

Test Data

Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	2.294	30	Pass
NVNT	BLE	2442	Ant1	2.142	30	Pass
NVNT	BLE	2480	Ant1	2.319	30	Pass

JianYan Testing Group Shenzhen Co., Ltd. Project No.: JYTSZR2204104 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Page 2 of 19

-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	limit	Verdic
NVNT	BLE	2402	Ant1	1.118	0.5	Pass
NVNT	BLE	2442	Ant1	1.123	0.5	Pass
NVNT	BLE	2480	Ant1	1.118	0.5	Pass

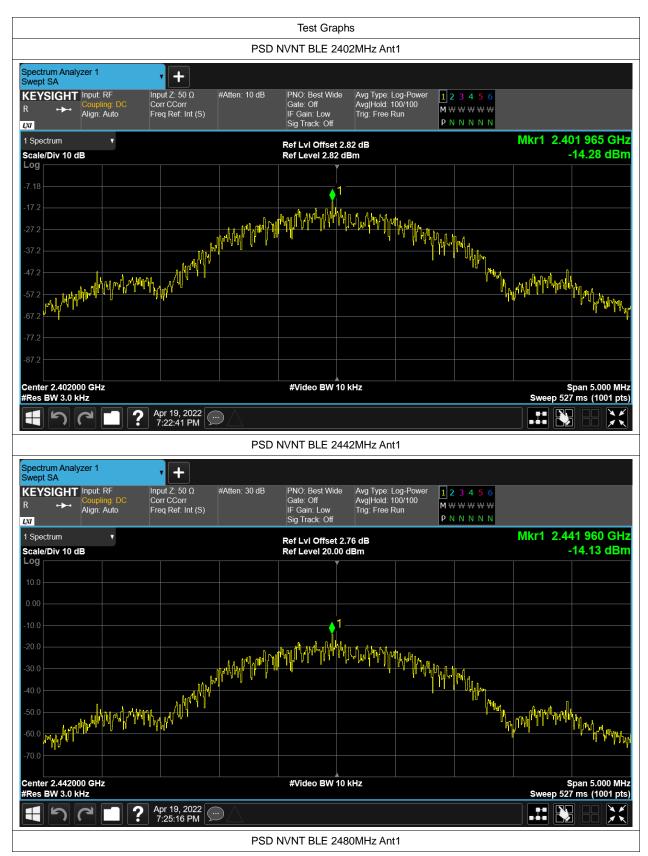
JianYan Testing Group Shenzhen Co., Ltd. Project No.: JYTSZR2204104 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Page 5 of 19

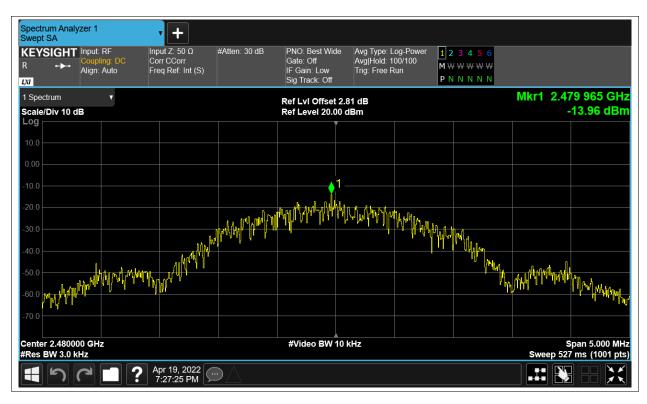
Spectru Occupi	um Analy ed BW	/zer 1		• +						
R R	SIGHT .≁	Input: F Couplir Align: A	ng: DC	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold: Radio Std:			
1 Grapi	h		v			Ref LvI Offset 2	.81 dB		Mkr3 2.4805	78000 GHz
	Div 10.0	dB				Ref Value 22.81	dBm			-4.92 dBm
Log 12.8 - 2.81 -					\diamond	2	1	3		
-7.19 -17.2 -27.2										
-27.2 -37.2 -47.2		~~~~		~~~~~~						Marine Marin
-57.2 -67.2										
	2.48000				Ļ	#Video BW 300.	00 kHz			Span 5 MHz
	3W 100.0	00 kHz							Sweep 1.33	ms (10001 pts)
2 Metri	CS		•							
		Oco	cupied Ban					7.1.5		
				2.0935 MHz				Total Power	8.97 dBm	
			nsmit Freq B Bandwidt		18.762 kHz 1.118 MHz			% of OBW Power x dB	99.00 % -6.00 dB	
	5		2	Apr 19, 2022 7:26:26 PM						

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	2.115498328
NVNT	BLE	2442	Ant1	2.086860906
NVNT	BLE	2480	Ant1	2.093786668

JianYan Testing Group Shenzhen Co., Ltd. Project No.: JYTSZR2204104 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Page 8 of 19


