:A~Z or blank)
Operation Frequency:	2405MHz~2480MHz (IEEE 802.15.4)
Channel numbers:	16 for (IEEE 802.15.4)
Channel separation:	5 MHz
Modulation technology: (IEEE 802.15.4)	OQPSK
Data speed(IEEE 802.15.4):	250kbps
Antenna Type:	PCB Antenna
Antenna gain:	-4.2 dBi
Power Supply:	DC 5V
Test Sample Condition:	The applicant provided engineering samples for staying in continuously transmitting for testing.
Remark:	RBGW-202-915(US), RBGW-202-915(LA), RBGW-202-915(AU), RBGW-202-915(XX)/YYY: (X:0~9 or X:A~Z)/(Y:0~9 or Y:A~Z), RBGW- 202-915(XX)/YYY:(X:0~9 or X:A~Z)/(Y:0~9 or Y:A~Z or blank) were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

4.3 Test environment and mode

Operating Environment:	
Temperature:	15℃ ~ 35℃
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

4.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
Lenovo	Laptop	ThinkPad T14 Gen 1	SL10Z47277	DoC

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))			
Conducted Emission for LISN (9kHz ~ 150kHz)	1.9 dB			
Conducted Emission for LISN (150kHz ~ 30MHz)	2.6 dB			
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	3.6 dB			
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	5.34 dB			
Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.				

4.6 Additions to, deviations, or exclusions from the method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd. Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jvt.lets.com

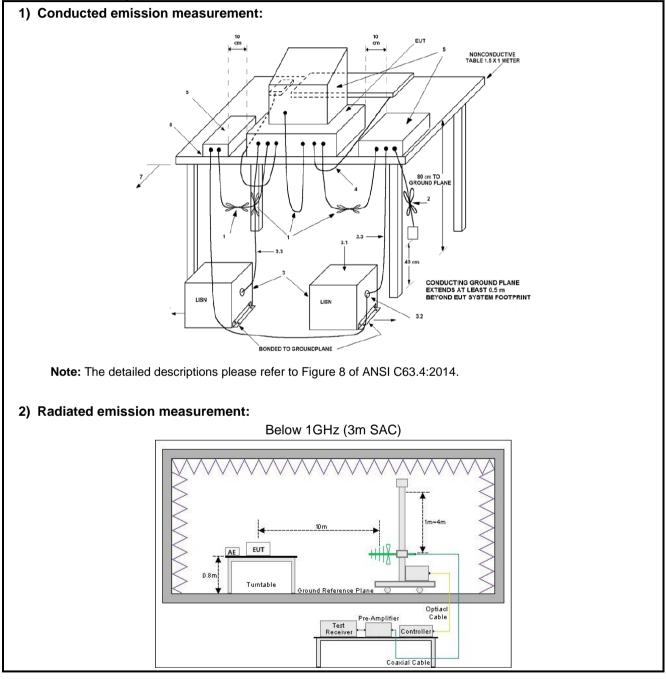
4.9 Test Instruments list

Radiated Emission(3m F	FAR):				
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m FAR	YUNYI	9m*6m*6m	WXJ097	06-15-2023	06-14-2028
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ097-2	07-13-2023	07-12-2024
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	07-02-2021	07-01-2024
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ097-3	07-14-2023	07-13-2024
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	01-09-2023	01-08-2024
Hom Antenna	Schwarzbeck	DDRA9120D	VV AJ002-3	12-28-2023	12-27-2024
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	01-09-2023	01-08-2024
Hom Antenna	Schwarzbeck	DDRA9170		12-28-2023	12-27-2024
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-6	01-09-2023	01-08-2024
Hom Antenna	Schwarzbeck	DDRA9170		12-28-2023	12-27-2024
Pre-amplifier (30MHz ~ 1GHz)	YUNYI	PAM-310N	WXJ097-5	05-14-2023	05-13-2024
Pre-amplifier (1GHz ~ 18GHz)	YUNYI	PAM-118N	WXJ097-6	05-14-2023	05-13-2024
Pre-amplifier			WXJ002-7	01-11-2023	01-10-2024
(18GHz ~ 40GHz)	RF System	TRLA-180400G45B		12-27-2023	12-26-2024
		50010		01-10-2023	01-09-2024
EMI Test Receiver	Rohde & Schwarz	ESCI3	WXJ003	12-27-2023	12-26-2024
Crastrum Analyzan	Dahda & Caburara			01-10-2023	01-09-2024
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	12-27-2023	12-26-2024
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ081-1	06-13-2023	06-12-2024
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-13M	WXG097-1	08-01-2023	07-31-2024
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG097-2	08-01-2023	07-31-2024
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG097-3	08-01-2023	07-31-2024
High Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	I/A
Low Band Reject Filter Group	Tonscend	JS0806-F	WXJ097-4	Ν	I/A
Test Software	Tonscend	TS+		Version: 5.0.0	

