

Page 1 of 58

TEST REPORT

Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result Tablet PC

N/A

2

: MD-150,MD-XXX,MD-XXXX

: N/A

- : EED32O81465503
- : 2AUX7-MD150
- : Nov. 29, 2022
- : 47 CFR Part 15 Subpart C

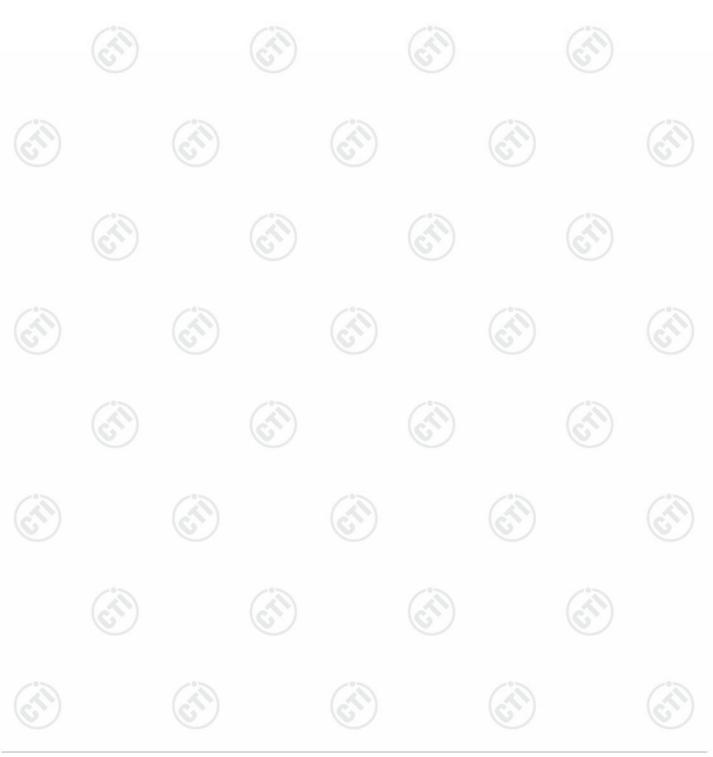
Prepared for:

: PASS

Estone Technology LTD 2F, Building No.1, Jia'an Industrial Park, No.2 Long Chang Road, Bao'an, Shenzhen 518101, China.

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:	mark. chen.	Reviewed by:	Tom che	~ (1)
NTERNATION	Mark Chen	Data	Tom Chen	
Report Seal	Aaron Ma	Date:	Nov. 29, 2022 Check No.: 8333	160922
(th				


Page 2 of 58

2 CONTENT				••••••	••••••		
3 VERSION		•••••				•••••	
4 TEST SUMMA	RY	•••••				•••••	
5 GENERAL INF	ORMATION	•••••				••••••	
5.1 CLIENT INF 5.2 GENERAL I 5.3 TEST CONF 5.4 TEST ENVIL 5.5 DESCRIPTIO 5.6 TEST LOCA 5.7 MEASUREM	DESCRIPTION O FIGURATION RONMENT DN OF SUPPOR TION	F EUT		٢		\odot	
6 EQUIPMENT L		``		. ,			
					S)		
7 TEST RESULT 7.1 ANTENNA F 7.2 AC POWEF 7.3 MAXIMUM (7.4 DTS BAND 7.5 MAXIMUM F 7.6 BAND EDG	REQUIREMENT. LINE CONDUC CONDUCTED OF WIDTH POWER SPECTF E MEASUREMENT	TED EMISSION JTPUT POWER RAL DENSITY NTS AND CONE	S	OUS EMISSION		6	
7 TEST RESULT 7.1 ANTENNA F 7.2 AC POWER 7.3 MAXIMUM (7.4 DTS BAND 7.5 MAXIMUM F 7.6 BAND EDG 7.7 RADIATED 8 APPENDIX A 9 PHOTOGRAP	REQUIREMENT. A LINE CONDUCTED OF WIDTH POWER SPECTF E MEASUREMEN SPURIOUS EMIS HS OF TEST	TED EMISSION JTPUT POWER RAL DENSITY NTS AND CONE SSION & RESTR SETUP	DUCTED SPURI	OUS EMISSION			
7 TEST RESULT 7.1 ANTENNA F 7.2 AC POWEF 7.3 MAXIMUM (7.4 DTS BAND 7.5 MAXIMUM F 7.6 BAND EDG	REQUIREMENT. A LINE CONDUCTED OF WIDTH POWER SPECTF E MEASUREMEN SPURIOUS EMIS HS OF TEST	TED EMISSION JTPUT POWER RAL DENSITY NTS AND CONE SSION & RESTR SETUP	DUCTED SPURI	OUS EMISSION			
7 TEST RESULT 7.1 ANTENNA F 7.2 AC POWER 7.3 MAXIMUM (7.4 DTS BAND 7.5 MAXIMUM F 7.6 BAND EDG 7.7 RADIATED 8 APPENDIX A 9 PHOTOGRAP	REQUIREMENT. A LINE CONDUCTED OF WIDTH POWER SPECTF E MEASUREMEN SPURIOUS EMIS HS OF TEST	TED EMISSION JTPUT POWER RAL DENSITY NTS AND CONE SSION & RESTR SETUP	DUCTED SPURI	OUS EMISSION			
7 TEST RESULT 7.1 ANTENNA F 7.2 AC POWER 7.3 MAXIMUM (7.4 DTS BAND 7.5 MAXIMUM F 7.6 BAND EDG 7.7 RADIATED 8 APPENDIX A 9 PHOTOGRAP 10 PHOTOGRAP	REQUIREMENT. A LINE CONDUCTED OF WIDTH POWER SPECTF E MEASUREMEN SPURIOUS EMIS HS OF TEST	TED EMISSION JTPUT POWER RAL DENSITY NTS AND CONE SSION & RESTR SETUP CONSTRUCT	DUCTED SPURI	OUS EMISSION			

3 Version

	Version No.	Date	(G)	Description	
	00	Nov. 29, 2022		Original	
5	2	1		C°>	100
	(0	S) ((5)	(3)

4 Test Summary

Page 4 of 58

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band edge measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. Model No.:MD-150,MD-XXX,MD-XXXX

Only the model MD-150 was tested. The production units bearing the following model numbers have same electrical, PCB and layout, only the cpu is different , but the same number of cores.

5 General Information

5.1 Client Information

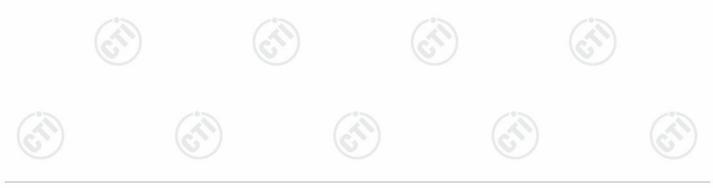
Applicant:	Estone Technology LTD
Address of Applicant:	2F, Building No.1, Jia'an Industrial Park, No.2 Long Chang Road, Bao'an, Shenzhen 518101, China.
Manufacturer:	Estone Technology LTD
Address of Manufacturer:	2F, Building No.1, Jia'an Industrial Park, No.2 Long Chang Road, Bao'an, Shenzhen 518101, China.
Factory:	Estone Technology LTD
Address of Factory:	2F, Building No.1, Jia'an Industrial Park, No.2 Long Chang Road, Bao'an, Shenzhen 518101, China.

5.2 General Description of EUT

Product Name:	Tablet PC	
Model No.:	MD-150,MD-X	XX,MD-XXXX
Test Model No.:	MD-150	(c) (c) (c
Trade mark:	N/A	
Product Type:		Portable 🗌 Fix Location
Operation Frequency:		g/n(HT20)/ax(HE20): 2412MHz to 2462MHz HT40)/ax(HE40): 2422MHz to 2452MHz
Modulation Type:	IEEE for 802.1 IEEE for 802.1 IEEE for 802.1	1b:DSSS(CCK, DQPSK, DBPSK) 1g:OFDM(64QAM, 16QAM, QPSK, BPSK) 1n(HT20 and HT40): OFDM (64QAM, 16QAM,QPSK,BPS 1ax(HE20 and HE40): OFDMA (1024QAM, 256QAM, M, QPSK, BPSK)
Number of Channel:		g, IEEE 802.11n HT20, IEEE 802.11n HE20: 11 Channels HT40, IEEE 802.11n HE40: 7 Channels
Channel Separation:	5MHz	
Antenna Type:	PCB Antenna	
Antenna Gain:	ANT1: 3.32dBi ANT2: 4.38dBi	
	Adapter 1	Model:MEA-065A19C Input:100-240VAC,50/60Hz 1.5-0.75A Output:19.0V3.42A 64.98W
Power Supply:	Adapter 2	Model:MANGO60S-19AB-ES Input:100-240VAC,50/60Hz 1.5A MAX Output:19V3.15A 60W MAX
	Battery:	Rated Voltage:DC 11.4V
Sample Received Date:	Sep. 19, 2022	
Sample tested Date:	0 40 0000	to Oct. 20, 2022

