

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2301525

FCC REPORT

(ZIGBEE)

Report No.: JYTSZ-R12-2301525

Applicant: Hangzhou Roombanker Technology Co., Ltd.

Address of Applicant: A#801 Wantong center, Hangzhou, China

Equipment Under Test (EUT)

Product Name: Smart Touch Screen Gateway

Model No.: DSGW-130, DSGW-130-X(X:1~100), DSGW-130-XXXX(X:0-

9&A-Z)

Trade Mark: Dusun

FCC ID: 2AUXBDSGW-130

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 30 Oct., 2023

Date of Test: 31 Oct., to 25 Dec., 2023

Date of Report Issued: 26 Dec., 2023

Test Result: PASS

Tested by: ______ Date: _____ 26 Dec., 2023

Reviewed by: 26 Dec., 2023

Approved by: Date: 26 Dec., 2023

Manager _____ Manager

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	26 Dec., 2023	Original

Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4	GENERAL INFORMATION	4
4.	.1 CLIENT INFORMATION	4
4.	.2 GENERAL DESCRIPTION OF E.U.T	4
4.	.3 TEST ENVIRONMENT AND MODE	5
4.	.4 DESCRIPTION OF SUPPORT UNITS	5
4.	.5 MEASUREMENT UNCERTAINTY	5
4.		
4.		
4.	.8 LABORATORY LOCATION	6
4.	.9 TEST INSTRUMENTS LIST	7
5	MEASUREMENT SETUP AND PROCEDURE	9
5.	.1 TEST CHANNEL	9
5.	.2 TEST SETUP	9
5.	.3 Test Procedure	11
6	TEST RESULTS	12
6.	.1 SUMMARY	12
	6.1.1 Clause and Data Summary	12
	6.1.2 Test Limit	13
6.		
6.		
6.		
6	5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	21

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 3 of 22

4 General Information

4.1 Client Information

Applicant:	Hangzhou Roombanker Technology Co., Ltd.
Address:	A#801 Wantong center, Hangzhou, China
Manufacturer/Factory:	Zhejiang dusun electron co., ltd
Address:	No.640 Feng Qing St,DeQing Zhejiang China

4.2 General Description of E.U.T.

Product Name:	Smart Touch Screen Gateway
Model No.:	DSGW-130, DSGW-130-X(X:1~100), DSGW-130-XXXX(X:0-9&A-Z)
Operation Frequency:	2405MHz~2480MHz (IEEE 802.15.4)
Channel numbers:	16 for (IEEE 802.15.4)
Channel separation:	5 MHz
Modulation technology: (IEEE 802.15.4)	OQPSK
Data speed(IEEE 802.15.4):	250kbps
Antenna Type:	Internal Antenna
Antenna gain:	2.52 dBi (Declare by Applicant)
Power Supply:	AC 100-240V
Test Sample Condition:	The applicant provided engineering samples for staying in continuously transmitting for testing.
Remark:	DSGW-130, DSGW-130-X(X:1~100), DSGW-130-XXXX(X:0-9&A-Z) were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 4 of 22

Report No.: JYTSZ-R12-2301525

4.3 Test environment and mode

Operating Environment:	
Temperature:	15℃ ~ 35℃
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Engineer:	Logan (Conducted measurement)
rest Engineer.	Kiran (Radiated measurement)
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

4.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
Lenovo	Laptop	ThinkPad T14 Gen 1	SL10Z47277	DoC

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	3.57 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	3.14 dB
Radiated Emission (30MHz ~ 200MHz) (10m SAC)	4.3 dB
Radiated Emission (30MHz ~ 1000MHz) (10m SAC)	4.3 dB
Radiated Emission (30MHz ~ 1GHz) (3m FAR)	3.43 dB
Radiated Emission (1GHz ~ 6GHz) (3m FAR)	4.95 dB
Radiated Emission (6GHz ~ 18GHz) (3m FAR)	5.23 dB
Radiated Emission (18GHz ~ 40GHz) (3m FAR)	5.32 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, deviations, or exclusions from the method