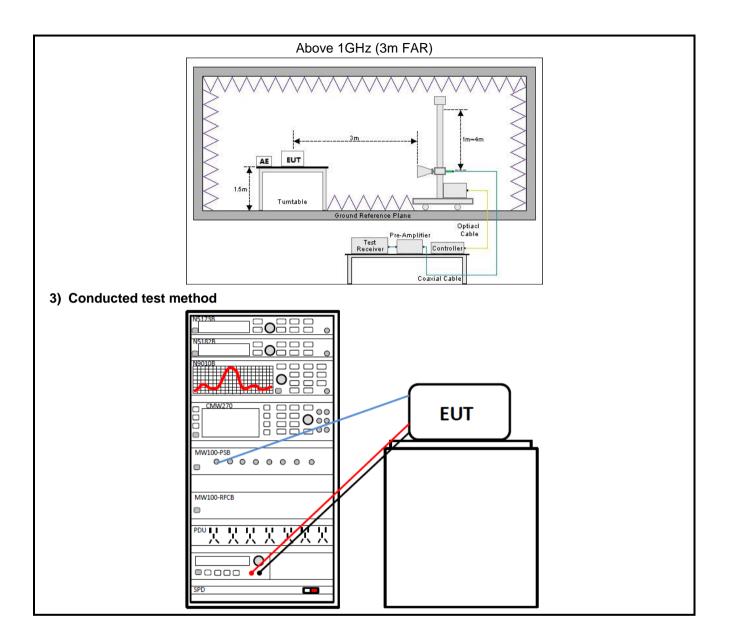
Radiated Emission(10m SAC):					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024
DiConil on Antonno				01-17-2023	01-16-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	12-28-2023	12-27-2024
DiConil on Antonno				01-10-2023	01-09-2024
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	12-28-2023	12-27-2024
				01-10-2023	01-09-2024
EMI Test Receiver	R&S	ESR 3	WXJ090-3	12-27-2023	12-26-2024
			14/1/ 1000 4	01-11-2023	01-09-2024
EMI Test Receiver	R&S	ESR 3	WXJ090-4	12-27-2023	12-26-2024
Low Dro omnlifior	Deat			01-10-2023	01-09-2024
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-6	12-27-2023	12-26-2024
Low Dro omnlifior	Deat		W/X 1000 7	01-10-2023	01-09-2024
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-7	12-27-2023	12-26-2024
Cabla	Deat			01-18-2023	01-17-2024
Cable	Bost	JYT10M-1G-NN-10M	WXG002-7	01-17-2024	01-16-2025
Cabla	Deet		M WXG002-8	01-18-2023	01-17-2024
Cable	Bost	JYT10M-1G-NN-10M		01-17-2024	01-16-2025
Test Software	R&S	EMC32	Version: 10.50.40		

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-05-2023	07-04-2024
	Schwarzbeck	NSLK 8127	QCJ001-13	01-10-2023	01-09-2024
LISN				12-27-2023	12-26-2024
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	01-11-2023	01-10-2024
LIGIN				12-27-2023	12-26-2024
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-22-2023	02-21-2024
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A	
Test Software	AUDIX	E3	l V	Version: 6.110919b	