Channel	Frequency	Channel	Frequency	Channel	Freque	ncy	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442N	lHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447N	IHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452N	IHz		6
Operation	Frequency ea	ch of chann	el (802.11n HT	40/ ax HE40)			
Channel	Frequ	ency	Channel	Frequence	cy 🛛	Chan	nel F	requency
3	24221	MHz	6	2437MH	z	9	120	2452MHz
4	2427	MHz	7	2442MH	z			
5	2432	MHz	8	2447MH	z			

Note:


In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/g/n (HT20)/ax (HE20)

$\overline{\mathbb{C}}$	Frequency		Channel
	2412MHz		The lowest channel
6	2437MHz	13	The middle channel
	2462MHz		The highest channel
	2462MHz	6	The highest channel

802.11n (HT40)/ax (HE40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The highest channel	2452MHz

5.3 Test Configuration

Software:		DRTU				
EUT Power Gra	ade:	Default		G	0	
		est frequenc	y, the middle free	quency and the hi	ghest frequency	keep
transmitting of t	he EUT.					
Test Mode:	· · · ·					
				ation. All the test		ried out with
				st report and defi		
		in lowest ch	iannei, and four	d the follow list	which it	
was worst cas	-				Data rate	
	Mode 802.11b				1Mbps	
	802.11g		<*>>		6Mbps	127
9	802.11n(HT	20)		(3	MCS0	
	802.11n(HT		0	6	MCS0	6
	0UZ. I III(П I	10)				
/	802.11ax (HI	E20)			MCS0	
802.11b, 6Mbp	802.11ax (HI 802.11ax (HI NSI C63.10 star	E20) E40) Idards, the te ICS0 for 802.	.11n(HT20), MCS	h the "worst case 60 for 802.11n(HT	MCS0 " and "worst setu	p" 1Mbps foi
802.11b, 6Mbp	802.11ax (HI 802.11ax (HI NSI C63.10 star s for 802.11g, N	E20) E40) Idards, the te ICS0 for 802.	.11n(HT20), MCS		MCS0 " and "worst setu	p" 1Mbps for
802.11b, 6Mbp	802.11ax (HI 802.11ax (HI NSI C63.10 star s for 802.11g, N	E20) E40) Idards, the te ICS0 for 802.	.11n(HT20), MCS		MCS0 " and "worst setu	p" 1Mbps for
802.11b, 6Mbp	802.11ax (HI 802.11ax (HI NSI C63.10 star s for 802.11g, N	E20) E40) Idards, the te ICS0 for 802.	.11n(HT20), MCS		MCS0 " and "worst setu	p" 1Mbps for
802.11b, 6Mbp	802.11ax (HI 802.11ax (HI NSI C63.10 star s for 802.11g, N	E20) E40) Idards, the te ICS0 for 802.	.11n(HT20), MCS		MCS0 " and "worst setu	p" 1Mbps for
802.11b, 6Mbp	802.11ax (HI 802.11ax (HI NSI C63.10 star s for 802.11g, N	E20) E40) Idards, the te ICS0 for 802.	.11n(HT20), MCS		MCS0 " and "worst setu	p" 1Mbps for
802.11b, 6Mbp	802.11ax (HI 802.11ax (HI NSI C63.10 star s for 802.11g, N	E20) E40) Idards, the te ICS0 for 802.	.11n(HT20), MCS		MCS0 " and "worst setu	p" 1Mbps for
802.11b, 6Mbp	802.11ax (HI 802.11ax (HI NSI C63.10 star s for 802.11g, N	E20) E40) Idards, the te ICS0 for 802.	.11n(HT20), MCS		MCS0 " and "worst setu	p" 1Mbps for

S

Page 8 of 58

5.4 Test Environment

	Operating Environment	t:				
- 61	Radiated Spurious Emi	ssions:				
192	Temperature:	22~25.0 °C	6	(2)		(2)
2	Humidity:	50~55 % RH		C		C
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	(\mathbf{C}^{*})		(\mathcal{O})	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:					
	Temperature:	22~25.0 °C	~	6:2		13
	Humidity:	50~55 % RH	2)	(c^{γ})		(c^{γ})
~	Atmospheric Pressure:	1010mbar		U		U

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	CTI

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE nower conducted	0.46dB (30MHz-1GHz)
Z	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spundus emission test	4.5dB (1GHz-18GHz)
(A)		3.4dB (18GHz-40GHz)
\mathbf{v}	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 9 of 58

6 Equipment List

		0		10	2						
RF test system											
Equipment	Manufacturer	Manufacturer Mode No.		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022						
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022						
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022						
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022						
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022						
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022						
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022						
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022						
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023						
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518								

		1		(
	Conducted disturbance Test											
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)							
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023							
Temperature/ Humidity Indicator	Defu	TH128	/		6							
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023							
Barometer	changchun	DYM3	1188									

Page 11 of 58

	3M Semi-an	echoic Chamber (2)	- Radiated distu	rbance Test	1
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	трк	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	10/14/2021 09/28/2022	10/13/2022 09/27/2023
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2023
Multi device Controller	maturo	NCD/070/10711112		- 6	<i>(</i>
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/17/2021	04/16/2024
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2022	06/19/2023

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 12 of 58

		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023	
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023	
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022	
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023	
Fully Anechoic Chamber	трк	FAC-3	\odot	01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	- A	-	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	<u> </u>	<u> </u>	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710	- (2		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	@		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u> </u>	-(2	
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u> </u>	0	



7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

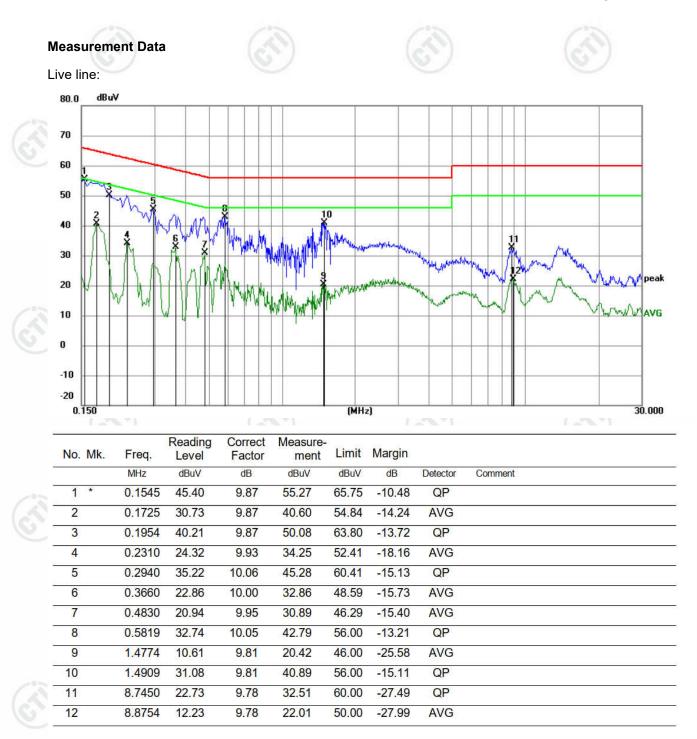
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Please see Internal photos

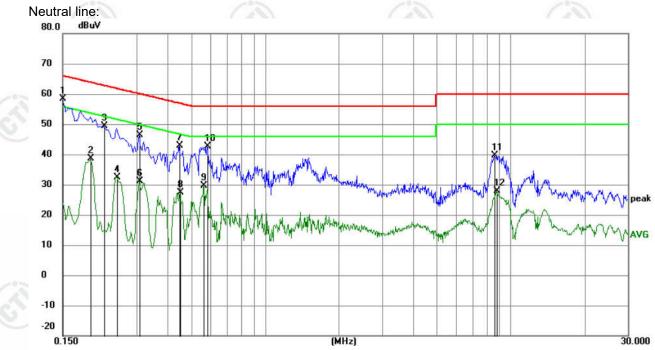
The antenna is PCB antenna. The best case gain of the antenna1 is 3.32dBi and antenna 2 is 4.38dBi.

