

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZ-R12-2200879

FCC REPORT

Applicant: Hangzhou Roombanker Technology Co., Ltd.

Address of Applicant: A#801 Wantong center, Hangzhou, China

Equipment Under Test (EUT)

Product Name: Indoor LoRaWAN Light Hotspot

Model No.: DSGW-090B

FCC ID: 2AUXBDSGW-090B

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 25 Apr., 2022

Date of Test: 26 Apr., to 11 May., 2022

Date of report issued: 12 May., 2022

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Reviewed by: Date: 12 May., 2022

Approved by: ______ Date: _____ 12 May., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	12 May., 2022	Original

Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		ITENTS	
		T SUMMARY	
4			
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	6
	5.7	LABORATORY FACILITY	7
	5.8	LABORATORY LOCATION	7
	5.9	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1	Conducted Emission Method	
	h / ''	Z Radiated Emission Mothod	.)()

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Conducted and radiated Spurious Emission	15.205/15.209	Pass

Remark:

- 1. Pass: Meet the requirement.
- 2. N/A: Not Applicable for Non-adaptive equipment.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

	ANSI C63.4-2014
Test Method:	ANSI C63.10-2013
	KDB 558074 D01 15.247 Meas Guidance v05r02

Page 4 of 32

5 General Information

5.1 Client Information

Applicant:	Hangzhou Roombanker Technology Co., Ltd.	
Address:	A#801 Wantong center, Hangzhou, China	
Manufacturer:	Hangzhou Roombanker Technology Co., Ltd.	
Address:	A#801 Wantong center, Hangzhou, China	

5.2 General Description of E.U.T.

Product Name:	Indoor LoRaWAN Light Hotspot
Model No.:	DSGW-090B
Operation Frequency:	923.3MHz~927.5MHz
Channel numbers:	500KHz Channel: 8 channels
Channel separation:	500 KHz
Modulation technology:	Lora
Antenna Type:	External Antenna
Antenna gain:	2.44 dBi
Power supply:	DC 5V
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation	Operation Frequency each of channel						
Channel	Channel Frequency Channel Frequency Channel Frequency						
1	923.3MHz	4	925.1MHz	7	926.9MHz		
2	923.9MHz	5	925.7MHz	8	927.5MHz		
3	924.5MHz	6	926.3MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 1, 5 & 8 were selected as Lowest, Middle and Highest channel..

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZ-R12-2200879

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Remark: Jian Yan Testing Group Shenzhen Co., Ltd. is only responsible for the test project data of the above samples, and will keep the above samples for a month.

5.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
LENOVO	Laptop	SL510	2847A65	DoC

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 150KHz) for V-AMN	3.11 dB
Conducted Emission (150kHz ~ 30MHz) for V-AMN	2.62 dB
Conducted Emission (150kHz ~ 30MHz) for AAN	3.54 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Additions to, deviations, or exclusions from the method

No

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZ-R12-2200879

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:	Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024		
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	02-17-2022	02-16-2023		
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022		
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	02-17-2022	02-16-2023		
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	02-17-2022	02-16-2023		
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	02-17-2022	02-16-2023		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-17-2022	02-16-2023		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-17-2022	02-16-2023		
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022		
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	02-17-2022	02-16-2023		
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	02-17-2022	02-16-2023		
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	02-17-2022	02-16-2023		
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	02-17-2022	02-16-2023		
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	02-17-2022	02-16-2023		
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	02-17-2022	02-16-2023		
EMI Test Software	Tonscend	TS+		Version:3.0.0.1			

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	02-17-2022	02-16-2023	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
ISN	Schwarzbeck	CAT3 8158	#96	02-17-2022	02-16-2023	
ISN	Schwarzbeck	CAT5 8158	#166	02-17-2022	02-16-2023	
ISN	Schwarzbeck	NTFM 8158	#126	02-17-2022	02-16-2023	
RF Switch	TOP PRECISION	RSU0301	N/A	02-17-2022	02-16-2023	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	02-17-2022	02-16-2023	
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	02-17-2022	02-16-2023	
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZ-R12-2200879