Conducted Method:	Conducted Method:											
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)							
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	11-01-2023	10-31-2024							
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	01-09-2023	01-08-2025							
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	09-25-2023	09-24-2024							
DC Power Supply	Keysight	E3642A	WXJ025-2	Ν	J/A							
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	J/A							
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0								


5 Measurement Setup and Procedure

5.1 Test Channel


According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowe	est channel	Midd	le channel	Highest channel		
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
1	2405	8	2440	16	2480	

5.2 Test Setup

5.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	 For below 1GHz: The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m. EUT works in each mode of operation that needs to be tested → and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. For above 1GHz: The EUT works in each mode of operation that needs to be tested → and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configurations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. EUT works in each mode of operation that needs to be tested → and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
Conducted test method	 The BLE antenna port of EUT was connected to the test data. The BLE antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A - Zigbee	Pass
Conducted Output Power	15.247 (b)(3)	Appendix A - Zigbee	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - Zigbee	Pass
Power Spectral Density	15.247 (e)	Appendix A - Zigbee	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A - Zigbee	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 6.5	Pass

2. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).
 ANSI C63.10-2013

Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02

6.1.2 Test Limit

Test items			Lin	nit						
		Frequency		Limit (d	lBμV)					
		(MHz)	Qua	si-Peak	Average					
AC Power Line Conducted		0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1					
Emission		0.5 – 5		56	46					
		5 – 30		60	50					
		Note 1: The limit level in dBµV decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies.								
Conducted Output Power		For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt.								
6dB Emission Bandwidth	The	The minimum 6 dB bandwidth shall be at least 500 kHz.								
99% Occupied Bandwidth	N/A	۱.								
Power Spectral Density	inte		antenna shall	not be greate	density conducted from er than 8 dBm in any 3 sion.					
Band-edge Emission Conduction Spurious Emission	spe frec dB high radi the pow per this limi whi	below that in the 100 k nest level of the desire iated measurement, pr peak conducted powe ver limits based on the mitted under paragraph paragraph shall be 30 ts specified in §15.209	alated intention oduced by the Hz bandwidth d power, base ovided the tra r limits. If the use of RMS a h (b)(3) of this d B instead of (a) is not requi- bands, as def	nal radiator is intentional r within the based on either a nsmitter dem transmitter co averaging over section, the 20 dB. Atter ired. In additi ined in §15.2	s operating, the radio adiator shall be at leas and that contains the n RF conducted or a constrates compliance omplies with the condu- er a time interval, as attenuation required un totation below the gene ion, radiated emissions (05(a), must also comp	with cted nder eral				
		Frequency		IBμV/m)	Detector					
		(MHz)	@ 3m	@ 10m	Questionali					
Emissions in Restricted		30 – 88 88 – 216	40.0	30.0	Quasi-peak	-				
Frequency Bands		216 - 960	43.5 46.0	33.5 36.0	Quasi-peak Quasi-peak	-				
r requericy barrus		960 - 1000	54.0	44.0	Quasi-peak	-				
		Note: The more stringent limit			Quudo pour	1				
Emissions in Non-restricted			-pp.ee at a anota	Limit (dBµV/	m) @ 3m					
Frequency Bands		Frequency	Ave	rage	Peake					
		Above 1 GHz	54	4.0	74.0					
		Note: The measurement band	dwidth shall be 1 M	Hz or greater.						

6.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

15.203 requirement:

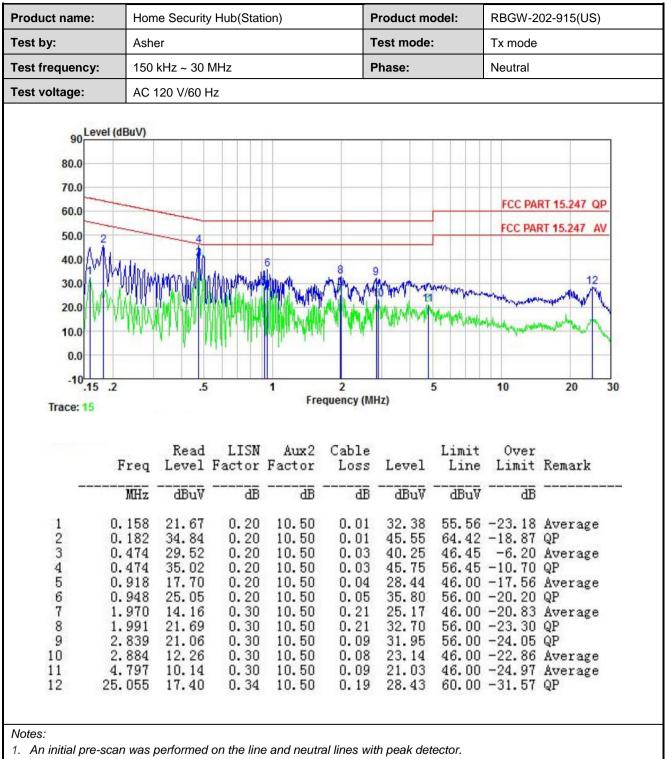
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Zigbee antenna is a PCB antenna, its connector is a special connection port and which cannot replace by end-user, the best case gain of the antenna is -0.51 dBi. See product internal photos for details.