Page 14 of 58


7.2 AC Power Line Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 15.	.207	(U)
	Test Method:	ANSI C63.10: 2013		
	Test Frequency Range:	150kHz to 30MHz		
100	Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	6
8	Limit:		Limit (c	dBuV)
<		Frequency range (MHz)	Quasi-peak	Average
		0.15-0.5	66 to 56*	56 to 46*
		0.5-5	56	46
		5-30	60	50
		* Decreases with the logarith		
	Test Setup:	Shielding Room	Test Receiver	
- X-2		 The mains terminal distur room. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the I 3) The tabletop EUT was pl ground reference plane. A placed on the horizontal g The test was performed w the EUT shall be 0.4 m vertical ground reference reference plane. The LIS 	d to AC power source Network) which provides cables of all other SN 2, which was bonde as the LISN 1 for the p was used to connect r rating of the LISN was r aced upon a non-meta And for floor-standing a ground reference plane. ith a vertical ground ref from the vertical grou e plane was bonded N 1 was placed 0.8 m	through a LISN 1 (Line s a $50\Omega/50\mu$ H + 5Ω linea units of the EUT were do to the ground reference unit being measured. A multiple power cables to a not exceeded. allic table 0.8m above the rrangement, the EUT was ference plane. The rear of and reference plane. The to the horizontal ground from the boundary of the
	Test Mode:	unit under test and bon mounted on top of the gro the closest points of the and associated equipmen 5) In order to find the maxim and all of the interface ca ANSI C63.10: 2013 on co All modes were tested, only t 802.11b was recorded in the Pass	bund reference plane. T LISN 1 and the EUT. A t was at least 0.8 m from the emission, the relative ables must be changed inducted measurement. he worse case lowest of	This distance was between All other units of the EU m the LISN 2. ve positions of equipmen according to
	Test Results:	D		

Page 15 of 58



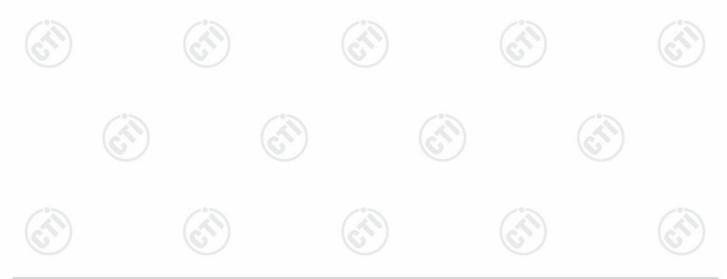
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	48.43	9.87	58.30	66.00	-7.70	QP	
2		0.1949	28.83	9.87	38.70	53.83	-15.13	AVG	
3		0.2220	39.36	9.91	49.27	62.74	-13.47	QP	
4		0.2490	22.52	9.97	32.49	51.79	-19.30	AVG	
5		0.3075	36.29	10.06	46.35	60.04	-13.69	QP	
6		0.3075	21.06	10.06	31.12	50.04	-18.92	AVG	
7		0.4470	32.92	9.96	42.88	56.93	-14.05	QP	
8		0.4515	17.47	9.96	27.43	46.85	-19.42	AVG	
9		0.5639	19.55	10.03	29.58	46.00	-16.42	AVG	
10		0.5820	32.46	10.05	42.51	56.00	-13.49	QP	
11		8.5740	29.81	9.78	39.59	60.00	-20.41	QP	
12		8.7315	18.06	9.78	27.84	50.00	-22.16	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Page 17 of 58

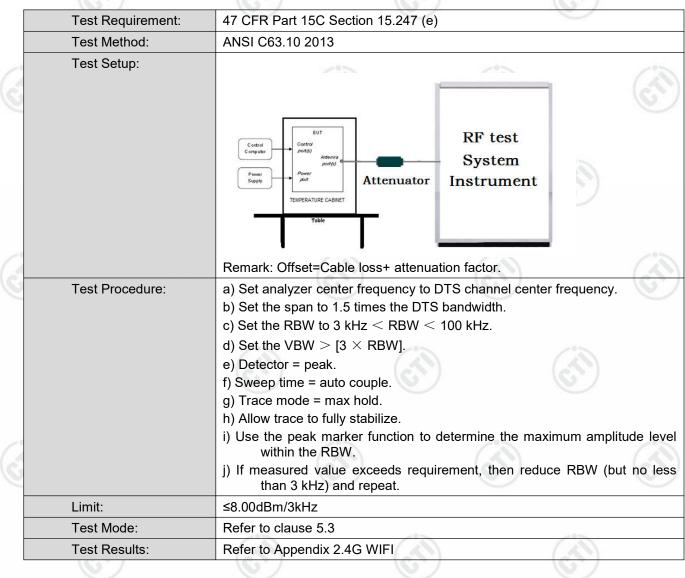
7.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Pothy Power Supply Table RF test System Instrument
Test Procedure:	1. PKPM1 Peak power meter measurement The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video
	 bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector. 2. Method AVGPM-G Average power measurement Method AVGPM-G is a measurement using a gated RF average power meter. Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
Limit:	30dBm
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix 2.4G WIFI

Page 18 of 58

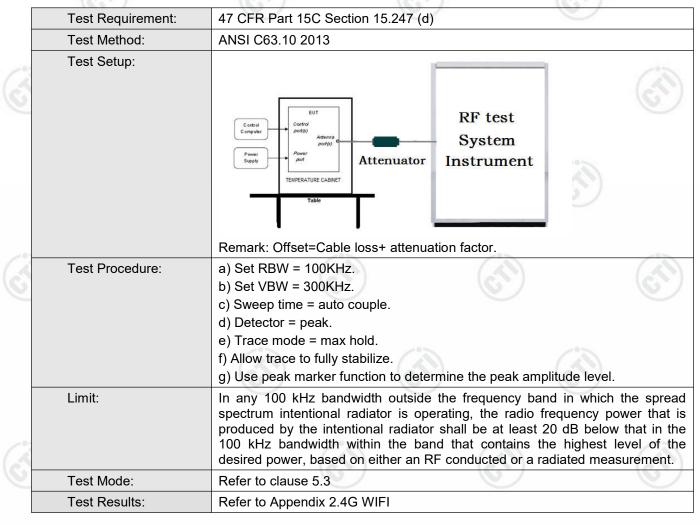
7.4 DTS Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
	Test Method:	ANSI C63.10 2013
8	Test Setup:	
		Control Congular Power Supply TemPERATURE CABNET Table
5		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
	Limit:	≥ 500 kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix 2.4G WIFI



Page 19 of 58

7.5 Maximum Power Spectral Density

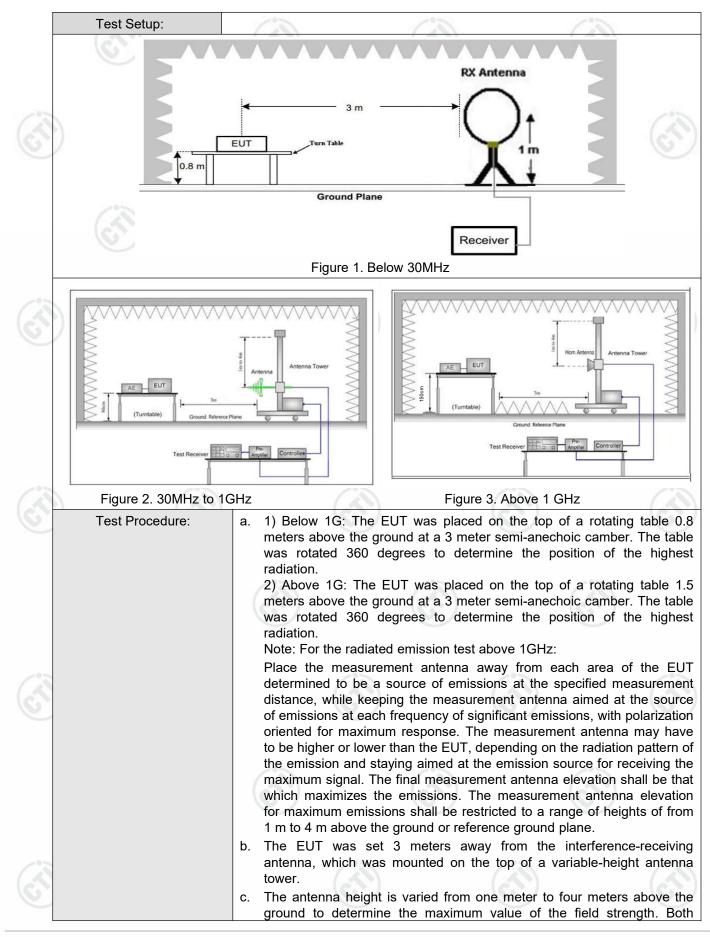


Page 20 of 58

7.6 Band Edge Measurements and Conducted Spurious Emission

Page 21 of 58

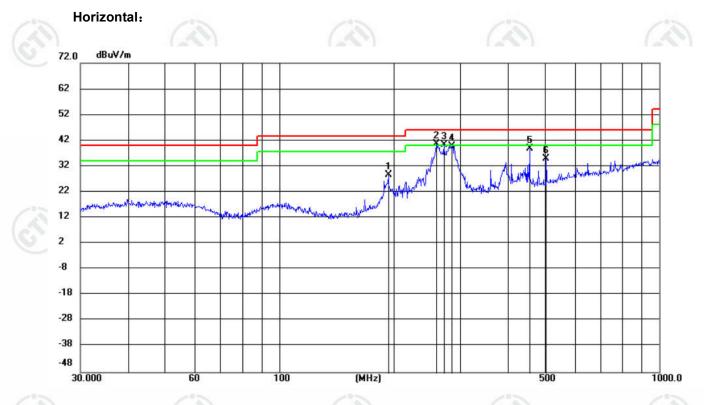
7.7 Radiated Spurious Emission & Restricted bands