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

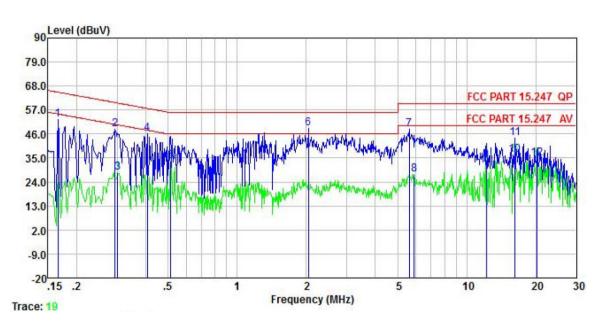
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The LoRa antenna is an External antenna which cannot replace by end-user, the best-case gain of the antenna is 2.44 dBi.

Page 9 of 32

6.2 Conducted Emission

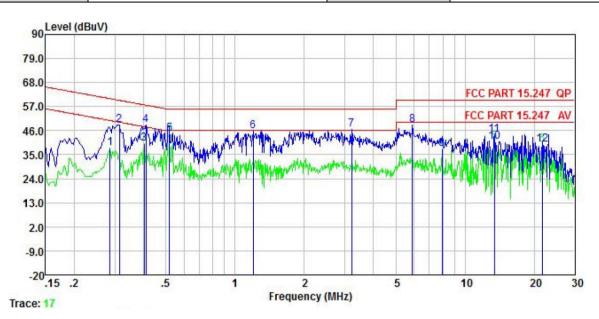

Test Requirement:	FCC Part 15 C Section 15.20	FCC Part 15 C Section 15.207		
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Frequency range (MHz)	Limit (dBuV)	
	,	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarith			
Test procedure	line impedance stabiliza 50ohm/50uH coupling ir 2. The peripheral devices a LISN that provides a 50 termination. (Please reference photographs). 3. Both sides of A.C. line a interference. In order to positions of equipment a	ars are connected to the nation network (L.I.S.N.), was mpedance for the measure are also connected to the ohm/50uH coupling imperer to the block diagram of the maximum find the maximum emiss and all of the interface cat 4 (latest version) on condition network (L.I.S.N.), which is a second to the connected to the maximum emiss and all of the interface cat 4 (latest version) on conditions.	which provides a ring equipment. The main power through a redance with 500hm of the test setup and a conducted rion, the relative bles must be changed	
Test setup:	Reference LISN 40cm AUX Equipment E.U. Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Notes Test table height=0.8m	BOCM Filter Filter EMI Receiver	— AC power	
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for detail	Refer to section 5.3 for details		
Test results:	Passed			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data:

Product name:	Indoor LoRaWAN Light Hotspot	Product model:	DSGW-090B	
Test by:	Janet	Test mode:	Tx mode	
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line	
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%	

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	₫B	dBu₹	dBu₹	<u>dB</u>	
1	0.166	52.53	0.04	0.01	52.58	65.16	-12.58	QP
2	0.294	48.32	0.04	0.03	48.39	60.41	-12.02	QP
3	0.302	28.18	0.04	0.03	28.25	50.19	-21.94	Average
1 2 3 4 5	0.406	46.14	0.04	0.04	46.22	57.73	-11.51	QP
5	0.513	33.70	0.04	0.03	33.77	46.00	-12.23	Average
6	2.044	48.35	0.07	0.20	48.62	56.00	-7.38	QP
7	5.623	48.03	0.13	0.09	48.25	60.00	-11.75	QP
8	5.898	27.30	0.13	0.09	27.52	50.00	-22.48	Average
8	12.188	33.50	0.24	0.10	33.84	50.00	-16.16	Average
10	16.226	36.17	0.28	0.16	36.61	50.00	-13.39	Average
11	16.226	43.84	0.28	0.16	44.28	60.00	-15.72	QP
12	20.270	34.21	0.32	0.19	34.72	50.00	-15.28	Average


Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Indoor LoRaWAN Light Hotspot	Product model:	DSGW-090B	
Test by:	Janet	Test mode:	Tx mode	
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral	
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%	