oduct name:	Home Secu		Product n	nodel:	RBGW	/-202-915(US				
st by:	Asher				Test mod	e:	Tx mo	de		
st frequency:	150 kHz ~ 3	30 MHz			Phase:		Line	ie		
st voltage:	AC 120 V/6	AC 120 V/60 Hz								
Laual (dD	10									
90 Level (dBu	V)									
80.0		· · · · · · · · · · · · · · · · · · ·								
70.0										
60.0						_	FCC PA	ART 15.247 QP		
50.0 2							FCC PA	RT 15.247 AV		
40.0 Jumps.	1									
1° V V	2. N. N. A. A. A.	ADDAR HAN	Ölu at	8	9					
30.0	Manuel	A MARINE A		with my	10 marshare	La stranter	theme	when the me		
20.0	ANAMAN	CML, M	W W	M. M. M.	and the market	and the second second	mul mul	12 No. 12		
10.0	*¥* 11		111 .1				A Start and a strategy and a	and the state		
0.0										
10		5		2		5	10	20		
		5	1 Fre	2 equency (M	Hz)	5	10	20		
-10.15 .2		5	-	_	Hz)	5	10	20		
-10.15 .2			Fre	equency (M	Hz)			20		
-10.15 .2 Trace: 17	Read		Fre Aux2	_	Hz) Level	5 Limit Line	Over	20 Remark		
-10.15 .2 Trace: 17 Fr	Read eq Level	LISN Factor	Aux2 Factor	equency (M Cable Loss	Level	Limit Line	Over Limit			
-10 <mark>.15 .2</mark> Trace: 17 Fr	Read eq Level Hz dBuV	LISN Factor dB	Aux2 Factor dB	Cable Loss dB	Level dBuV	Limit Line dBuV	Over Limit 	Remark		
-10 <mark>.15 .2</mark> Trace: 17 Fr M 1 0.1	Read eq Level Hz dBuV 58 20.77	LISN Factor dB 0.20	Aux2 Factor dB 10.50	Cable Loss dB 0.01	Level dBuV 31.48	Limit Line dBuV 55.56	Over Limit dB -24.08	Remark 		
-10 <mark>.15 .2</mark> Trace: 17 Fr	Read eq Level Hz dBuV 58 20.77 58 32.99	LISN Factor dB 0.20 0.20 0.20 0.20	Aux2 Factor dB 10.50 10.50 10.50	Cable Loss dB 0.01 0.01 0.03	Level dBuV	Limit Line dBuV 55.56 65.56 46.45	Over Limit dB -24.08 -21.86 -6.19	Remark Average QP Average		
-10 <mark>.15 .2</mark> Trace: 17 Fr M 1 0.1 2 0.1 3 0.4 4 0.4	Read eq Level Hz dBuV 58 20.77 58 32.99 74 29.53 74 33.38	LISN Factor dB 0.20 0.20 0.20 0.20 0.20	Aux2 Factor dB 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.01 0.03 0.03	Level dBuV 31.48 43.70 40.26 44.11	Limit Line dBuV 55.56 65.56 46.45 56.45	Over Limit 	Remark Average QP Average QP		
-10 <mark>.15 .2</mark> Trace: 17 Fr M 1 0.1 2 0.1 3 0.4 4 0.4 5 0.9	Read eq Level Hz dBuV 58 20.77 58 32.99 74 29.53 74 33.38 28 20.78	LISN Factor dB 0.20 0.20 0.20 0.20 0.20 0.20 0.20	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.03 0.04	Level dBuV 31.48 43.70 40.26 44.11 31.52	Limit Line dBuV 55.56 65.56 46.45 56.45 46.00	Over Limit -24.08 -21.86 -6.19 -12.34 -14.48	Remark Average QP Average QP Average		
-10 <mark>.15 .2</mark> Trace: 17 Fr M 1 0.1 2 0.1 3 0.4 4 0.4 5 0.9 6 0.9	Read eq Level Hz dBuV 58 20.77 58 32.99 74 29.53 74 33.38 28 20.78 38 24.90	LISN Factor dB 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.03 0.03 0.04 0.04	Level dBuV 31.48 43.70 40.26 44.11 31.52 35.64	Limit Line dBuV 55.56 65.56 46.45 56.45 46.00 56.00	Over Limit -24.08 -21.86 -6.19 -12.34 -14.48 -20.36	Remark Average QP Average QP Average QP		
-10 <mark>.15 .2</mark> Trace: 17 Fr M 1 0.1 2 0.1 3 0.4 4 0.4 5 0.9	Read eq Level Hz dBuV 58 20.77 58 20.77 58 32.99 74 29.53 74 33.38 28 20.78 38 24.90 29 15.51	LISN Factor dB 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.03 0.04	Level dBuV 31.48 43.70 40.26 44.11 31.52	Limit Line dBuV 55.56 65.56 46.45 56.45 46.00 56.00 46.00	Over Limit -24.08 -21.86 -6.19 -12.34 -14.48 -20.36	Remark QP Average QP Average QP Average QP Average		
-10 <mark>.15 .2</mark> Trace: 17 Fr 1 0.1 2 0.1 3 0.4 4 0.4 5 0.9 6 0.9 7 1.8 8 1.9 9 2.8	Read eq Level Hz dBuV 58 20.77 58 32.99 74 29.53 74 33.38 28 20.78 38 24.90 29 15.51 70 22.14 59 21.68	LISN Factor dB 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.03 0.04 0.04 0.04 0.19 0.21 0.08	Level dBuV 31.48 43.70 40.26 44.11 31.52 35.64 26.40 33.05 32.46	Limit Line dBuV 55.56 65.56 46.45 56.45 46.00 56.00 56.00 56.00 56.00	Over Limit -24.08 -21.86 -6.19 -12.34 -14.48 -20.36 -19.60 -22.95 -23.54	Remark Average QP Average QP Average QP Average QP Average QP QP		
-10 <mark>.15 .2</mark> Trace: 17 Fr 1 0.1 2 0.1 3 0.4 4 0.4 5 0.9 6 0.9 7 1.8 8 1.9 9 2.8 10 2.9	Read eq Level Hz dBuV 58 20.77 58 32.99 74 29.53 74 33.38 28 20.78 38 24.90 29 15.51 70 22.14 59 21.68 00 14.05	LISN Factor dB 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.03 0.04 0.04 0.19 0.21 0.08 0.08	Level dBuV 31.48 43.70 40.26 44.11 31.52 35.64 26.40 33.05 32.46 24.83	Limit Line dBuV 55.56 65.56 46.45 56.45 46.00 56.00 46.00 56.00 46.00 56.00	Over Limit -24.08 -21.86 -6.19 -12.34 -14.48 -20.36 -19.60 -22.95 -23.54 -21.17	Remark Average QP Average QP Average QP Average QP Average QP Average		
-10 <mark>.15 .2</mark> Trace: 17 Fr 1 0.1 2 0.1 3 0.4 4 0.4 5 0.9 6 0.9 7 1.8 8 1.9 9 2.8	Read eq Level Hz dBuV 58 20.77 58 32.99 74 29.53 74 33.38 28 20.78 38 24.90 29 15.51 70 22.14 59 21.68 00 14.05 24 15.88	LISN Factor dB 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	Aux2 Factor dB 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50	Cable Loss dB 0.01 0.03 0.03 0.04 0.04 0.04 0.19 0.21 0.08	Level dBuV 31.48 43.70 40.26 44.11 31.52 35.64 26.40 33.05 32.46	Limit Line dBuV 55.56 65.56 46.45 56.45 46.00 56.00 46.00 56.00 46.00 56.00 46.00	Over Limit -24.08 -21.86 -6.19 -12.34 -14.48 -20.36 -19.60 -22.95 -23.54 -21.17 -33.18	Remark Average QP Average QP Average QP Average QP Average QP Average		