	Test Requirement:	47 CFR Part 15C Section	ion 15	.209 and 15	.205	C				
	Test Method:	ANSI C63.10 2013								
	Test Site:	Measurement Distance	ber)	- 11						
	Receiver Setup:	Frequency	9	Detector	RBW	VBW	Remark			
<u>C</u>		0.009MHz-0.090MH	lz	Peak	10kHz	z 30kHz	Peak			
		0.009MHz-0.090MH	lz	Average	10kHz	z 30kHz	Average			
		0.090MHz-0.110MH	lz	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
		0.110MHz-0.490MH	lz	Peak	10kHz	z 30kHz	Peak			
		0.110MHz-0.490MH	lz	Average	10kHz	z 30kHz	Average			
		0.490MHz -30MHz	<u>.</u>	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
		30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak			
13				Peak	1MHz	3MHz	Peak			
6		Above 1GHz	P) [Peak	1MHz	: 10kHz	Average			
	Limit:	Frequency		d strength ovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m)			
		0.009MHz-0.490MHz	240	0/F(kHz)	-	- / 2	300			
		0.490MHz-1.705MHz	240	00/F(kHz)	-	- (2)	30			
		1.705MHz-30MHz		30	-	6	30			
		30MHz-88MHz		100	40.0	Quasi-peal	x 3			
		88MHz-216MHz		150	43.5	Quasi-peal	< <u>3</u>			
		216MHz-960MHz	9	200	46.0	Quasi-peal	< <u>3</u>			
S.		960MHz-1GHz		500	54.0	Quasi-peal	< 3			
		Above 1GHz		500	54.0	Average	3			
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	verage emission							

Page 22 of 58

CTI华测检测

Test Results:	Pass
Test Mode:	Refer to clause 5.3
2	i. Repeat above procedures until all frequencies measured was complete.
3	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
۲	 and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	horizontal and vertical polarizations of the antenna are set to make the measurement.d. For each suspected emission, the EUT was arranged to its worst case

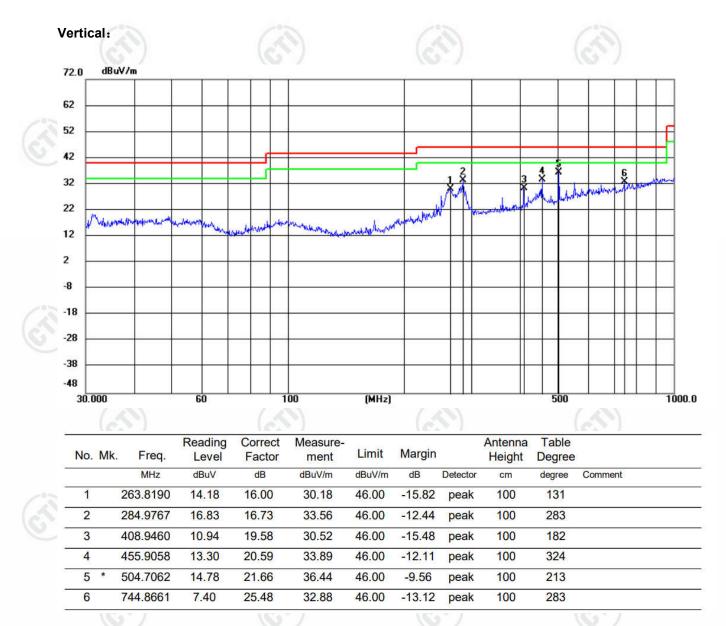


Page 23 of 58

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 1Mbps for 802.11b was recorded in the report.

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		193.7727	16.12	12.51	28.63	43.50	-14.87	peak	100	188		
2	*	259.2338	24.76	15.84	40.60	46.00	-5.40	peak	100	157		
3	!	271.3245	24.22	16.26	40.48	46.00	-5.52	peak	100	65		
4		284.9767	23.11	16.73	39.84	46.00	-6.16	peak	100	177		
5		455.9058	18.39	20.59	38.98	46.00	-7.02	peak	100	96		
6		504.7062	13.15	21.66	34.81	46.00	-11.19	peak	100	116		
								0673				



Page 24 of 58

Page 25 of 58

Radiated Spurious Emission above 1GHz:

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 b mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; for MIMO Occupied Bandwidth, 802.11 n(HT40) mode was the worst case of antenna 1 was in the report.

~										
	Mode	÷		802.11 b Trans	mitting		Channe	el:	2412MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1401.4401	1.39	44.27	45.66	74.00	28.34	PASS	Н	PK
	2	1671.8672	2.76	42.39	45.15	74.00	28.85	PASS	Н	PK
	3	4386.0924	-17.08	54.34	37.26	74.00	36.74	PASS	Н	PK
	4	6201.2134	-13.21	52.99	39.78	74.00	34.22	PASS	Н	PK
	5	9296.4198	-7.95	51.54	43.59	74.00	30.41	PASS	Н	PK
_	6	12549.6366	-4.47	51.05	46.58	74.00	27.42	PASS	Н	PK
	7	1395.6396	1.38	42.24	43.62	74.00	30.38	PASS	V	PK
	8	2055.5056	4.73	39.18	43.91	74.00	30.09	PASS	V	PK
	9	4639.1093	-16.65	53.08	36.43	74.00	37.57	PASS	V	PK
	10	5946.1964	-13.31	52.26	38.95	74.00	35.05	PASS	V	PK
	11	8767.3845	-9.68	51.50	41.82	74.00	32.18	PASS	V	PK
Ī	12	11899.5933	-5.83	52.21	46.38	74.00	27.62	PASS	V	PK

		and the first of		10 million		and the second sec			Control (1) Transition
Мо	de:		802.11 b Trans	mitting		Channe	el:	2437MHz	
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1389.2389	1.35	44.95	46.30	74.00	27.70	PASS	н	PK
2	1675.8676	2.78	42.13	44.91	74.00	29.09	PASS	Н	PK
3	4315.0877	-17.20	55.09	37.89	74.00	36.11	PASS	Н	PK
4	6974.2650	-11.82	51.87	40.05	74.00	33.95	PASS	Н	PK
5	11783.5856	-6.13	52.28	46.15	74.00	27.85	PASS	Н	PK
6	13758.7172	-1.69	50.37	48.68	74.00	25.32	PASS	Н	PK
7	1241.2241	0.91	40.35	41.26	74.00	32.74	PASS	V	PK
8	1717.6718	3.00	39.70	42.70	74.00	31.30	PASS	V	PK
9	4109.0739	-18.17	52.03	33.86	74.00	40.14	PASS	V	PK
10	5977.1985	-13.11	59.81	46.70	74.00	27.30	PASS	V	PK
11	7870.3247	-11.05	51.56	40.51	74.00	33.49	PASS	V	PK
12	11739.5826	-6.19	51.72	45.53	74.00	28.47	PASS	V	PK

Page 27 of 58

	100		100		12		1	20	
Mode	e:		802.11 b Trans	mitting		Channe	el:	2462MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1395.0395	1.37	44.86	46.23	74.00	27.77	PASS	н	PK
2	1670.6671	2.75	41.76	44.51	74.00	29.49	PASS	н	PK
3	4343.0895	-17.15	54.76	37.61	74.00	36.39	PASS	Н	PK
4	5999.1999	-12.97	58.83	45.86	74.00	28.14	PASS	Н	PK
5	9163.4109	-8.18	52.41	44.23	74.00	29.77	PASS	Н	PK
6	13670.7114	-1.73	50.27	48.54	74.00	25.46	PASS	Н	PK
7	1225.2225	0.87	41.83	42.70	74.00	31.30	PASS	V	PK
8	1841.8842	3.59	39.84	43.43	74.00	30.57	PASS	V	PK
9	4225.0817	-17.82	54.62	36.80	74.00	37.20	PASS	V	PK
10	5990.1993	-13.02	56.78	43.76	74.00	30.24	PASS	V	PK
11	8566.3711	-10.42	53.04	42.62	74.00	31.38	PASS	V	PK
12	10727.5152	-6.40	51.11	44.71	74.00	29.29	PASS	V	PK

N	lode	:		802.11 n(HT40)	Channe	el:	2422MHz			
1	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1404.2404	1.39	44.61	46.00	74.00	28.00	PASS	н	PK
	2	1672.8673	2.76	42.26	45.02	74.00	28.98	PASS	Н	PK
	3	4337.0891	-17.16	55.26	38.10	74.00	35.90	PASS	Н	PK
3	4	5998.1999	-12.97	55.30	42.33	74.00	31.67	PASS	Н	PK
	5	8275.3517	-10.96	52.02	41.06	74.00	32.94	PASS	Н	PK
-	6	11895.5930	-5.84	51.73	45.89	74.00	28.11	PASS	Н	PK
	7	1260.0260	0.96	40.63	41.59	74.00	32.41	PASS	V	PK
	8	1680.6681	2.81	39.72	42.53	74.00	31.47	PASS	V	PK
	9	3843.0562	-19.18	53.59	34.41	74.00	39.59	PASS	V	PK
	10	5767.1845	-13.68	53.84	40.16	74.00	33.84	PASS	V	PK
	11	7825.3217	-11.26	52.59	41.33	74.00	32.67	PASS	V	PK
	12	10755.5170	-6.34	51.15	44.81	74.00	29.19	PASS	V	PK