No

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No.: JYTSZ-R12-2301525

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4.9 Test Instruments list

Radiated Emission(3m FAR):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m FAR	YUNYI	9m*6m*6m	WXJ097	06-15-2023	06-14-2028	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ097-2	07-13-2023	07-12-2024	
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	07-02-2021	07-01-2024	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ097-3	07-14-2023	07-13-2024	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	01-09-2023	01-08-2024	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	01-09-2023	01-08-2024	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-6	01-09-2023	01-08-2024	
Pre-amplifier (30MHz ~ 1GHz)	YUNYI	PAM-310N	WXJ097-5	05-14-2023	05-13-2024	
Pre-amplifier (1GHz ~ 18GHz)	YUNYI	PAM-118N	WXJ097-6	05-14-2023	05-13-2024	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	01-11-2023	01-10-2024	
EMI Test Receiver	Rohde & Schwarz	ESCI3	WXJ003	01-10-2023	01-09-2024	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-10-2023	01-09-2024	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ081-1	06-13-2023	06-12-2024	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-13M	WXG097-1	08-01-2023	07-31-2024	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG097-2	08-01-2023	07-31-2024	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG097-3	08-01-2023	07-31-2024	
High Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Low Band Reject Filter Group	Tonscend	JS0806-F	WXJ097-4	N/A		
Test Software	Tonscend	TS+		Version: 5.0.0		

Radiated Emission(10m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
10m SAC	ETS	RFSD-100-F/A	WXJ090	04-28-2021	04-27-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-1	01-17-2023	01-16-2024	
BiConiLog Antenna	SCHWARZBECK	VULB 9168	WXJ090-2	01-10-2023	01-09-2024	
EMI Test Receiver	R&S	ESR 3	WXJ090-3	01-10-2023	01-09-2024	
EMI Test Receiver	R&S	ESR 3	WXJ090-4	01-11-2023	01-09-2024	
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-6	01-10-2023	01-09-2024	
Low Pre-amplifier	Bost	LNA 0920N	WXJ090-7	01-10-2023	01-09-2024	
Cable	Bost	JYT10M-1G-NN-10M	WXG002-7	01-18-2023	01-17-2024	
Cable	Bost	JYT10M-1G-NN-10M	WXG002-8	01-18-2023	01-17-2024	
Test Software	R&S	EMC32	Version: 10.50.40		0	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date	Cal. Due date	
			J	(mm-dd-yy)	(mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-05-2023	07-04-2024	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	01-10-2023	01-09-2024	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	01-11-2023	01-10-2024	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-22-2023	02-21-2024	
RF Switch	TOP PRECISION	RSU0301	WXG003	N/A		
Test Software	AUDIX	E3	V	Version: 6.110919b		

JianYan Testing Group Shenzhen Co., Ltd.

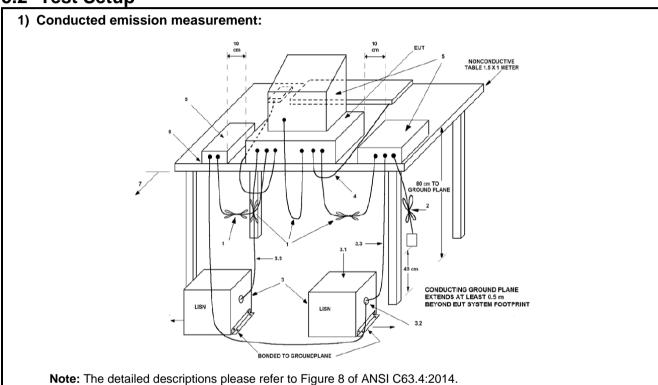
No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	09-25-2023	09-24-2024	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	01-09-2023	01-08-2025	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	09-25-2023	09-24-2024	
DC Power Supply	Keysight	E3642A	WXJ025-2	N	I/A	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N/A		
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0			

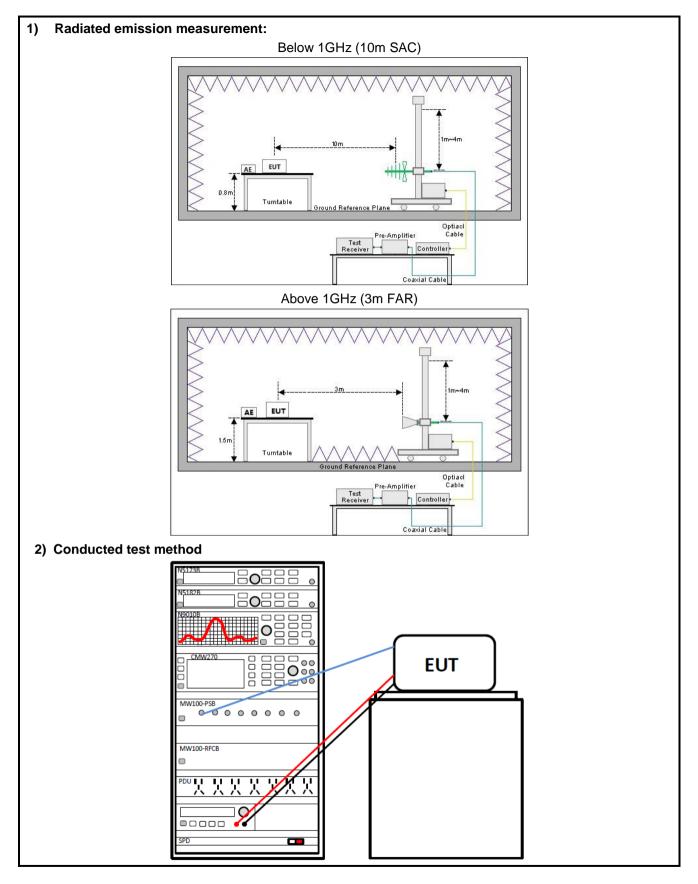
Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