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	dB	dBu₹	dBu∇	<u>dB</u>	
1 2	0.286 0.313	37.78 48.65	0.04 0.04	0.03 0.03	37.85 48.72		-12.78 -11.16	Average OP
1 2 3 4 5 6 7 8 9	0.402 0.410	39.81 48.56	0.04 0.04	0.04	39.89 48.64	47.81 57.64	-7.92	Average
5	0.518	44.62	0.04	0.03	44.69	46.00	-1.31	Average
7	1.197 3.207	45.77 46.61	0.05 0.08	0.09 0.07	45.91 46.76		-10.09 -9.24	Service Control of the Control of th
8	5.898 7.935	48.19	0.12	0.09	48.40 37.70		-11.60 -12.30	QP Average
10	13.408	40.72	0.23	0.11	41.06	50.00	-8.94	Average
11 12	13.408 21.715	43.78 39.26	0.23 0.32	0.11 0.16	44.12 39.74		-15.88 -10.26	QP Average

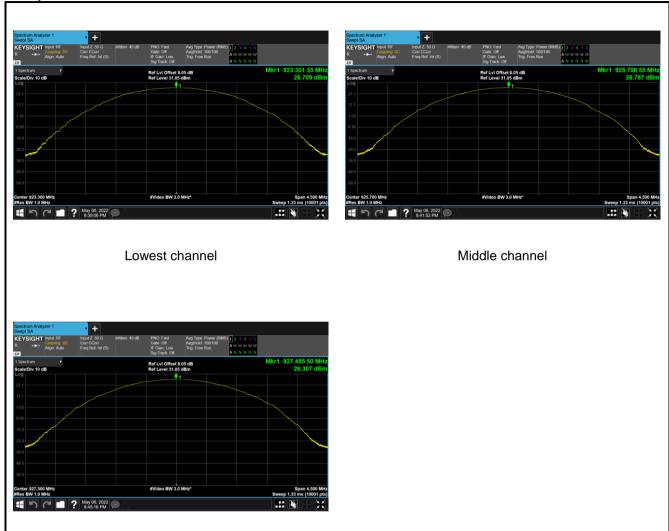
Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.9 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	


Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	26.71		
Middle	26.79	30.00	Pass
Highest	26.31		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

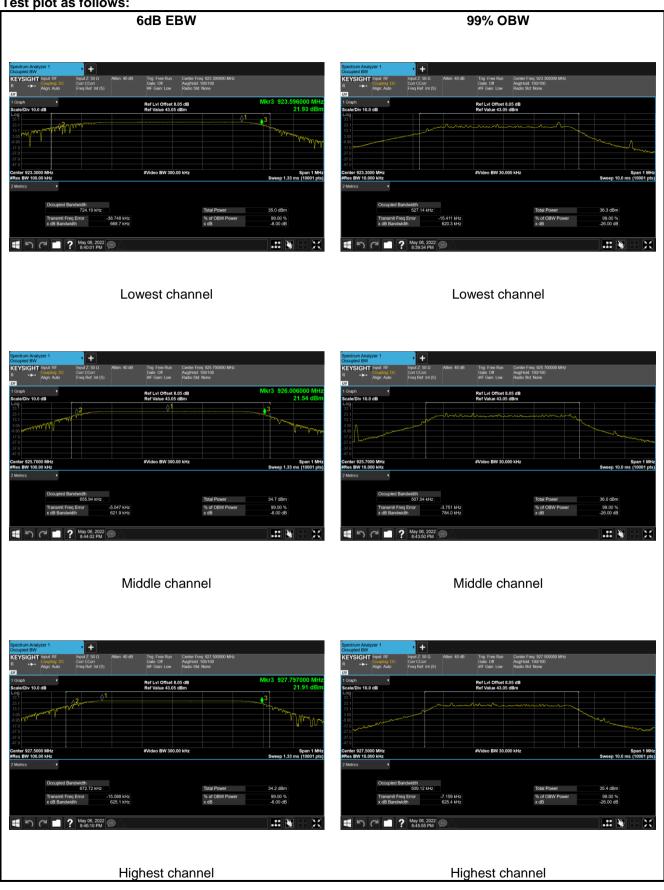
Test plot as follows:

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.9 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:


mododi omoni Bata.			
Test CH	-6dB Emission Bandwidth (KHz)	Limit(kHz)	Result
Lowest	669		
Middle	622	>500	Pass
Highest	625		
Test CH	99% Occupy Bandwidth (KHz)	Limit(kHz)	Result
Lowest	527		
Middle	507	N/A	N/A
Highest	509		