Page 28 of 58

		10			19					9 million	
	Mode	Mode: Fact			2.11 n(HT40)) Transmitting		Channe	el:	2437MHz	
	NO	Freq. [MHz]	Factor [dB]	-	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1395.6396	1.38		45.18	46.56	74.00	27.44	PASS	н	PK
	2	1669.4669	2.74		41.69	44.43	74.00	29.57	PASS	н	PK
	3	4287.0858	-17.33	5	55.36	38.03	74.00	35.97	PASS	Н	PK
	4	6249.2166	-13.07	,	53.02	39.95	74.00	34.05	PASS	Н	PK
	5	9267.4178	-7.93		51.21	43.28	74.00	30.72	PASS	Н	PK
	6	12526.6351	-4.64		51.38	46.74	74.00	27.26	PASS	Н	PK
	7	1256.4256	0.95		41.87	42.82	74.00	31.18	PASS	V	PK
	8	1665.0665	2.71		41.18	43.89	74.00	30.11	PASS	V	PK
	9	4623.1082	-16.67	,	55.65	38.98	74.00	35.02	PASS	V	PK
	10	7303.2869	-11.68	;	52.59	40.91	74.00	33.09	PASS	V	PK
3	11	11271.5514	-6.57		51.26	44.69	74.00	29.31	PASS	V	PK
	12	14764.7843	0.74		47.68	48.42	74.00	25.58	PASS	V	PK
	/			6						·	

Мос	le:		802.11 n(HT40)) Transmitting	Channe	el:	2452MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1386.6387	1.35	44.89	46.24	74.00	27.76	PASS	Н	PK
2	1677.0677	2.79	41.64	44.43	74.00	29.57	PASS	Н	PK
3	4392.0928	-17.06	55.09	38.03	74.00	35.97	PASS	Н	PK
4	5995.1997	-12.99	59.01	46.02	74.00	27.98	PASS	Н	PK
5	7888.3259	-10.96	51.65	40.69	74.00	33.31	PASS	Н	PK
6	11856.5904	-5.95	52.43	46.48	74.00	27.52	PASS	Н	PK
7	1133.8134	0.83	40.95	41.78	74.00	32.22	PASS	V	PK
8	1669.2669	2.74	40.15	42.89	74.00	31.11	PASS	V	PK
9	5984.1989	-13.06	57.97	44.91	74.00	29.09	PASS	V	PK
10	8996.3998	-8.50	51.38	42.88	74.00	31.12	PASS	V	PK
11	12400.6267	-4.69	51.07	46.38	74.00	27.62	PASS	V	PK
12	15261.8175	0.47	47.31	47.78	74.00	26.22	PASS	V	PK

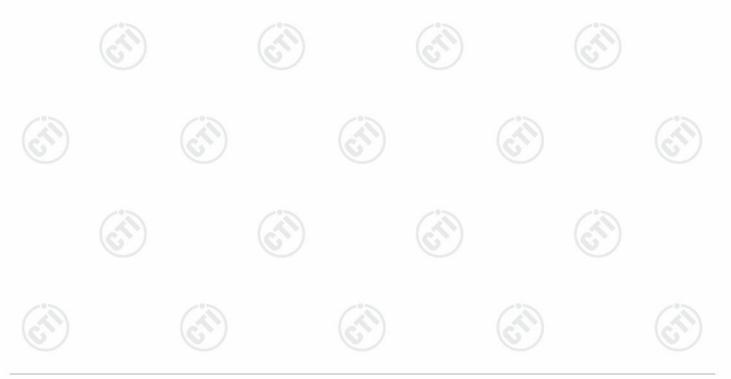
CTI华测检测

Report No. : EED32O81465503

	MIMO									
	Mode	:		802.11 n(HT40)	Transmitting		Channe	el:	2422MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1393.6394	1.37	44.20	45.57	74.00	28.43	PASS	н	PK
	2	1668.6669	2.74	41.71	44.45	74.00	29.55	PASS	Н	PK
	3	5038.1359	-15.77	54.69	38.92	74.00	35.08	PASS	Н	PK
	4	7400.2934	-11.51	52.35	40.84	74.00	33.16	PASS	Н	PK
	5	9759.4506	-7.51	50.52	43.01	74.00	30.99	PASS	Н	PK
	6	13221.6814	-3.19	50.58	47.39	74.00	26.61	PASS	Н	PK
	7	1184.4184	0.81	41.52	42.33	74.00	31.67	PASS	V	PK
	8	1737.8738	3.07	40.25	43.32	74.00	30.68	PASS	V	PK
	9	3948.0632	-19.00	52.94	33.94	74.00	40.06	PASS	V	PK
3	10	5990.1993	-13.02	54.14	41.12	74.00	32.88	PASS	V	PK
	11	8643.3762	-10.26	51.74	41.48	74.00	32.52	PASS	V	PK
-	12	12352.6235	-5.18	51.25	46.07	74.00	27.93	PASS	V	PK

	Mode	:		802.11 n(HT40) Transmitting			Channel:		2437MHz	
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Γ	1	1401.4401	1.39	44.31	45.70	74.00	28.30	PASS	Н	PK
3	2	1672.2672	2.76	41.32	44.08	74.00	29.92	PASS	Н	PK
	3	4575.1050	-16.76	54.33	37.57	74.00	36.43	PASS	Н	PK
-	4	5982.1988	-13.08	3 56.29	43.21	74.00	30.79	PASS	Н	PK
	5	9226.4151	-7.90	51.21	43.31	74.00	30.69	PASS	Н	PK
	6	13230.6820	-3.22	50.34	47.12	74.00	26.88	PASS	Н	PK
	7	1095.0095	0.85	41.18	42.03	74.00	31.97	PASS	V	PK
	8	1797.2797	3.27	40.35	43.62	74.00	30.38	PASS	V	PK
	9	4263.0842	-17.52	2 55.68	38.16	74.00	35.84	PASS	V	PK
	10	5983.1989	-13.07	7 58.65	45.58	74.00	28.42	PASS	V	PK
	11	8256.3504	-10.97	7 51.54	40.57	74.00	33.43	PASS	V	PK
	12	13095.6730	-3.69	50.93	47.24	74.00	26.76	PASS	V	PK
	1		0	/	6.		6	/		67

Page 30 of 58


		100		100		12		1	20	
Μ	1ode	:	3	302.11 n(HT40)) Transmitting		Channe	el:	2452MHz	
N	10	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1398.4398	1.38	44.43	45.81	74.00	28.19	PASS	Н	PK
	2	1674.0674	2.77	41.26	44.03	74.00	29.97	PASS	Н	PK
	3	4648.1099	-16.64	54.26	37.62	74.00	36.38	PASS	Н	PK
	4	5785.1857	-13.62	53.85	40.23	74.00	33.77	PASS	Н	PK
	5	8330.3554	-10.97	51.80	40.83	74.00	33.17	PASS	Н	PK
	6	11726.5818	-6.21	51.49	45.28	74.00	28.72	PASS	Н	PK
	7	1237.2237	0.90	40.20	41.10	74.00	32.90	PASS	V	PK
	8	1914.6915	4.11	39.28	43.39	74.00	30.61	PASS	V	PK
	9	4445.0963	-17.00	53.73	36.73	74.00	37.27	PASS	V	PK
1	10	5985.1990	-13.06	56.80	43.74	74.00	30.26	PASS	V	PK
1	11	8977.3985	-8.64	50.50	41.86	74.00	32.14	PASS	V	PK
1	12	12034.6023	-5.46	51.88	46.42	74.00	27.58	PASS	V	PK
									•	

Remark:

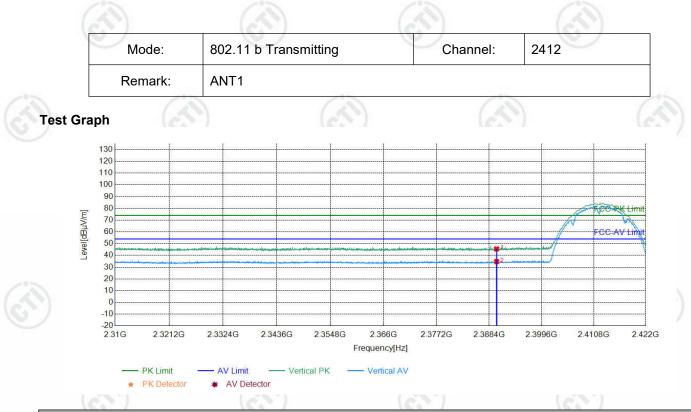
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