6.3 AC Power Line Conducted Emission

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

roduc	t Name:	Home Se	curity Hub	o(Station)		Product m	odel:	RBGW	-202-915(L	RBGW-202-915(US)		
est By	/:	Kiran				Test mode	: :	Tx mod	le			
est Ch	nannel:	Lowest c	hannel			Polarizatio	on:	Vertical	I			
est Vo	oltage:	AC 120V	/60Hz									
Level[dBµV/m]	110 100 90 80 70 60 60 60 60 60 60 60 60 90 90		2		FCC Part 15C				FCC Part 15CP			
	20 10 2.31G	2.3198G 2.	3296G 2	.3394G 2.3492	2G 2.359G Frequency[Hz]	2.3688G	2.3786G	2.3884G	2.3982G	2.408G		
Susp	20	nit — AV Lin elector + RMS		cal PK — Vertical	Frequency[Hz]	2.3688G	2.3786G	2.3884G	2.3982G	2.408G		
Susp NO.	20 10 2.31G PK Lir • PK De	nit — AV Lin elector + RMS	nit — Vertio		Frequency[Hz]	2.36686G Margin [dB]	2.3786G	2.3884G	2.3982G Verdict	2.408G Polarit		
NO. 1	20 10 231G — PK Lir • PK Di ected Data Freq.	nit AV Lin tector • RMS a List Reading [dBµV] 24.49	Factor [dB/m] 34.22	Level [dBµV/m] 58.71	Frequency[Hz]	Margin	Angle [°] 82	Detector	Verdict			
NO. 1 2	20 10 231G PK Lin • PK Dir ected Data Freq. [MHz]	A List Reading [dBμV] 24.49 11.72	S Detector Factor [dB/m]	Level [dBµV/m]	Frequency(Hz)	Margin [dB]	Angle [°]	Detector	Verdict	Polarit		
NO. 1	20 10 2316 PK Lir • PK Di ected Data Freq. [MHz] 2330.97	nit AV Lin tector • RMS a List Reading [dBµV] 24.49	Factor [dB/m] 34.22	Level [dBµV/m] 58.71	Frequency[Hz] AV Limit [dBµV/m] 74.00	Margin [dB] 15.29	Angle [°] 82	Detector	Verdict	Polarit Vertica Vertica		
NO. 1 2	20 10 2316 PK Lir • PK Data ected Data Freq. [MHz] 2330.97 2330.97	A List Reading [dBμV] 24.49 11.72	Factor [dB/m] 34.22 34.22	Level [dBµV/m] 58.71 45.94	Frequency[Hz]	Margin [dB] 15.29 8.06	Angle [°] 82 218	Detector PK AV	Verdict PASS PASS	Polarit Vertica Vertica		
NO. 1 2 3	20 10 0 2316 PK Lin • PK Data Freq. [MHz] 2330.97 2330.97 2360.08	AV Lin a List Reading [dBμV] 24.49 11.72 11.39	Factor [dB/m] 34.22 34.20	Level [dBµV/m] 58.71 45.94 45.59	Erequency[Hz]	Margin [dB] 15.29 8.06 8.41	Angle [°] 82 218 222	Detector PK AV AV	Verdict PASS PASS PASS	Polarit Vertica Vertica		