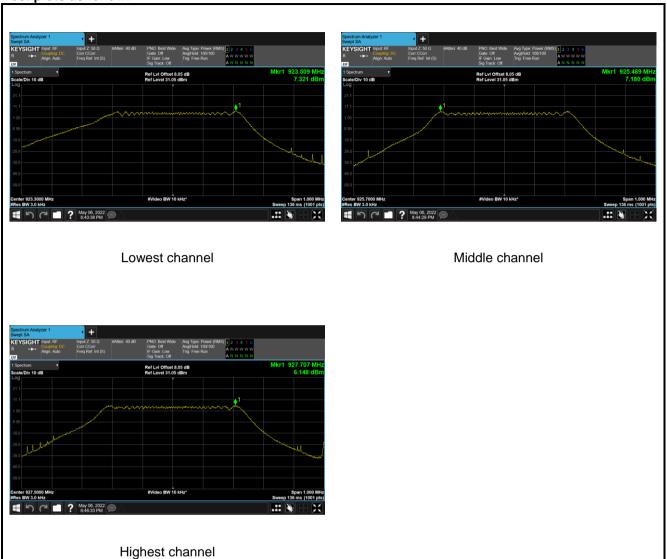
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)	
Limit:	8 dBm/3kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.9 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:


-			
Test CH	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest	7.32		
Middle	7.18	8.00	Pass
Highest	6.15		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 17 of 32

Project No.: JYTSZR2204104

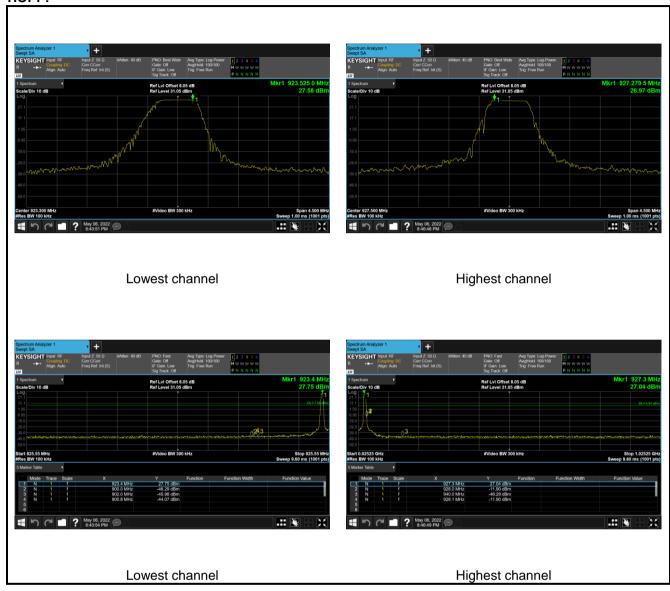
Test plots as follow:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 18 of 32

6.6 Band Edge

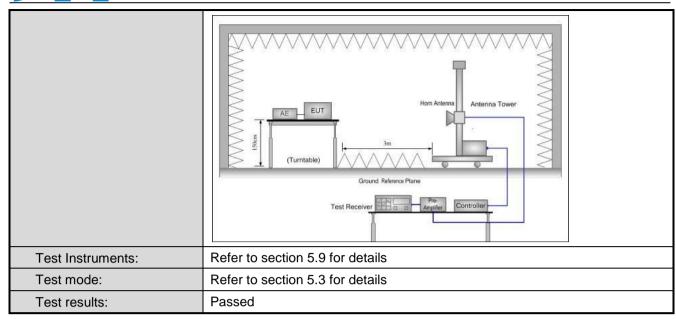
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test plots as follow:

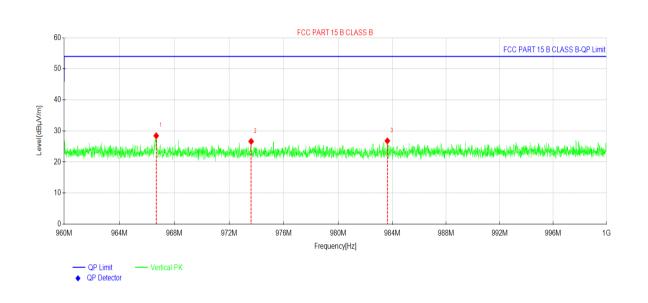
HOPP:



Radiated Emission Method

5.6.2 Radiated Emission Method								
Test Requirement:	FCC Part15 C Sect	ion 15.20	9 and	l 15.205				
Test Frequency Range:	960MHz to 1.240GH	Hz						
Test site:	Measurement Dista	nce: 3m						
Receiver setup:	Frequency	Detec	tor	RBW	VBW	Remark		
·	960MHz-1GHz	Quasi-p	eak	120kHz	300kHz	Quasi-peak Value		
	Above 1GHz	Peal		1MHz	3MHz	Peak Value		
		RMS		1MHz	3MHz Average Value			
Limit:	Frequency		Lim	nit (dBuV/m	@3m)	Remark		
					Quasi-peak Value			
	Above 1GHz	<u>-</u>		54.00		Average Value		
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz) /1.5m(above 1GHz) above the groundat a 3 meter chamber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or 					chamber.The table of the highest nce-receiving le-height antenna r meters above the distrength. Both are set to make the ed to its worst case neter to 4 meters and rees to find the unction and 10dB lower than the e peak values of the lat did not have 10dB		
Test setup:	Below 1GHz EUT Turn Table Ground Pl	0.8m	m Im			Antenna Tower Search Antenna F Test ceiver		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

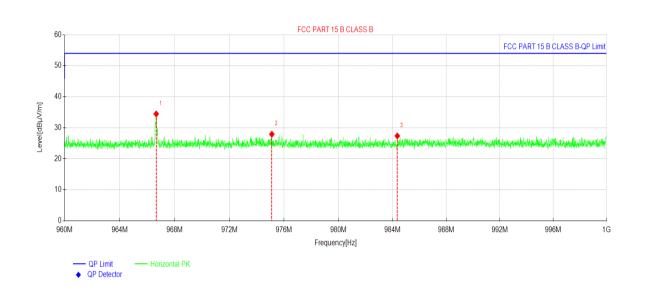


Page 22 of 32

Below 1GHz:

Product Name:	Indoor LoRaWAN Light Hotspot	Product Model:	DSGW-090B
Test By:	Janet	Test mode:	Tx mode
Test Channel:	960~1000MHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspe	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity			
1	966.6767	29.32	28.45	-0.87	54.00	25.55	PK	Vertical			
2	973.6094	27.51	26.62	-0.89	54.00	27.38	PK	Vertical			
3	983.6424	27.63	26.80	-0.83	54.00	27.20	PK	Vertical			

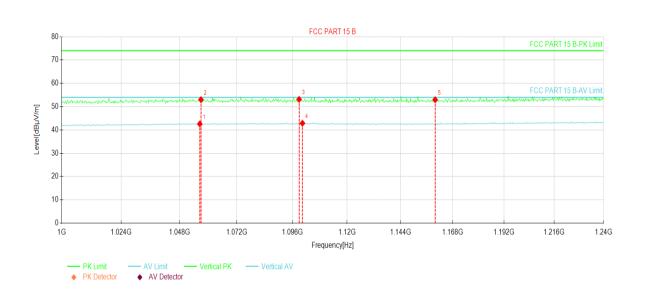

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 23 of 32

Product Name:	Indoor LoRaWAN Light Hotspot	Product Model:	DSGW-090B
Test By:	Janet	Test mode:	Tx mode
Test Channel:	960~1000MHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

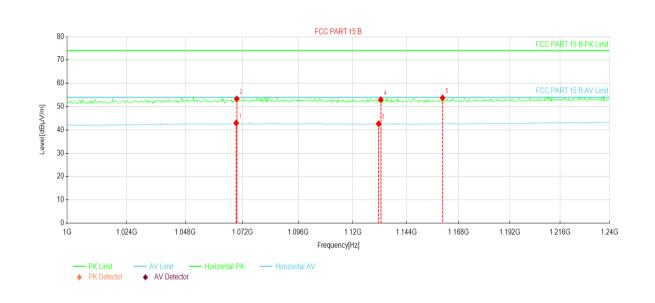
Susp	Suspected Data List										
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity			
1	966.6487	35.32	34.45	-0.87	54.00	19.55	PK	Horizontal			
2	975.1055	28.81	27.91	-0.90	54.00	26.09	PK	Horizontal			
3	984.3664	28.18	27.36	-0.82	54.00	26.64	PK	Horizontal			