5 Measurement Setup and Procedure

5.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Middle channel		Highest channel	
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2405	8	2440	16	2480


5.2 Test Setup

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test Procedure

Test method	Test step
Conducted emission	The E.U.T and simulators are connected to the main power through a line
	impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH
	coupling impedance for the measuring equipment.
	2. The peripheral devices are also connected to the main power through a LISN
	that provides a 50ohm/50uH coupling impedance with 50ohm termination.
	(Please refer to the block diagram of the test setup and photographs).3. Both sides of A.C. line are checked for maximum conducted interference. In
	order to find the maximum emission, the relative positions of equipment and
	all of the interface cables must be changed according to ANSI C63.10 on
	conducted measurement.
Radiated emission	For below 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a
	10 m semi anechoic chamber. The measurement distance from the EUT to
	the receiving antenna is 10 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.3. Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
	For above 1GHz:
	The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a
	3 m fully anechoic room. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
Conducted test method	 The ZigBEE antenna port of EUT was connected to the test port of the test system through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all
	modulation modes.
	Open the test software, prepare a test plan, and control the system through
	the software. After the test is completed, the test report is exported through
	the test software.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6 Test Results

6.1 Summary

6.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A - Zigbee	Pass
Conducted Output Power	15.247 (b)(3)	Appendix A - Zigbee	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - Zigbee	Pass
Power Spectral Density	15.247 (e)	Appendix A - Zigbee	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A - Zigbee	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 6.5	Pass

Remark:

ANSI C63.10-2013 Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Pass: The EUT complies with the essential requirements in the standard.

^{2.} The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

6.1.2 Test Limit

Test items			Lin	nit				
		Frequency		Limit (di	ΒμV)			
		(MHz)	Quas	si-Peak	Average			
AC Power Line Conducted		0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1			
Emission		0.5 – 5		56	46			
		5 – 30		60	50			
		Note 1: The limit level in dBu Note 2: The more stringent lir			n of frequency.			
Conducted Output Power		systems using digital r I 5725-5850 MHz band		the 902-928 N	MHz, 2400-2483.5 MH	Z,		
6dB Emission Bandwidth	The	e minimum 6 dB bandw	idth shall be a	at least 500 kH	Hz.			
99% Occupied Bandwidth	N/A							
Power Spectral Density	inte	digitally modulated systemional radiator to the and during any time inter	antenna shall	not be greate	r than 8 dBm in any 3			
Band-edge Emission Conduction Spurious Emission	spe fred dB high radi the pow per this limi whi	any 100 kHz bandwidth actrum or digitally modu quency power that is probelow that in the 100 k nest level of the desired inted measurement, propeak conducted power limits based on the mitted under paragraph paragraph shall be 30 ts specified in §15.209 of fall in the restricted in the radiated emission	lated intention oduced by the Hz bandwidth d power, base ovided the train r limits. If the truse of RMS and (b)(3) of this dB instead of (a) is not required.	nal radiator is a intentional radiator is within the bard on either arnsmitter demonstrates and intentional radiations. In additioned in §15.20	operating, the radio adiator shall be at leas nd that contains the n RF conducted or a constrates compliance of mplies with the conductratime interval, as attenuation required uruation below the geneon, radiated emissions 05(a), must also complete at least 150 must 150 m	with cted nder ral		
		Frequency	Limit (d	BμV/m)	Detector			
		(MHz)	@ 3m	@ 10m		-		
 	-	30 – 88	40.0	30.0	Quasi-peak	-		
Emissions in Restricted		88 – 216	43.5	33.5	Quasi-peak	-		
Frequency Bands	-	216 – 960	46.0	36.0	Quasi-peak	-		
	960 – 1000 54.0 44.0 Quasi-peak Note: The more stringent limit applies at transition frequencies.							
Emissions in Non-restricted		Note: The more stringent limit	applies at transition	n frequencies. Limit (dBµV/n	n) @ 3m	\mathbf{I}		
Frequency Bands		Frequency	Ava	· · ·	1			
		Above 1 GHz		rage I.0	Peake 74.0	1		
	 				14.0	1		
	Note: The measurement bandwidth shall be 1 MHz or greater.							

