

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2201943

FCC REPORT

(ZIGBEE)

Applicant: Hangzhou Roombanker Technology Co., Ltd

Address of Applicant: A#801 Wantong center, Hangzhou, China

Equipment Under Test (EUT)

Product Name: Industry Edge Computer Gateway

Model No.: DSGW-081

FCC ID: 2AUXBDSGW-081

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 30 Aug., 2022

Date of Test: 31 Aug., to 21 Oct., 2022

Date of Report Issued: 25 Oct., 2022

Test Result: PASS

Tested by: Date: 25 Oct., 2022

Reviewed by: Date: 25 Oct., 2022

Approved by: Date: 25 Oct., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	25 Oct., 2022	Original

Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	CO	NTENTS	3
4	GEI	NERAL INFORMATION	4
	4.1	CLIENT INFORMATION	4
	4.2	GENERAL DESCRIPTION OF E.U.T	
	4.3	TEST ENVIRONMENT AND MODE	
	4.4	DESCRIPTION OF SUPPORT UNITS	5
	4.5	MEASUREMENT UNCERTAINTY	_
	4.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	4.7	LABORATORY FACILITY	
	4.8	LABORATORY LOCATION	
	4.9	TEST INSTRUMENTS LIST	7
5	ME	ASUREMENT SETUP AND PROCEDURE	8
	5.1	TEST CHANNEL	8
	5.2	TEST SETUP	8
	5.3	TEST PROCEDURE	10
6	TES	ST RESULTS	11
	6.1	SUMMARY	11
	6.1.	.1 Clause and Data Summary	11
	6.1.	.2 Test Limit	12
	6.2	Antenna requirement	
	6.3	AC Power Line Conducted Emission	
	6.4	EMISSIONS IN RESTRICTED FREQUENCY BANDS	
	6.5	EMISSIONS IN NON-RESTRICTED EREQUENCY BANDS	20

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 General Information

4.1 Client Information

Applicant:	Hangzhou Roombanker Technology Co., Ltd	
Address:	A#801 Wantong center, Hangzhou, China	
Manufacturer:	Hangzhou Roombanker Technology Co., Ltd.	
Address:	A#801 Wantong center, Hangzhou, China	

4.2 General Description of E.U.T.

Product Name:	Industry Edge Computer Gateway
Model No.:	DSGW-081
Operation Frequency:	2405MHz~2480MHz (IEEE 802.15.4)
Channel numbers:	16 for (IEEE 802.15.4)
Channel separation:	5 MHz
Modulation technology: (IEEE 802.15.4)	OQPSK
Data speed(IEEE 802.15.4):	250kbps
Antenna Type:	External Antenna
Antenna gain:	6.55 dBi
Power Supply:	DC 12V
Test Sample Condition:	The applicant provided engineering samples for staying in continuously transmitting for testing.

Page 4 of 22

Report No.: JYTSZ-R12-2201943

4.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, deviations, or exclusions from the method

No

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No.: JYTSZ-R12-2201943

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4.9 Test Instruments list

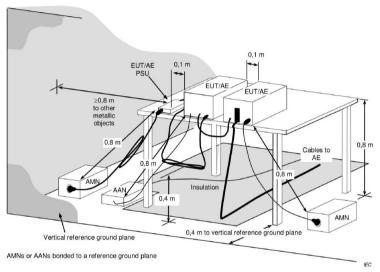
Radiated Emission(3m SAC):						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024	
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023	
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	03-08-2022	03-07-2023	
Horn Antenna	Schwarzbeck	BBHA9170	WXJ002-5	04-07-2022	04-06-2023	
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022	01-19-2023	
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXJ001-3	01-20-2022	01-19-2023	
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA-180400G45B	WXJ002-7	03-30-2022	03-29-2023	
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023	
Spectrum Analyzer	Rohde & Schwarz	FSP 30	WXJ004	01-20-2022	01-19-2023	
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	10-27-2021	10-26-2022	
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022	01-19-2023	
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN-8M	WXG001-5	01-20-2022	01-19-2023	
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS-8M	WXG001-7	01-20-2022	01-19-2023	
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A		
Test Software	Tonscend	TS+		Version: 3.0.0.1		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESR3	WXJ003-2	07-12-2022	07-11-2023	
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-24-2022	02-23-2023	
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	03-30-2022	03-29-2023	
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-24-2022	02-23-2023	
RF Switch	TOP PRECISION	RSU0301	WXG003	1	N/A	
Test Software	Test Software AUDIX E3 Version: 6.110919b			9b		