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Above 1GHz:

Product Name:	Indoor LoRaWAN Light Hotspot	Product Model:	DSGW-090B
Test By:	Janet	Test mode:	Tx mode
Test Channel:	1000~1240MHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Suspec	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	1056.4000	12.64	42.58	29.94	54.00	11.42	AV	Vertical		
2	1056.8800	23.06	53.00	29.94	74.00	21.00	PK	Vertical		
3	1098.8800	22.97	53.13	30.16	74.00	20.87	PK	Vertical		
4	1100.3200	12.70	42.87	30.17	54.00	11.13	AV	Vertical		
5	1159.8400	22.72	52.96	30.24	74.00	21.04	PK	Vertical		

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Indoor LoRaWAN Light Hotspot	Product Model:	DSGW-090B
Test By:	Janet	Test mode:	Tx mode
Test Channel:	1000~1240MHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspec	Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity		
1	1069.3600	12.96	42.97	30.01	54.00	11.03	AV	Horizontal		
2	1069.6000	23.32	53.33	30.01	74.00	20.67	PK	Horizontal		
3	1131.5200	12.44	42.64	30.20	54.00	11.36	AV	Horizontal		
4	1132.4800	22.76	52.97	30.21	74.00	21.03	PK	Horizontal		
5	1160.5600	23.50	53.74	30.24	74.00	20.26	PK	Horizontal		

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

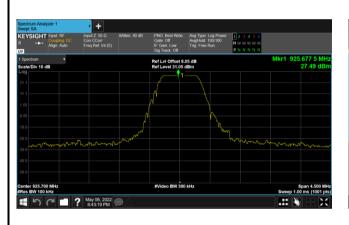
Page 26 of 32

6.7 Spurious Emission


6.7.1 Conducted Emission Method

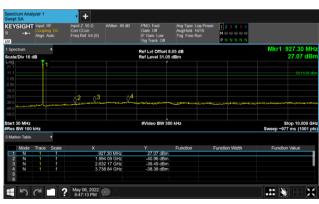
Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

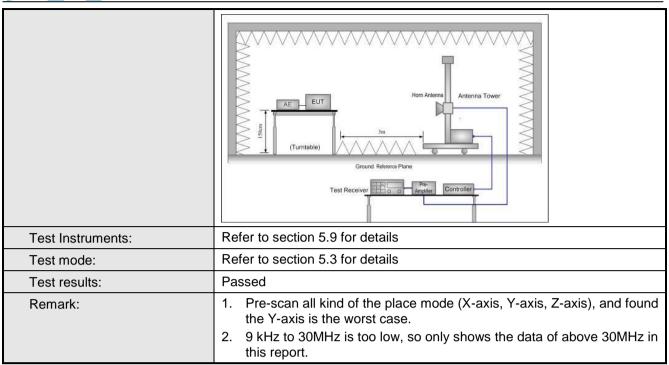


Test plot as follows:




Middle channel

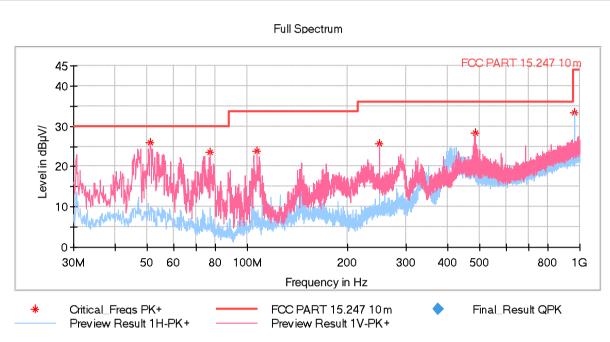
Highest channel



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Frequency Range:	9kHz to 25GHz	9kHz to 25GHz					
Test Distance:	3m	3m					
Receiver setup:	Frequency	Detector	or RBW V		3W	Remark	
,	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value	
	Above 1(+Hz			Average Value			
Limit:	Frequency		mit (dBuV/m @	3m)		Remark	
	30MHz-88M		40.0			Quasi-peak Value	
	88MHz-216N		43.5			Quasi-peak Value	
	216MHz-960I		46.0			Quasi-peak Value	
	960MHz-1G	HZ	54.0		(Quasi-peak Value	
	Above 1GF	łz 🖳	54.0 74.0			Average Value Peak Value	
	The table of highest rad 2. The EUT antenna, we tower. 3. The antenion the ground Both horized make the notes and to find the second of the EUT have 10 dE	was rotated 3 liation. was set 3 m which was more and height is was more and height is was more assurement. It is was maximum reasurement at the rota table maximum reasurement with the rota table as and width with sion level of the cified, then the would be reason margin would since we was margin would since we was margin would since was margin was ma	neters away in the transfer of the maximum tical polarization in the transfer of the maximum that the transfer of the transfer	from the top of a me met um valutions of to he from 0 to Peal old Mo ak mode stop wise the done be stop to to be stop to	rmine ne inter a varia er to f ue of the a as arra eights degre de was ped an ne emi y one	a 3 meter camber. the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data	
Test setup:	EUT	4m		Anten Sea _ Ante RF Test Receiver			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data (worst case):

Below 1GHz:

Product Name:	Indoor LoRaWAN Light Hotspot	Product Model:	DSGW-090B
Test By:	Janet	Test mode:	Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

•	Frequency 4 (MHz).	MaxPeak ↓ (dB ⊭ V/m).₁	Limit ↓ (dB ⊭ V/m).₁	Margin ↓ (dB).₁	Height↓ (cm).₁	Pol.	Azimuth ↓ (deg).₁	Corr.↓ (dB/m).₁
•	51.049000.	26.07.	30.00.1	3.93.	100.0.1	V.1	245.0.	-15.8.
•	77.142000.s	23,56.	30.00.1	6.44.	100.0.1	V.1	54.0.1	-19.6.
•	106.630000.	23.76.	33,50.1	9.74.	100.0.1	V.1	70.0.1	-18.3.
•	249.996000 s	25.73.	36.00.1	10.27.	100.0.1	V.1	184.0. ₁	-15.8.
•	483.378000.	28.25.	36.00.1	7.75.	100.0.1	V.1	184.0.	-9.2
•	966.729000.4	33,35.	44.00.1	10.65.	100.0.1	H _a	318.0.1	-0.5.

Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Above 1GHz:

Test channel: Lowest channel												
Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization						
1846.60	346.60 64.86 -20.77		44.09	74.00	29.91	Vertical						
1846.60	846.60 63.15 -20.77		42.38	74.00	31.62	Horizontal						
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization						
1846.60	46.60 55.53 -20.77		34.76	54.00	19.24	Vertical						
1846.60	1846.60 55.14		34.37	54.00	19.63	Horizontal						
Test channel: Middle channel												
Detector: Peak Value												
Frequency (MHz)	· I Factor (OB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization						
1851.40	1.40 64.28 -20.75		43.53	74.00	30.47	Vertical						
1851.40	1851.40 63.16 -20.75		42.41	74.00	31.59	Horizontal						
		Detector:	Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization						
1851.40	1851.40 55.17 -20.75		34.42	54.00	19.58	Vertical						
1851.40	55.92	-20.75	35.17	54.00	18.83	Horizontal						
Test channel: Highest channel												
		Detecto	r: Peak Value		_							
Frequency (MHz)	· · · · Factor (0B)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization						
1855.00	855.00 65.16 -20.73		44.43	74.00	29.57	Vertical						
1855.00	64.92	-20.73	44.19	74.00	29.81	Horizontal						
Detector: Average Value												

Remark:

Frequency

(MHz)

1855.00

1855.00

1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

Factor (dB)

-20.73

-20.73

2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

----End of report-----

Level

(dBuV/m)

36.06

34.55

Limit Line

(dBuV/m)

54.00

54.00

Over Limit

(dB)

17.94

19.45

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Read Level

(dBuV)

56.79

55.28

Project No.: JYTSZR2204104

Polarization

Vertical

Horizontal