Report No.: JYTSZ-R12-2301525

6.2 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

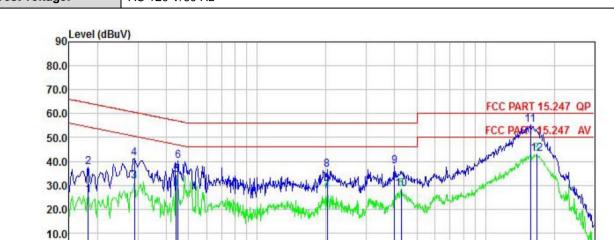
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The ZigBEE antenna is an Internal antenna, its connector is a special connection port and which cannot replace by end-user, the best case gain of the antenna is 2.52 dBi. See product internal photos for details.

6.3 AC Power Line Conducted Emission

Product name:	Smart Touch Screen Gateway	Product model:	DSGW-130
Test by:	Kiran	Test mode:	Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		

_		V. 1
Tra	200	
110	16	7.4

0.0

-10<mark>.15 .2</mark>

	Freq	Read Level	LISN Factor	Aux2 Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB	dB	₫B	dBu₹	dBu₹	dB	
1	0.182	15.02	0.20	10.50	0.01	25.73	54.42	-28.69	Average
2	0.182	27.07	0.20	10.50	0.01	37.78	64.42	-26.64	QP
3	0.289	20.87	0.20	10.50	0.03	31.60	50.54	-18.94	Average
	0.289	30.45	0.20	10.50	0.03	41.18	60.54	-19.36	QP
4 5 6	0.442	23.40	0.20	10.50	0.03	34.13	47.02	-12.89	Average
6	0.449	29.45	0.20	10.50	0.03	40.18	56.89	-16.71	QP
7	2.023	16.60	0.20	10.50	0.20	27.50	46.00	-18.50	Average
8	2.023	25.59	0.20	10.50	0.20	36.49	56.00	-19.51	QP
9	3.985	27.05	0.20	10.50	0.08	37.83	56.00	-18.17	QP
10	4.292	17.57	0.20	10.50	0.08	28.35	46.00	-17.65	Average
11	15.718	44.38	0.21	10.50	0.15	55.24	60.00	-4.76	QP
12	16.750	32.26	0.24	10.50	0.16	43.16	50.00	-6.84	Average

2

Frequency (MHz)

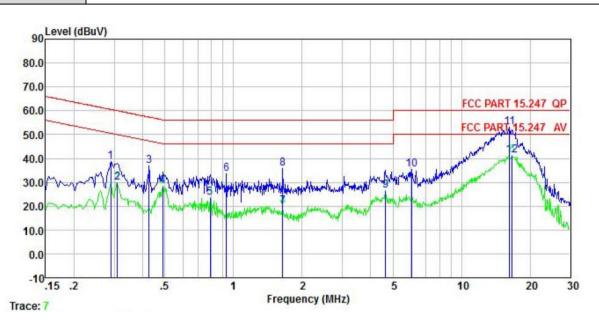
5

10

20

30

Notes:


- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

.5

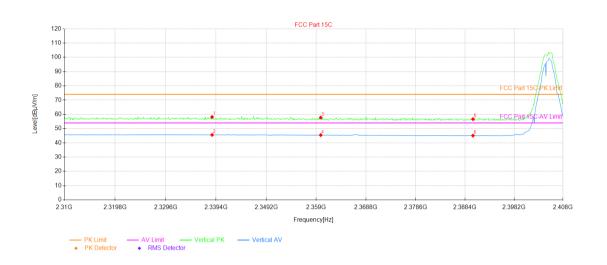
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	name: Smart Touch Screen Gateway		DSGW-130
Test by:	Kiran	Test mode:	Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