Spectrui Occupie	d BW			• +						
R R	IGHT ↔	Input: F Couplir Align: A	ng: DC	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 30 dB	Trig: Free Run Gate: Off #IF Gain: Low	Center Fre Avg Hold: [/] Radio Std:			
1 Graph			•			Ref LvI Offset 2	2.81 dB			
Scale/D	iv 10.0	dB			_	Ref Value 22.81	dBm			
Log 12.8										
2.81										
-7.19 -17.2					mm		$-\sqrt{m}$	·····		
-27 2 —				^						
-37.2		ward war	᠆ᡵᡗᡟ᠋ᠧᢑᠰᡇᢇ᠁	man					 m	m hard hard
-47.2	~~~~~									· Marthan
-67.2										
Center 2	2.48000	0 GHz			1	#Video BW 100	.00 kHz			Span 5 MHz
#Res B\	W 30.00	00 kHz							Sweep 5.33	ms (10001 pts)
2 Metrics	5		•							
		000	cupied Band	dwidth						
				2.0938 MHz				Total Power	7.63 dBm	
			nsmit Freq		23.569 kHz			% of OBW Power	99.00 %	
		x di	B Bandwidt	h	2.510 MHz			x dB	-26.00 dB	
	5]?	Apr 19, 2022 7:26:16 PM						

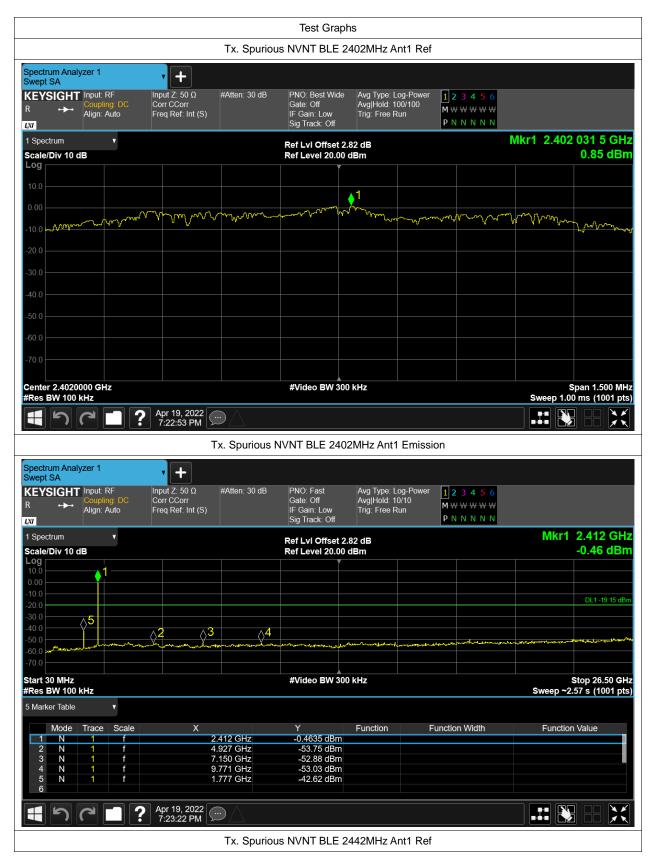

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-14.284	8	Pass
NVNT	BLE	2442	Ant1	-14.131	8	Pass
NVNT	BLE	2480	Ant1	-13.962	8	Pass

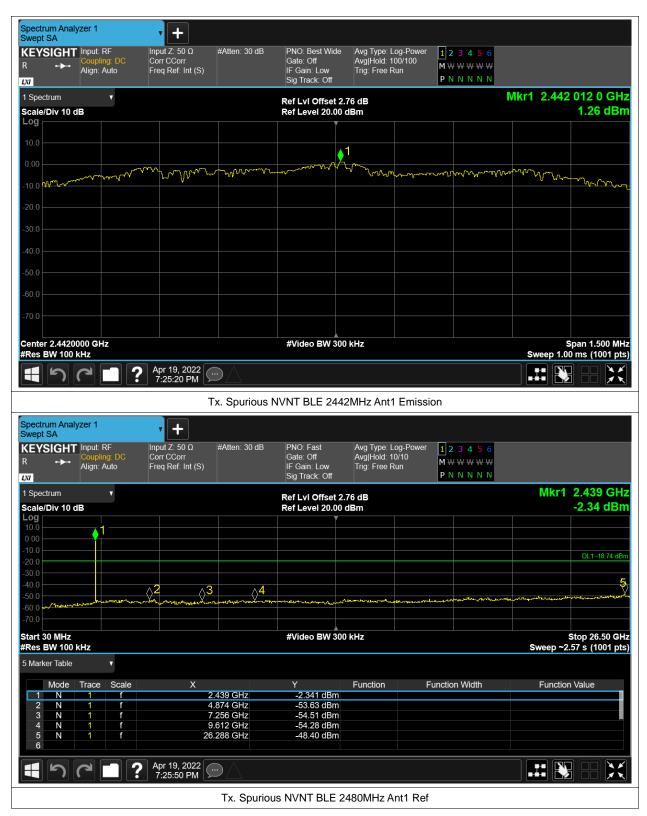
Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-55.93	-20	Pass
NVNT	BLE	2480	Ant1	-54.19	-20	Pass

JianYan Testing Group Shenzhen Co., Ltd. Project No.: JYTSZR2204104 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Page 14 of 19



Conducted RF Spurious Emission


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-43.46	-20	Pass
NVNT	BLE	2442	Ant1	-49.65	-20	Pass
NVNT	BLE	2480	Ant1	-44.93	-20	Pass

JianYan Testing Group Shenzhen Co., Ltd. Project No.: JYTSZR2204104 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366 Page 17 of 19