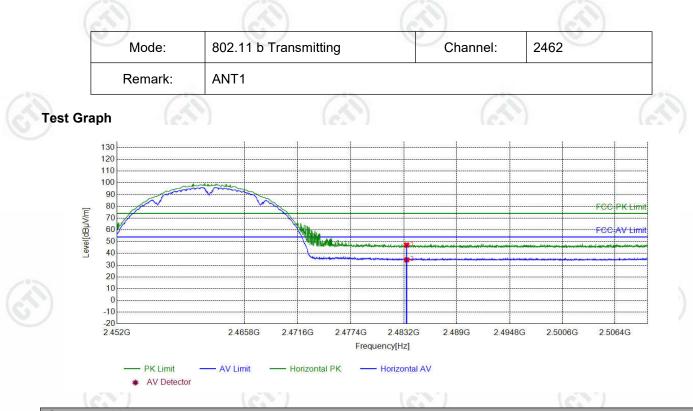
Page 31 of 58

Restricted bands:

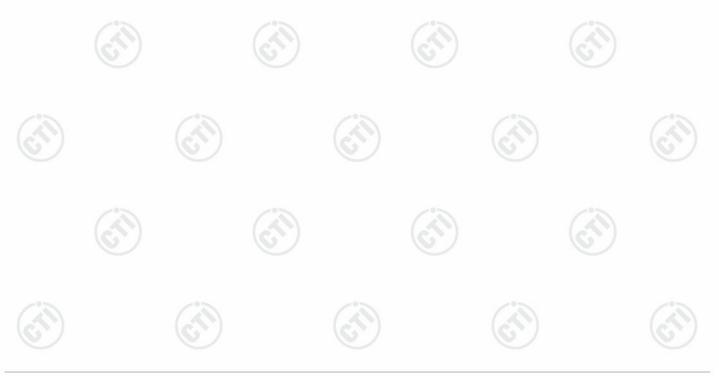

Test plot as follows:

Mode: Remark: raph		2.11 b Tran	smitting		Channel:	2412		
130 120 110 100 90 80 700 60 50 40	AN	JT1						
130 120 110 100 90 80 70 60 50 40								
120 110 100 90 90 70 70 50 40								
110 100 90 90 70 70 50 40							and the second sec	
90 80 70 60 50 40							while	22222
70 60 50 40					eretetetetetetetetete		A MAR	, N
	لى رويى مەركىيى بىدىن مەركىيى بىلى مەركىيى بىلى مەركىيى بىلى بىلى بىلى بىلى بىلى بىلى بىلى ب						FCC-PKL	ent.
			10-01-04				FCC-AV-Li	
20					•••••••••••••••••••••••••••••••••••••••	2		
10 0								
-10								
2.31G 2.3212	2G 2.332	24G 2.3436G			2G 2.38840	3 2.3996G	2.4108G 2	.422G
	AV	/ Limit H	orizontal PK	- Horizontal AV				
🖈 PK Detec	tor 🗰	AV Detector						
cted List	a - 7		16.61.7		1003			16.4 . 7
Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remar
2390.0000	5.77	39.74	45.51	74.00	28.49	PASS	Horizontal	PK
2390.0000	5.77	28.62	34.39	54.00	19.61	PASS	Horizontal	AV
	10 -10 -20 2.31G 2.3212 → PK Limit ★ PK Detect PK Detect PK Limit 2.390.0000	10 0 -10 -20 231G 2.3212G 2.332 → PK Limit → ★ PK Detector * ected List Freq. [MHz] Factor [dB] 2390.0000 5.77	10	10	10	10	10	10 -

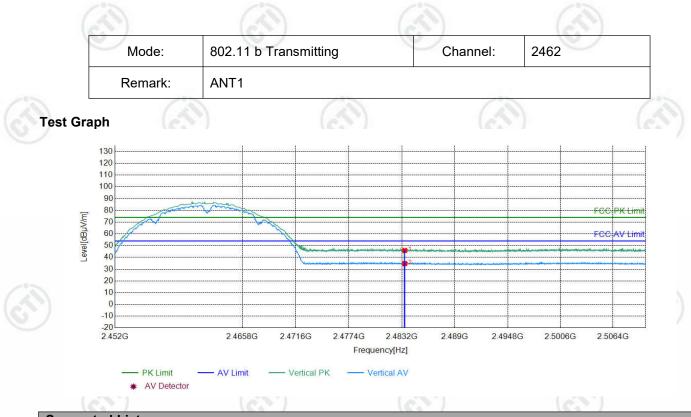
Page 32 of 58



	Suspe	ected List								
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(A)	1	2390.0000	5.77	39.75	45.52	74.00	28.48	PASS	Vertical	PK
6	2	2390.0000	5.77	28.97	34.74	54.00	19.26	PASS	Vertical	AV