Conducted Method:						
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	07-12-2022	07-11-2023	
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023	
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	11-19-2021	11-18-2022	
DC Power Supply	Keysight	E3642A	WXJ025-2	N	I/A	
RF Control Unit	MWRFTEST	MW100-RFCB	WXG006	N	I/A	
Test Software	MWRFTEST	MTS 8310	Version: 2.0.0.0			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

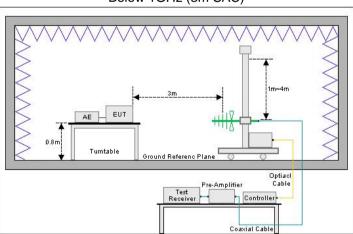
5 Measurement Setup and Procedure


5.1 Test Channel

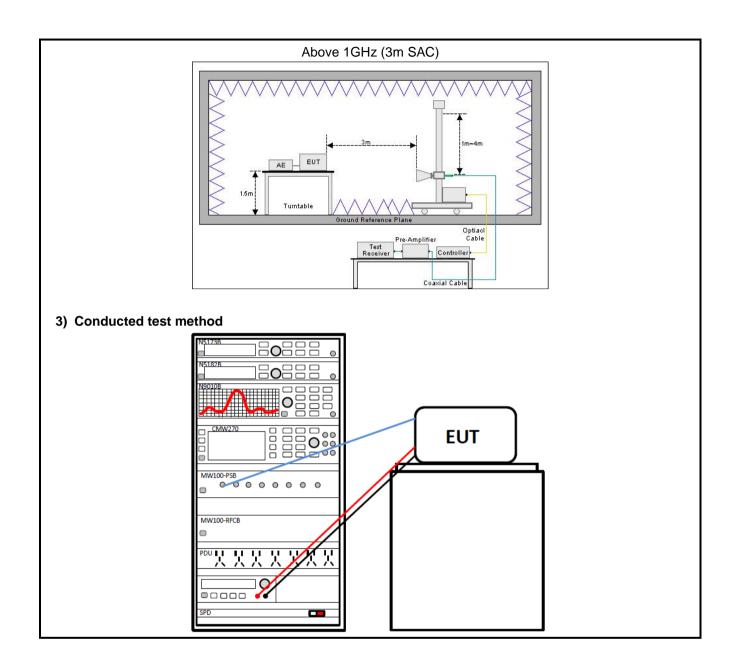
According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Midd	le channel	Highe	st channel
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2405	8	2440	16	2480

5.2 Test Setup


1) Conducted emission measurement:

Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.


2) Radiated emission measurement:

Below 1GHz (3m SAC)

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test Procedure

Test method	Test step
Conducted emission	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	For below 1GHz: 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	For above 1GHz: 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
	 EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	 The BLE antenna port of EUT was connected to the test port of the test system through an RF cable. The EUT is keeping in continuous transmission mode and tested in all modulation modes. Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6 Test Results

6.1 Summary

6.1.1 Clause and Data Summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A - Zigbee	N/A
Conducted Output Power	15.247 (b)(3)	Appendix A - Zigbee	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A - Zigbee	Pass
Power Spectral Density	15.247 (e)	Appendix A - Zigbee	Pass
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Appendix A - Zigbee	Pass
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	See Section 6.4	Pass
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	See Section 6.5	Pass

Remark:

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

Page 11 of 22

^{1.} Pass: The EUT complies with the essential requirements in the standard.