	Freq	Read Level	LISN Factor	Aux2 Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∜	dB	<u>dB</u>	dB	dBu₹	dBu∀	<u>dB</u>	
1 2	0.289 0.310	28.18 19.30	0.10 0.10	10.50 10.50	0.03 0.03	38.81 29.93		-21.73 -20.04	QP Average
2	0.426	26.36	0.10	10.50	0.03	36.99	57.33	-20.34	QP
4 5 6 7	0.489 0.792	17.58 13.01	0.10 0.10	10.50	0.03	28. 21 23. 64			Average Average
6	0.933	22.79	0.10	10.50	0.04	33.43	56.00	-22.57	QP
	1.645 1.645	9.26 24.97	0.10 0.10	10.50 10.50	0.16	20.02 35.73		-25.98 -20.27	Average OP
9	4.647	15.88	0.10	10.50	0.09	26.57	46.00	-19.43	Average
10 11	6.024 16.226	24.64 41.77	0.15 0.50	10.50 10.50	0.09	35.38 52.93	60.00	-24.62 -7.07	
12	16.661	30.09	0.50	10.50	0.16	41.25	50.00		Average

Notes:

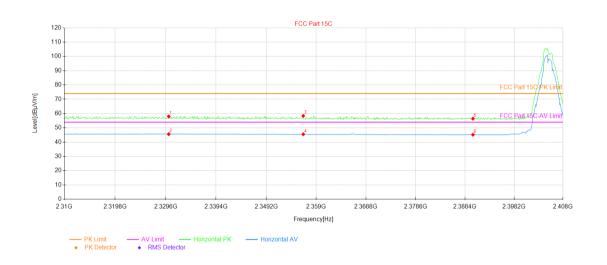
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.4 Emissions in Restricted Frequency Bands

Product Name:	Smart Touch Screen Gateway	Product model:	DSGW-130
Test By:	Kiran	Test mode:	Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120V/60HZ		

Susp	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity			
1	2338.62	23.96	34.21	58.17	74.00	15.83	176	PK	PASS	Vertical			
2	2338.62	11.37	34.21	45.58	54.00	8.42	324	AV	PASS	Vertical			
3	2359.88	23.54	34.20	57.74	74.00	16.26	5	PK	PASS	Vertical			
4	2359.88	11.28	34.20	45.48	54.00	8.52	113	AV	PASS	Vertical			
5	2390.00	22.54	34.13	56.67	74.00	17.33	220	PK	PASS	Vertical			
6	2390.00	10.97	34.13	45.10	54.00	8.90	140	AV	PASS	Vertical			


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Name: Smart Touch Screen Gateway F		DSGW-130
Test By:	Kiran	Test mode:	Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120V/60HZ		

Susp	Suspected Data List													
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity				
1	2330.19	23.79	34.22	58.01	74.00	15.99	94	PK	PASS	Horizontal				
2	2330.19	11.37	34.22	45.59	54.00	8.41	81	AV	PASS	Horizontal				
3	2356.45	24.18	34.20	58.38	74.00	15.62	126	PK	PASS	Horizontal				
4	2356.45	11.30	34.20	45.50	54.00	8.50	189	AV	PASS	Horizontal				
5	2390.00	22.31	34.13	56.44	74.00	17.56	44	PK	PASS	Horizontal				
6	2390.00	11.06	34.13	45.19	54.00	8.81	140	AV	PASS	Horizontal				

Remark

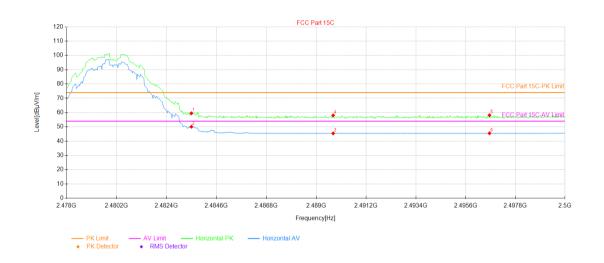
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 18 of 22

Product Name:	Smart Touch Screen Gateway	Product model:	DSGW-130
Test By:	Kiran	Test mode:	Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120V/60HZ		

Susp	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
1	2483.50	24.26	34.51	58.77	74.00	15.23	159	PK	PASS	Vertical
2	2483.50	15.05	34.51	49.56	54.00	4.44	167	AV	PASS	Vertical
3	2490.52	24.22	34.52	58.74	74.00	15.26	136	PK	PASS	Vertical
4	2490.52	10.99	34.52	45.51	54.00	8.49	194	AV	PASS	Vertical
5	2497.25	23.17	34.53	57.70	74.00	16.30	224	PK	PASS	Vertical
6	2497.25	10.97	34.53	45.50	54.00	8.50	303	AV	PASS	Vertical

Remark.