6.4 Emissions in Restricted Frequency Bands

Produc	t Name:	Home	Security H	lub(Station)		Prod	uct mode	el: RB	GW-202-9	15(US)
Test By	y:	Kiran				Test	mode:	Tx	mode	
Test Cl	hannel:	Lowes	t channel			Pola	rization:	Ho	rizontal	
Test Vo	oltage:	AC 12	0V/60Hz							
Level[dB_LV/m]	110 100 90 80 70 60 40 30 20 10 0 2316	2.3198G	2 3296G	23394G 234	FCC Part 156	2 3688G	2.37860	5 2.3884G	FCC Part 150	PK Limit AV Limit 2408G
Susn	• PK	Detector RI	.imit — Hoi MS Detector	rizontal PK —— H	orizontal AV					
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2335.48	24.43	34.22	58.65	74.00	15.35	9	PK	PASS	Horizontal
2	2335.48	11.72	34.22	45.94	54.00	8.06	173	AV	PASS	Horizontal
3	2368.90	24.99	34.18	59.17	74.00	14.83	5	PK	PASS	Horizontal
4	2368.90	11.29	34.18	45.47	54.00	8.53	256	AV	PASS	Horizontal
5	2390.00	22.45	34.13	56.58	74.00	17.42	102	PK	PASS	Horizontal
6	2390.00	11.51	34.13	45.64	54.00	8.36	50	AV	PASS	Horizontal
	al Level = R				or + Cable Lo lower than the				rt.	

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Produc	t Name:	Home Se	curity Hub	(Station)		Produc	t model:	RBG	W-202-91	5(US)
Test By	y:	Kiran	Kiran					Tx m	node	
Test Cl	hannel:	Highest c	hannel			Polariz	ation:	Hori	zontal	
Test Vo	oltage:	AC 120V/	60Hz					·		
(ui/\rtgp)exer	110 100 90 80 70 60 50 40 30 20 10				FCC Part 150	· · · · · · · · · · · · · · · · · · ·			FCC Part 150	-PK Limit
Susp	2.478G	imit — AV L Petector ◆ RI		2.4846G 2.486	38G 2.489G Frequency[Hz prizontal AV	2.4912G]	2.4934G	2.4956G	2.4978G	2.5G
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2483.50	26.59	34.51	61.10	74.00	12.90	304	PK	PASS	Horizontal
2	2483.50	16.40	34.51	50.91	54.00	3.09	284	AV	PASS	Horizontal
3	2490.14	11.27	34.52	45.79	54.00	8.21	249	AV	PASS	Horizontal
4	2490.14	23.62	34.52	58.14	74.00	15.86	230	PK	PASS	Horizontal
5	2497.21	24.20	34.52	58.72	74.00	15.28	164	PK	PASS	Horizontal
6	2497.21	11.08	34.52	45.60	54.00	8.40	280	AV	PASS	Horizontal
	al Level = Re				or + Cable Lo lower than the		,		t.	