^{2.} The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

6.1.2 Test Limit

Test items			Lin	nit			
		Frequency		Limit (di	ΒμV)		
		(MHz)	Quas	si-Peak	Average		
AC Power Line Conducted		0.15 - 0.5	66 to	56 Note 1	56 to 46 Note 1		
Emission		0.5 – 5		56	46		
		5 – 30		60	50		
		Note 1: The limit level in dBµ' Note 2: The more stringent lir			n of frequency.		
Conducted Output Power		systems using digital r I 5725-5850 MHz band		the 902-928 N	MHz, 2400-2483.5 MH	Z,	
6dB Emission Bandwidth	The	e minimum 6 dB bandw	ridth shall be a	at least 500 kH	Hz.		
99% Occupied Bandwidth	N/A	1					
Power Spectral Density	inte	digitally modulated systemional radiator to the and during any time inter	antenna shall	not be greate	r than 8 dBm in any 3		
Band-edge Emission Conduction Spurious Emission	spe fred dB high radi the pow per this limi whi	any 100 kHz bandwidth actrum or digitally modu quency power that is probelow that in the 100 k nest level of the desired inted measurement, propeak conducted power limits based on the mitted under paragraph paragraph shall be 30 ts specified in §15.209 of fall in the restricted in the radiated emission	lated intention oduced by the Hz bandwidth d power, base ovided the train r limits. If the truse of RMS and (b)(3) of this dB instead of (a) is not required.	nal radiator is a intentional radiator is within the based on either armsmitter demonstransmitter converaging over section, the at 20 dB. Attentired. In additioned in §15.20	operating, the radio adiator shall be at leas nd that contains the n RF conducted or a constrates compliance of mplies with the conduct a time interval, as attenuation required uruation below the geneon, radiated emissions 05(a), must also complete at least 150 must 150	with cted nder ral	
		Frequency	Limit (d	IBμV/m)	Detector		
		(MHz)	@ 3m	@ 10m		-	
		30 – 88	40.0	30.0	Quasi-peak	-	
Emissions in Restricted	-	88 – 216	43.5	33.5	Quasi-peak	-	
Frequency Bands		216 – 960	46.0	36.0	Quasi-peak	-	
	960 – 1000 54.0 44.0 Quasi-peak						
Emissions in Non-restricted		Note: The more stringent limit	applies at transition	· ·	n) @ 3m	1	
Frequency Bands		Frequency		Limit (dBµV/n	1	-	
		Abaua 4 OU-		rage	Peake	-	
	 	Above 1 GHz		1.0	74.0	-	
	Note: The measurement bandwidth shall be 1 MHz or greater.						

Report No.: JYTSZ-R12-2201943

6.2 Antenna requirement

FCC Part 15 C Section 15.203 /247(b)(4) Standard requirement:

15.203 requirement:

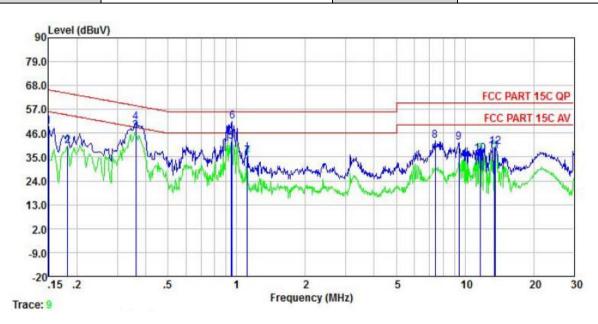
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

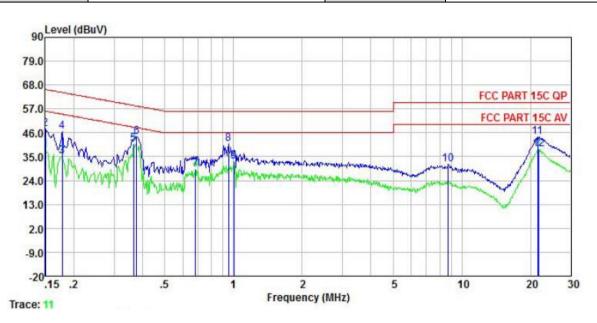
E.U.T Antenna:

The Zigbee antenna is an External antenna, its connector is a special connection port and which cannot replace by end-user, the best case gain of the antenna is 6.55 dBi. See product internal photos for details.