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 19 of 22

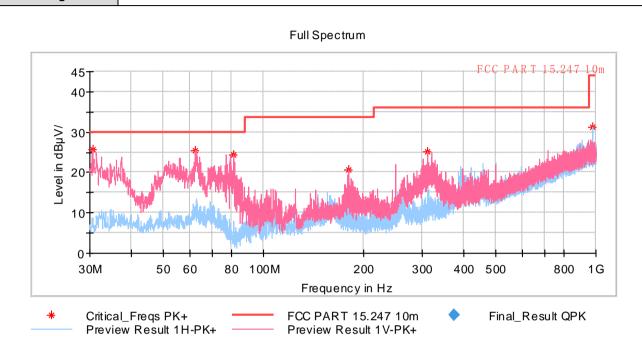
Project No.: JYTSZR2310084

Product Name:	Smart Touch Screen Gateway	Product model:	DSGW-130
Test By:	Kiran	Test mode:	Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120V/60HZ		

ı	Suspected Data List										
	NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Angle [°]	Detector	Verdict	Polarity
	1	2483.50	24.98	34.51	59.49	74.00	14.51	123	PK	PASS	Horizontal
	2	2483.50	15.57	34.51	50.08	54.00	3.92	119	AV	PASS	Horizontal
	3	2489.75	10.92	34.52	45.44	54.00	8.56	203	AV	PASS	Horizontal
	4	2489.75	23.51	34.52	58.03	74.00	15.97	135	PK	PASS	Horizontal
	5	2496.66	23.61	34.52	58.13	74.00	15.87	104	PK	PASS	Horizontal
	6	2496.66	10.98	34.52	45.50	54.00	8.50	127	AV	PASS	Horizontal

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 20 of 22

Project No.: JYTSZR2310084

6.5 Emissions in Non-restricted Frequency BandsBelow 1GHz:

Product Name:	Smart Touch Screen Gateway	Product model:	DSGW-130
Test By:	Asher	Test mode:	Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	AC 120V/60HZ		

Critical_Freqs

O : : : : O : : O :	1-						
Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dB μ V/m)	(dB µ V/m)	(dB)	(cm)		(deg)	(dB/m)
30.582000	25.73	30.00	4.27	100.0	٧	132.0	-17.4
62.204000	25.36	30.00	4.64	100.0	٧	313.0	-17.4
81.167500	24.39	30.00	5.61	100.0	٧	250.0	-20.4
180.883500	20.69	33.50	12.81	100.0	٧	341.0	-17.3
311.300000	25.15	36.00	10.85	100.0	٧	35.0	-14.6
980.163500	31.25	44.00	12.75	100.0	Н	217.0	-0.1

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 22

Above 1GHz

		annel: Lowest ch	14111101					
	Det	tector: Peak Valu	ie					
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
57.48	-7.68	49.80	74.00	24.20	Vertical			
57.57	-7.68	49.89	74.00	24.11	Horizontal			
Detector: Average Value								
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
46.73	-7.68	39.05	54.00	14.95	Vertical			
47.30	-7.68	39.62	54.00	14.38	Horizontal			
	Test ch	annel: Middle ch	annel					
	Det	tector: Peak Valu	ıe					
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
57.60	-7.78	49.82	74.00	24.18	Vertical			
57.38	-7.78	49.60	74.00	24.40	Horizontal			
	Dete	ctor: Average Va	lue		·			
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
46.25	-7.78	38.47	54.00	15.53	Vertical			
47.50	-7.78	39.72	54.00	14.28	Horizontal			
	- · ·							
Read Level	Factor(dB)	Level	Limit Line	Margin	Polarization			
` ,	-7.82	` ,	,	` '	Vertical			
					Horizontal			
31.33								
Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
45.93	-7.82	38.11	54.00	15.89	Vertical			
47.65	-7.82	39.83	54.00	14.17	Horizontal			
	57.48 57.57 Read Level (dBuV) 46.73 47.30 Read Level (dBuV) 57.60 57.38 Read Level (dBuV) 46.25 47.50 Read Level (dBuV) 57.18 57.05 Read Level (dBuV) 45.93	Test change Factor(dB) Fa	Test channel: Middle channel: Average Value	Clip	Columbia Columbia			

Remark

----End of report-----

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.