Page 33 of 58

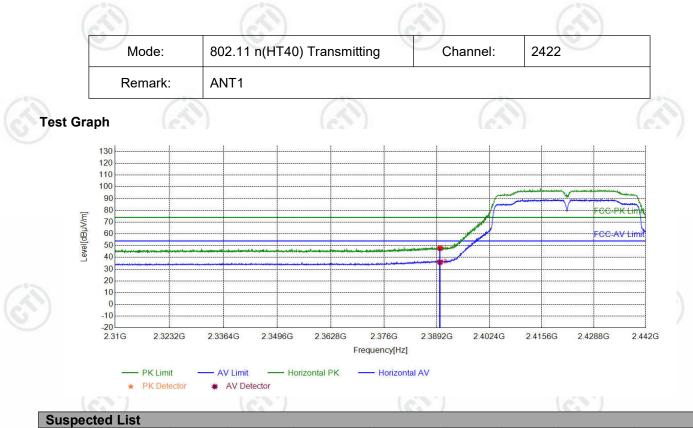


	Suspec	ted List								
~~~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	40.55	47.12	74.00	26.88	PASS	Horizontal	PK
C	2	2483.5000	6.57	27.97	34.54	54.00	19.46	PASS	Horizontal	AV

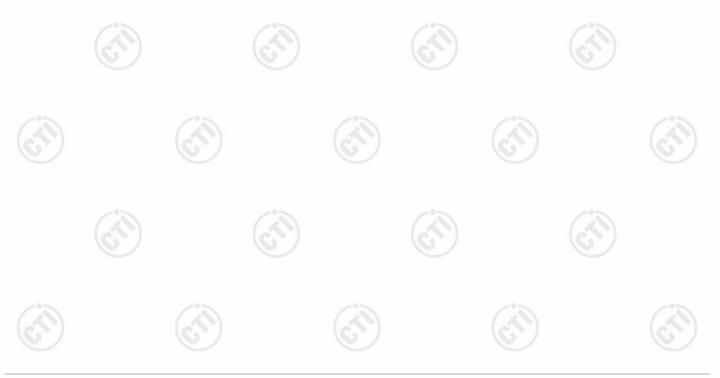




Page 34 of 58




	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	2483.5000	6.57	39.32	45.89	74.00	28.11	PASS	Vertical	PK
C	2	2483.5000	6.57	28.17	34.74	54.00	19.26	PASS	Vertical	AV

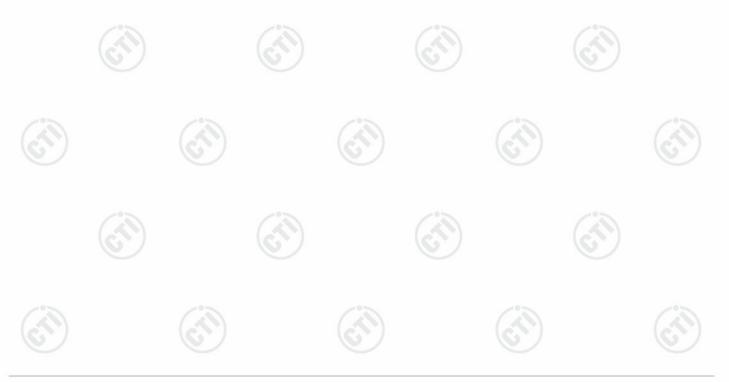





Page 35 of 58

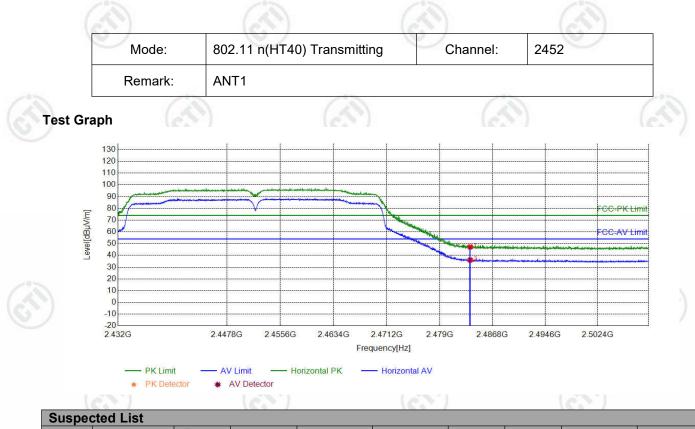


	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2390.0000	5.77	41.95	47.72	74.00	26.28	PASS	Horizontal	PK	
C.	2	2390.0000	5.77	30.11	35.88	54.00	18.12	PASS	Horizontal	AV	

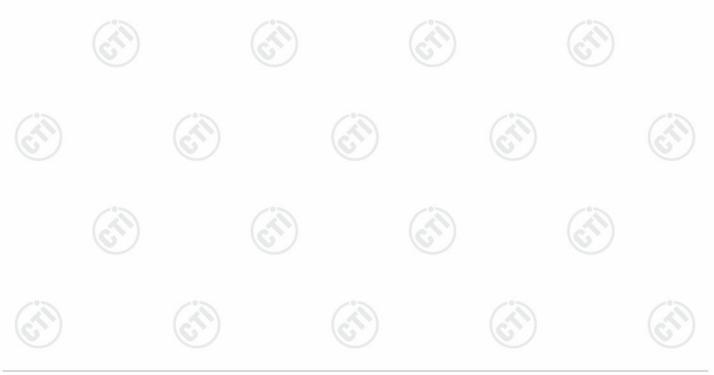





Page 36 of 58

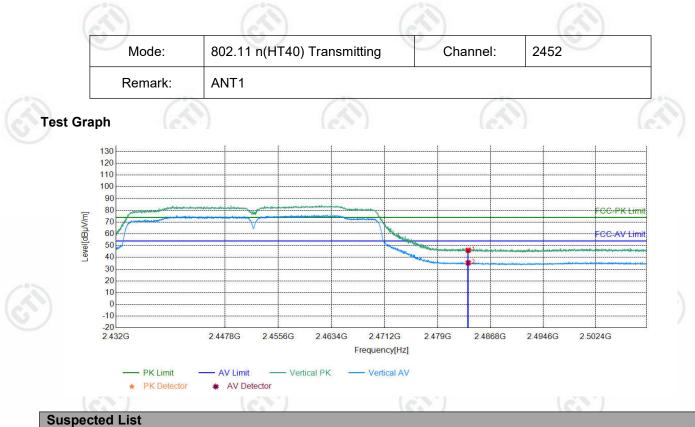



	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	2390.0000	5.77	38.87	44.64	74.00	29.36	PASS	Vertical	PK
C	2	2390.0000	5.77	28.60	34.37	54.00	19.63	PASS	Vertical	AV

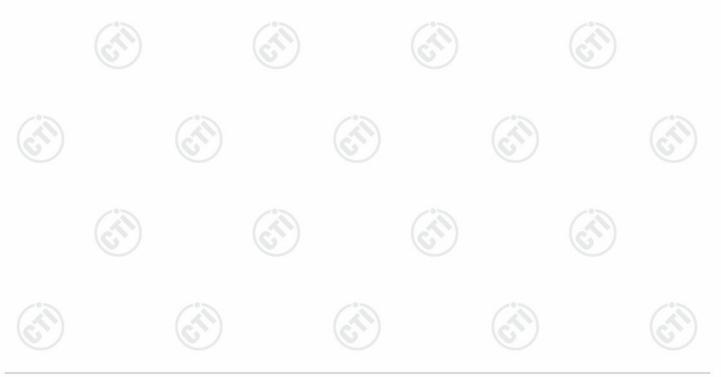





Page 37 of 58

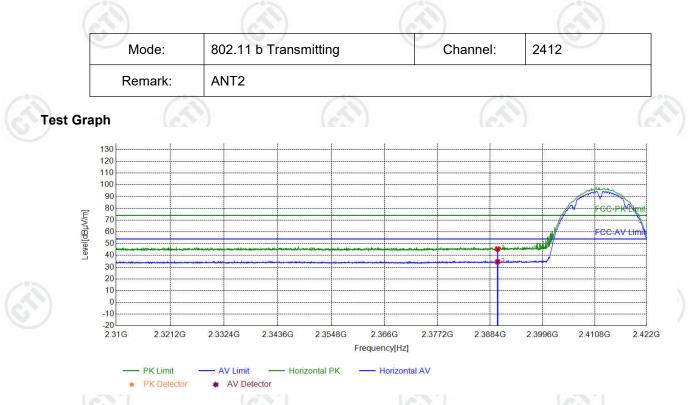



Cacpot									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.62	47.19	74.00	26.81	PASS	Horizontal	PK
2	2483.5000	6.57	29.49	36.06	54.00	17.94	PASS	Horizontal	AV
		NO         [MHz]           1         2483.5000	NO         Freq. [MHz]         Factor [dB]           1         2483.5000         6.57	NO         Freq. [MHz]         Factor [dB]         Reading [dBμV]           1         2483.5000         6.57         40.62	NO         Freq. [MHz]         Factor [dB]         Reading [dBμV]         Level [dBμV/m]           1         2483.5000         6.57         40.62         47.19	NO         Freq. [MHz]         Factor [dB]         Reading [dBμV]         Level [dBμV/m]         Limit [dBμV/m]           1         2483.5000         6.57         40.62         47.19         74.00	NO         Freq. [MHz]         Factor [dB]         Reading [dBμV]         Level [dBμV/m]         Limit [dBμV/m]         Margin [dB]           1         2483.5000         6.57         40.62         47.19         74.00         26.81	NO         Freq. [MHz]         Factor [dB]         Reading [dBμV]         Level [dBμV/m]         Limit [dBμV/m]         Margin [dB]         Result           1         2483.5000         6.57         40.62         47.19         74.00         26.81         PASS	NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity12483.50006.5740.6247.1974.0026.81PASSHorizontal

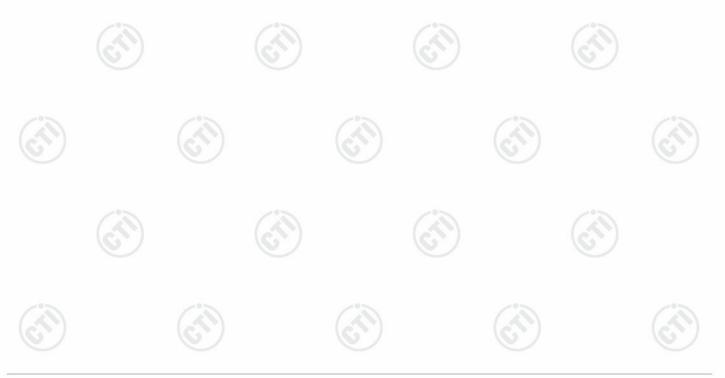




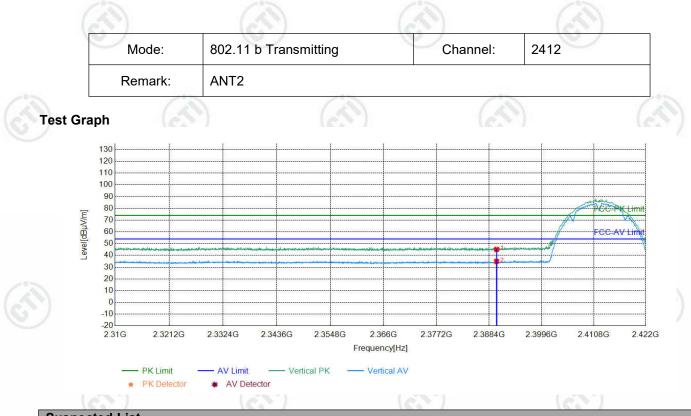

Page 38 of 58



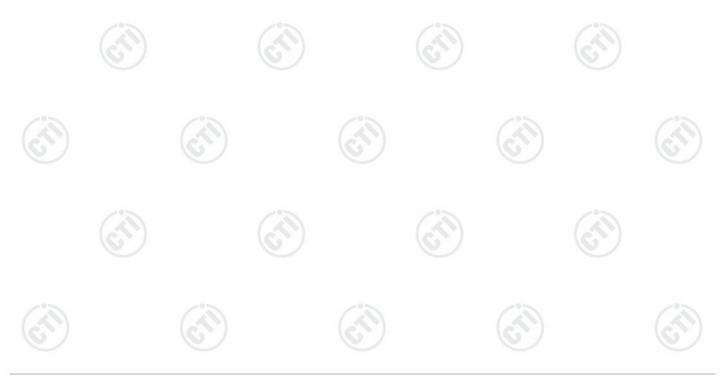

	ouspe									
~~~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2483.5000	6.57	39.44	46.01	74.00	27.99	PASS	Vertical	PK
C	2	2483.5000	6.57	28.77	35.34	54.00	18.66	PASS	Vertical	AV