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 AC Power Line Conducted Emission

Product name:	Industry Edge Computer Gateway	Product model:	DSGW-081
Test by:	Mike	Test mode:	Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Aux2 Factor	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	dB	dB	<u>dB</u>	dBu₹	₫₿uѶ	<u>dB</u>	
1	0.150	38.62	0.04	0.01	10.50	49.17	66.00	-16.83	QP
2	0.182	29.36	0.05	0.01	10.50	39.92	54.42	-14.50	Average
3	0.361	36.35	0.06	0.02	10.50	46.93	48.69	-1.76	Average
1 2 3 4 5 6 7 8 9	0.361	40.59	0.06	0.02	10.50	51.17	58.69	-7.52	QP
5	0.948	31.45	0.07	0.05	10.50	42.07	46.00	-3.93	Average
6	0.958	40.78	0.07	0.05	10.50	51.40	56.00	-4.60	QP
7	1.111	24.51	0.07	0.07	10.50	35.15	46.00	-10.85	Average
8	7.407	31.75	0.18	0.10	10.50	42.53	60.00	-17.47	QP
9	9.401	30.96	0.21	0.12	10.50	41.79	60.00	-18.21	QP
10	11.683	25.68	0.25	0.10	10.50	36.53	50.00	-13.47	Average
11	13.408	26.68	0.27	0.11	10.50	37.56	50.00	-12.44	Average
12	13.623	28.68	0.27	0.12	10.50	39.57	60.00	-20.43	QP

Notes:

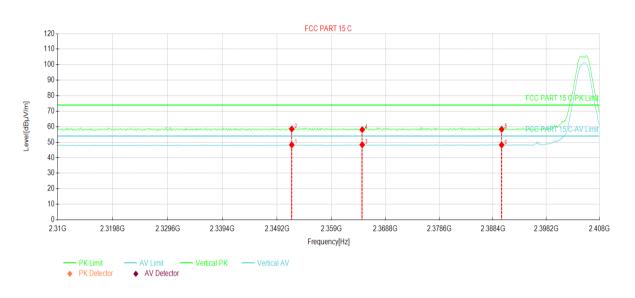
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Industry Edge Computer Gateway	Product model:	DSGW-081
Test by:	Mike	Test mode:	Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Aux2 Factor	Level	Limit Line	Over Limit	Remark
,	MHz	dBu∜	₫B	dB	<u>dB</u>	dBu∜	dBu∇	<u>db</u>	
1	0.150 0.150	27.28 37.13	0.06 0.06	0.01	10.50 10.50	37.85 47.70		-18.15 -18.30	Average
3	0.178	24.52	0.05	0.01	10.50	35.08	54.59	-19.51	Average
5	0.178 0.365	35.91 30.26	0.05 0.05	0.01 0.03		46.47 40.84	48.61		Average
6	0.377 0.683	33.56 18.65	0.05 0.06	0.03 0.03		44. 14 29. 24		-14.20 -16.76	QP Average
2 3 4 5 6 7 8 9 10	0.953 1.005	30.39 22.05	0.06	0.05		41.00		-15.00 -13.34	QP Average
10 11	8.729 21.486	20.89 33.08	0.19 0.35	0.11	10.50	31.69 44.10	60.00	-28.31 -15.90	QP
12	21.715	27.61	0.36	0.16		38.63			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 15 of 22

6.4 Emissions in Restricted Frequency Bands

Product Name:	Industry Edge Computer Gateway	Product model:	DSGW-081
Test By:	Mike	Test mode:	Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120V/60HZ	Environment:	Temp: 24°C Huni: 57%

Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2351.84	13.01	35.31	48.32	54.00	5.68	AV	Vertical
2	2351.84	23.22	35.31	58.53	74.00	15.47	PK	Vertical
3	2364.58	13.01	35.40	48.41	54.00	5.59	AV	Vertical
4	2364.58	22.71	35.40	58.11	74.00	15.89	PK	Vertical
5	2390.00	22.76	35.60	58.36	74.00	15.64	PK	Vertical
6	2390.00	12.64	35.60	48.24	54.00	5.76	AV	Vertical

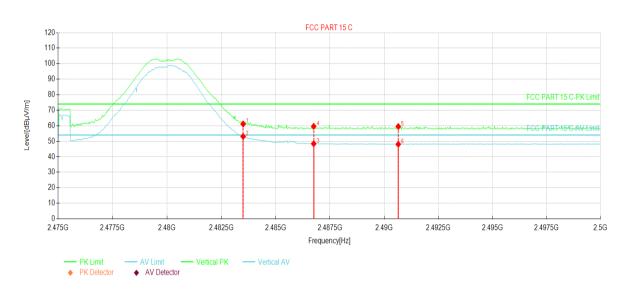
Remark:

Page 16 of 22

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Industry Edge Computer Gateway	Product model:	DSGW-081
Test By:	Mike	Test mode:	Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120V/60HZ	Environment:	Temp: 24℃ Huni: 57%

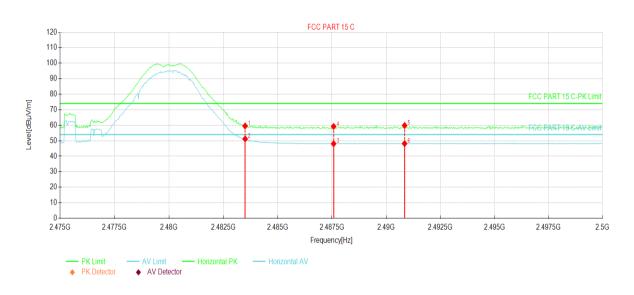

Susp	ected Data L	ist						
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2361.8420	12.98	35.38	48.36	54.00	5.64	AV	Horizontal
2	2361.8420	22.62	35.38	58.00	74.00	16.00	PK	Horizontal
3	2375.9540	13.00	35.49	48.49	54.00	5.51	AV	Horizontal
4	2375.9540	22.27	35.49	57.76	74.00	16.24	PK	Horizontal
5	2390.0000	22.85	35.60	58.45	74.00	15.55	PK	Horizontal
6	2390.0000	12.65	35.60	48.25	54.00	5.75	AV	Horizontal

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Industry Edge Computer Gateway	Product model:	DSGW-081
Test By:	Mike	Test mode:	Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120V/60HZ	Environment:	Temp: 24℃ Huni: 57%

Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.50	25.61	35.51	61.12	74.00	12.88	PK	Vertical
2	2483.50	17.55	35.51	53.06	54.00	0.94	AV	Vertical
3	2486.75	12.90	35.51	48.41	54.00	5.59	AV	Vertical
4	2486.75	24.09	35.51	59.60	74.00	14.40	PK	Vertical
5	2490.65	23.98	35.50	59.48	74.00	14.52	PK	Vertical
6	2490.65	12.55	35.50	48.05	54.00	5.95	AV	Vertical


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

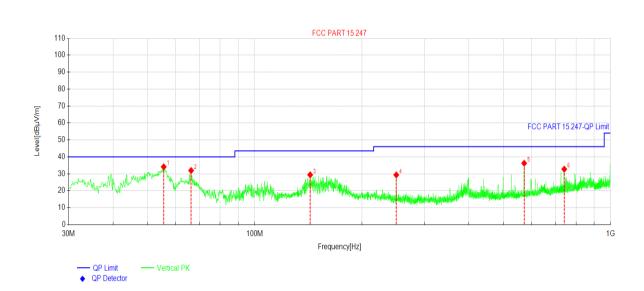
Page 18 of 22

Product Name:	Industry Edge Computer Gateway	Product model:	DSGW-081
Test By:	Mike	Test mode:	Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120V/60HZ	Environment:	Temp: 24°C Huni: 57%

Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	2483.5000	24.01	35.51	59.52	74.00	14.48	PK	Horizontal
2	2483.5000	15.69	35.51	51.20	54.00	2.80	AV	Horizontal
3	2487.5750	12.57	35.50	48.07	54.00	5.93	AV	Horizontal
4	2487.5750	23.73	35.50	59.23	74.00	14.77	PK	Horizontal
5	2490.8500	24.33	35.50	59.83	74.00	14.17	PK	Horizontal
6	2490.8500	12.67	35.50	48.17	54.00	5.83	AV	Horizontal

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

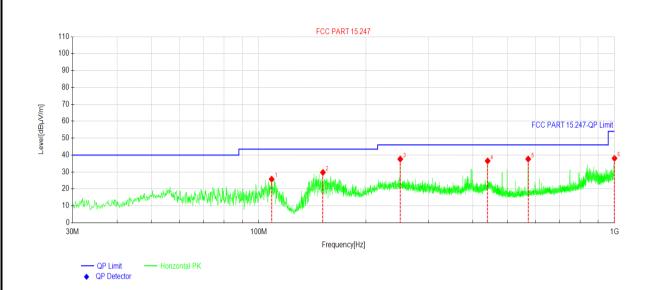

Page 19 of 22

6.5 Emissions in Non-restricted Frequency Bands

Below 1GHz:

Product Name:	Industry Edge Computer Gateway	Product model:	DSGW-081
Test By:	Mike	Test mode:	Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120V/60HZ	Environment:	Temp: 24°C Huni: 57%

T.								-	
Suspected Data List									
NO	Freq.	Reading[d	Level	Factor⊬	Limit⊬	Margin⊬	Т	Delevitor	
NO.₽	[MHz]∂	<u>B</u> μV/m]∂	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Trace∂	Polarity∂	
1₽	55.5136	47.44₽	34.12₽	-13.32₽	40.00₽	5.88₽	PK₽	Vertical₽	
2₽	66.2816₽	47.29₽	31.94₽	-15.35₽	40.00₽	8.06₽	PK₽	Vertical₽	
3₽	143.210	47.81₽	29.40₽	-18.41₽	43.50₽	14.10₽	PK₽	Vertical₽	
4₽	250.018	43.35₽	29.35₽	-14.00₽	46.00₽	16.65₽	PK₽	Vertical₽	
5₽	571.993	43.63₽	36.24₽	-7.39₽	46.00₽	9.76₽	PK₽	Vertical₽	
6₽	741.372	37.35₽	32.74₽	-4.61∂	46.00₽	13.26₽	PK₽	Vertical₽	


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Industry Edge Computer Gateway	Product model:	DSGW-081
Test By:	Mike	Test mode:	Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60HZ	Environment:	Temp: 24°C Huni: 57%

Suspected Data List									
NO.₽	Freq.⊌	Reading[d	Level	Factor⊬	Limit⊬	Margin⊬	Trans	Polarity	
	[MHz]∂	<u>BµV</u> /m]₽	[dBµV/m]₽	[dB]∂	[dBµV/m]∂	[dB]₽	Trace		
1₽	108.771	40.53₽	25.74₽	-14.79₽	43.50₽	17.76₽	PK₽	Horizontal₽	
2₽	151.553	47.96₽	29.73₽	-18.23₽	43.50₽	13.77₽	PK₽	Horizontal₽	
3₽	250.018	51.65₽	37.65₽	-14.00₽	46.00₽	8.35₽	PK₽	Horizontal₽	
4₽	439.963	46.63₽	36.55₽	-10.08₽	46.00₽	9.45₽	PK₽	Horizontal₽	
5₽	571.993	45.05₽	37.66₽	-7.39₽	46.00₽	8.34	PK₽	Horizontal₽	
6₽	1000.00	39.84	38.11₽	-1.73₽	54.00₽	15.89₽	PK₽	Horizontal₽	

Remark:

- 3. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 4. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 21 of 22

Above 1GHz

Above IGnz		Test ch	annel: Lowest ch	nannel						
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line Margi (dBuV/m) (dB)		Polarization				
4810.00	54.41	-9.05	45.36	74.00	28.64	Vertical				
4810.00	53.74	-9.05	44.69	74.00	29.31	Horizontal				
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)						
4810.00	48.10	-9.05	39.05	54.00	14.95	Vertical				
4810.00	47.10	-9.05	38.05	54.00	15.95	Horizontal				
	Test channel: Middle channel									
		De	tector: Peak Valu	re						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit Line Margin					
4880.00	54.83	-8.60	46.23	74.00	27.77	Vertical				
4880.00	53.70	-8.60	45.10	74.00	28.90	Horizontal				
	•	Dete	ctor: Average Va	alue		•				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4880.00	47.94	-8.60	39.34	54.00	14.66	Vertical				
4880.00	47.05	-8.60	38.45	54.00	15.55	Horizontal				
			annel: Highest c							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	tector: Peak Valu Level (dBuV/m)	Limit Line Margin		Polarization				
4960.00	54.75	-8.03	46.72	74.00	(dB) 27.28	Vertical				
4960.00	54.01	-8.03	45.98	74.00	28.02	Horizontal				
4300.00	J-1.01		ctor: Average Va		20.02	Tionzontal				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4960.00	48.49	-8.03	40.46	54.00	13.54	Vertical				
4960.00	46.95	-8.03	38.92	54.00	15.08	Horizontal				
Remark:		•			•	•				

Remark

----End of report-----

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.