

Test Data


Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	6.766	30	Pass
NVNT	BLE	2442	Ant1	6.689	30	Pass
NVNT	BLE	2480	Ant1	6.348	30	Pass

-6dB Bandwidth

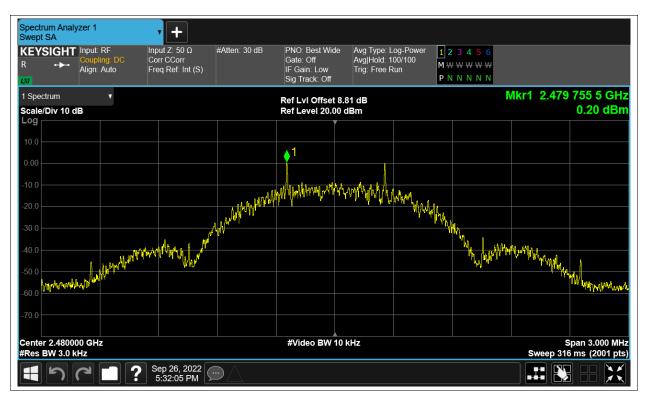
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	limit	Verdic
NVNT	BLE	2402	Ant1	0.696	0.5	Pass
NVNT	BLE	2442	Ant1	0.69	0.5	Pass
NVNT	BLE	2480	Ant1	0.685	0.5	Pass

Spectru Occupie		/zer 1		• +	•							
REYS	SIGHT ⊶⊷	Input: RI Coupling Align: Au	J: DC	Input Z: 5 Corr CCo Freq Ref:	rr	Atten: 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold: Radio Std:				
1 Graph	ı		v				Ref LvI Offset 8	3.81 dB		М	kr3 2.4803	52000 GHz
	Div 10.0	dB					Ref Value 28.81					0.52 dBm
Log 18.8						. 1						
8.81						$\wedge^2 \wedge^1$		~	→3			
-1.19												
-21.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and the second second second									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-31.2												
-41.2												
-61.2												
Center #Res B							#Video BW 300	.00 kHz			Sween 1 33	Span 2 MHz ms (10001 pts)
2 Metric			•								encep noo	
		0	united Dama	-1: -141-								
		Ucci	upied Band	1.0678	MHz				Total Power		12.8 dBm	
			smit Freq			9.420 kHz			% of OBW Powe	r	99.00 %	
		x dB	Bandwidt	h		684.7 kHz			x dB		-6.00 dB	
	5]?	Sep 26, 5:31:27	2022 7 PM							