6.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

	me:	Home Security	Hub(Station)		Product model:		RBGW-202-915(US)		
est By:		Asher			Test mo	de:	Tx mode		
est Freque	ency:	30 MHz ~ 1 GH	Ηz		Polariza	tion:	Vertical & Horizontal		
est Voltage	e:	AC 120V/60Hz							
			F	- ull Spectrum					
						E		17.10	
	⁴⁵ T					F-(CC PART 15.24	⊧./ ⊥.Qm	
	40								
	+								
	30								
dB					*		*	un T	
Level in dBµV/	20				- <u>A</u>		*		
eve					<u> </u>		and the second se		
	10+					and the second second			
			الأسليل فالعاور والما	and the state of the second	and the second				
				and the second second					
	0 30M		and the second second second) 300	400	500 800		
	0 30M	50 60	80 100M	200		400 \$	500 800	1 0 1G	
	30M	50 60	80 100M	200 Frequency in	n Hz				
*	30M Critic	50 60	80 100M	200 Frequency in CC PART 15.	n Hz 247 10m		500 800 Final_Result Q		
*	30M Critic	50 60	80 100M	200 Frequency in	n Hz 247 10m				
	30M Critic Prev	50 60 al_Freqs PK+ iew Result 1H-Pl	80 100M	200 Frequency in CC PART 15.	n Hz 247 10m				
Critical Freque	30M Critic Prev Frev ncy	50 60 al_Freqs PK+ iew Result 1H-Pl	K+ P	200 Frequency in CC PART 15. Preview Result	n Hz 247 10m ∵1V-PK+ Height		Final_Result Q Azimuth	PK	
Critical Frequer (MHz	30M Critic Prev Frev	50 60 al_Freqs PK+ iew Result 1H-Pl S MaxPeak (dB µ V/m)	80 100M K+ P Limit (dB µ V/m)	200 Frequency in CC PART 15. Preview Result Margin (dB)	n Hz 247 10m : 1V-PK+ Height (cm)	Pol	Final_Result Q Azimuth (deg)	PK Corr. (dB/m)	
Critical Frequer (MHz 39.5545 167.594	30M Critic Prev Frev 	50 60 cal_Freqs PK+ iew Result 1H-Pl S MaxPeak (dB µ V/m) 10.31 12.51	K+ F Limit (dB μ V/m) 30.00 33.50	200 Frequency in CC PART 15. Preview Result Margin (dB) 19.69 20.99	1 Hz 247 10m 1V-PK+ Height (cm) 100.0 100.0	Pol V V	Final_Result Q Azimuth (deg) 57.0 177.0	PK Corr. (dB/m) -15.9 -15.2	
Critical Frequer (MHz 39.5545 167.594 235.397	30M Critic Prev Frev 500 500	50 60 cal_Freqs PK+ iew Result 1H-Pl S MaxPeak (dB µ V/m) 10.31 12.51 25.33	K+ Limit (dB μ V/m) 30.00 33.50 36.00	200 Frequency in CC PART 15. Preview Result Margin (dB) 19.69 20.99 10.67	1 Hz 247 10m 1V-PK+ Height (cm) 100.0 100.0	Pol V V V	Final_Result Q Azimuth (deg) 57.0 177.0 175.0	PK Corr. (dB/m) -15.9 -15.2 -17.5	
Critical Frequer (MHz 39.5545 167.594	30M Critic Prev Frev 500 500 500 500	50 60 cal_Freqs PK+ iew Result 1H-Pl S MaxPeak (dB µ V/m) 10.31 12.51	K+ F Limit (dB μ V/m) 30.00 33.50	200 Frequency in CC PART 15. Preview Result Margin (dB) 19.69 20.99	1 Hz 247 10m 1V-PK+ Height (cm) 100.0 100.0	Pol V V	Final_Result Q Azimuth (deg) 57.0 177.0	PK Corr. (dB/m) -15.9 -15.2	

Above 1GHz

		Test ch	annel: Lowest ch	annel		
		De	tector: Peak Valu	e		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4810.00	57.36	-7.68	49.68	74.00	24.32	Vertical
4810.00	57.95	-7.68	50.27	74.00	23.73	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4810.00	47.68	-7.68	40.00	54.00	14.00	Vertical
4810.00	47.76	-7.68	40.08	54.00	13.92	Horizontal
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4880.00	56.23	-7.78	48.45	74.00	25.55	Vertical
4880.00	58.61	-7.78	50.83	74.00	23.17	Horizontal
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4880.00	47.17	-7.78	39.39	54.00	14.61	Vertical
4880.00	48.16	-7.78	40.38	54.00	13.62	Horizontal
		Test ch	annel: Highest ch	nannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	58.60	-7.82	50.78	74.00	23.22	Vertical
4960.00	59.03	-7.82	51.21	74.00	22.79	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4960.00	46.93	-7.82	39.11	54.00	14.89	Vertical
4000.00		-7.82	40.75	54.00	13.25	Horizonta

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

-----End of report-----