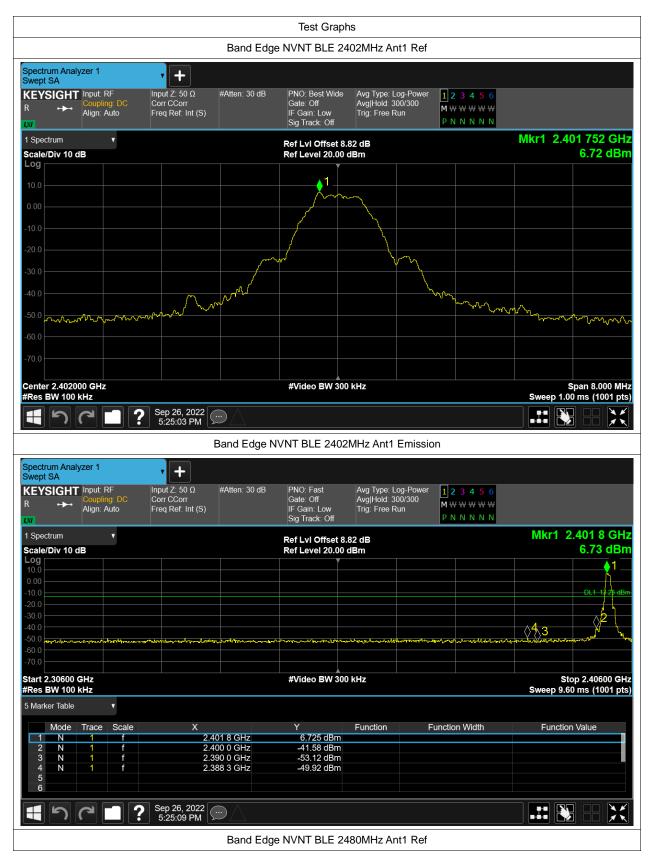
Occupied Channel Bandwidth

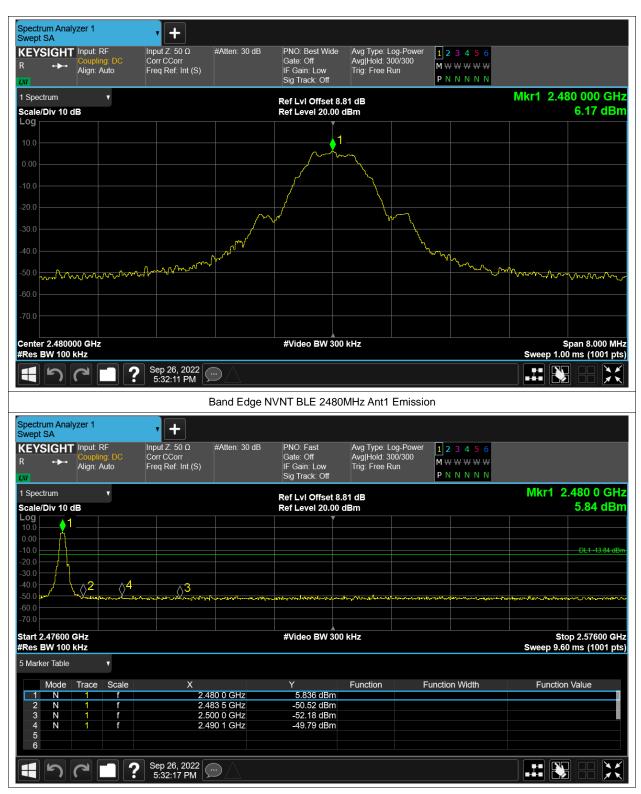
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.037831193
NVNT	BLE	2442	Ant1	1.038512064
NVNT	BLE	2480	Ant1	1.040438018

Occup	um Analy ied BW			• +									
R R	SIGHT .≁	Input: F Couplir Align: A	ng: DC	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)		: 30 dB	Trig: Free Run Gate: Off #IF Gain: Low		req: 2.4800000 : 1000/1000 d: None	00 GHz			
1 Grap	h		v				Ref LvI Offset	8.81 dB					
	Div 10.0	dB					Ref Value 28.8	1 dBm					
Log 18.8													
8.81													
-1.19								\sim	\sim				
-11.2						~~~~							
-21.2 -			~~~	mm 1	~~~						h	~~~~	
-31.2			and the second s										have a
-51.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~											· Vunn
-61.2													
Cente	r 2.48000	0 GHz				•	#Video BW 10	0.00 kHz		•			Span 3 MHz
#Res	3W 30.00)0 kHz										Sweep 3.33	ns (10001 pts)
2 Metri	cs		•										
		Oc	cupied Ban	dwidth 1.0404 MHz					T-4-1 D	-		40.0 JD	
									Total Powe			13.6 dBm	
			nsmit Freq B Bandwidt		8.324 1.290				% of OBW x dB	Powe	r	99.00 % -26.00 dB	
		xu		n	1.290				X UD			-20.00 dB	
	5		2	Sep 26, 2022 5:31:14 PM	\bigcirc	\mathbf{A}							


Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	0.592	8	Pass
NVNT	BLE	2442	Ant1	0.496	8	Pass
NVNT	BLE	2480	Ant1	0.205	8	Pass




Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-56.63	-20	Pass
NVNT	BLE	2480	Ant1	-55.95	-20	Pass

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-45.48	-20	Pass
NVNT	BLE	2442	Ant1	-49.76	-20	Pass
NVNT	BLE	2480	Ant1	-48.68	-20	Pass