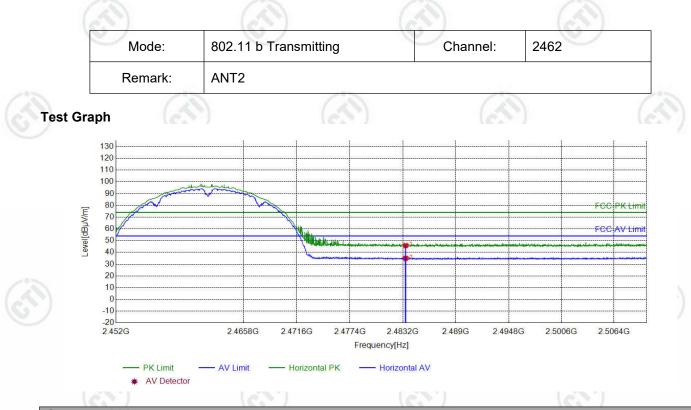
Page 39 of 58



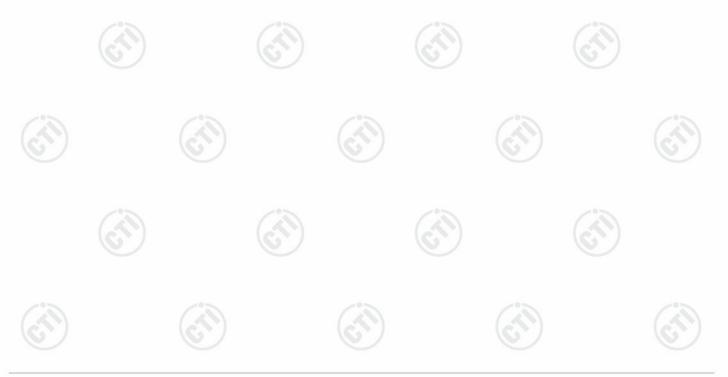
	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(A)	1	2390.0000	5.77	39.67	45.44	74.00	28.56	PASS	Horizontal	PK
6	2	2390.0000	5.77	28.79	34.56	54.00	19.44	PASS	Horizontal	AV



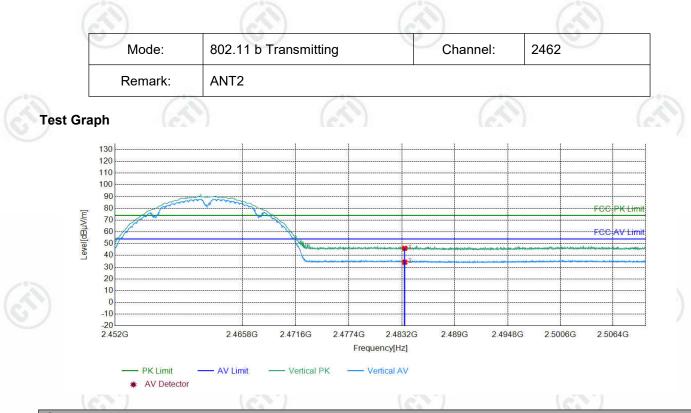
Page 40 of 58



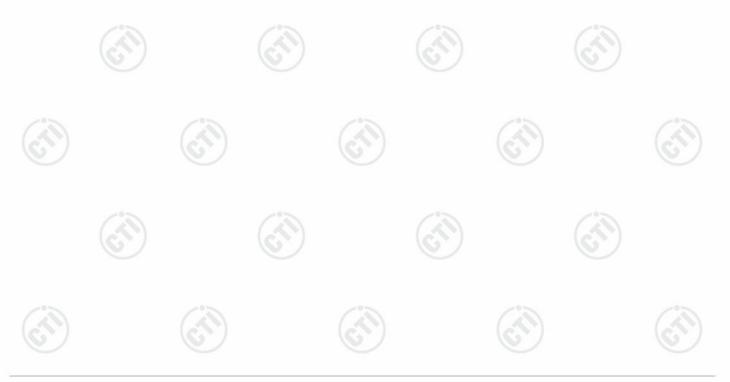
	Suspec	ted List								
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(A)	1	2390.0000	5.77	39.37	45.14	74.00	28.86	PASS	Vertical	PK
C.	2	2390.0000	5.77	29.11	34.88	54.00	19.12	PASS	Vertical	AV



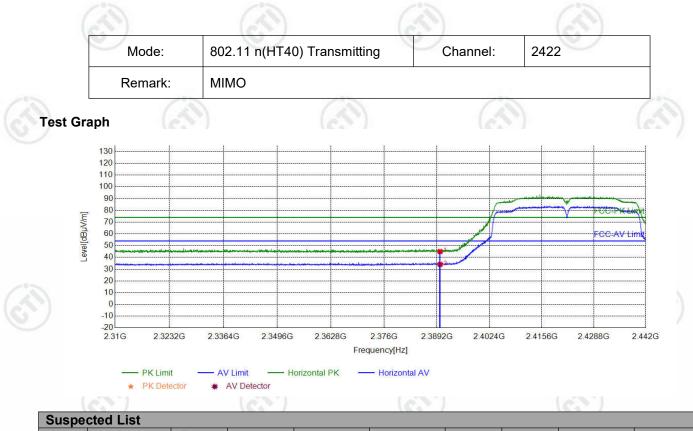
Page 41 of 58



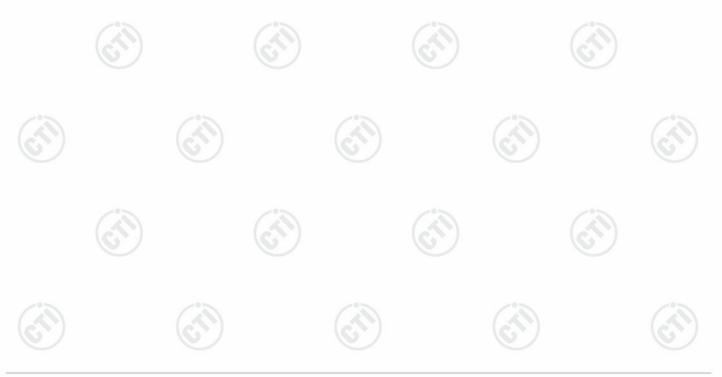
	Suspe	cted List								
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2483.5000	6.57	39.30	45.87	74.00	28.13	PASS	Horizontal	PK
C	2	2483.5000	6.57	28.42	34.99	54.00	19.01	PASS	Horizontal	AV



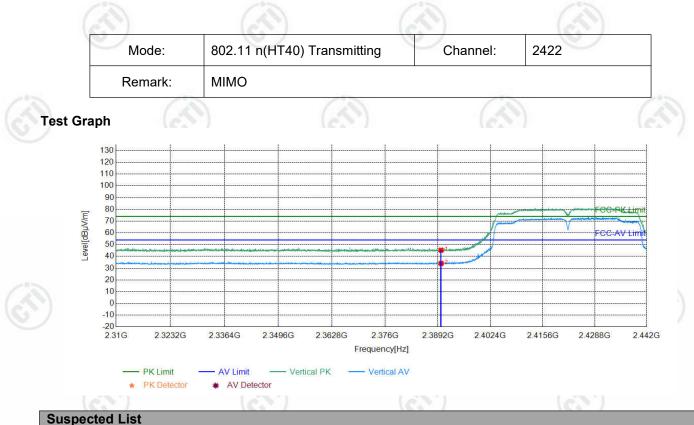
Page 42 of 58



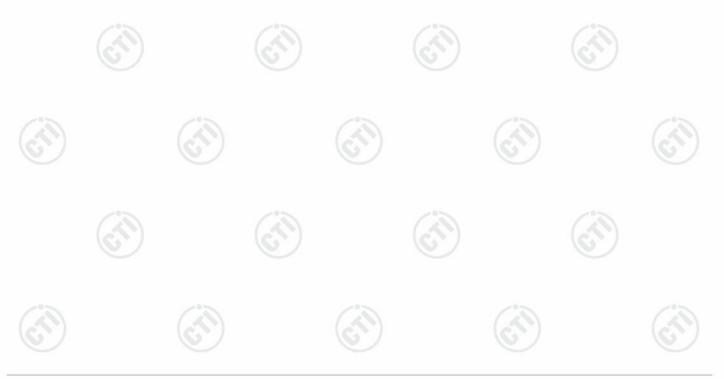
	Suspec	ted List								
100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2483.5000	6.57	39.44	46.01	74.00	27.99	PASS	Vertical	PK
C	2	2483.5000	6.57	27.66	34.23	54.00	19.77	PASS	Vertical	AV



Page 43 of 58

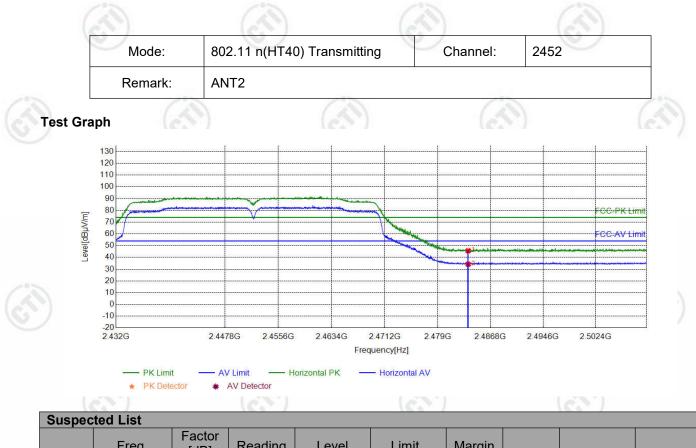


1										
~~~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	2390.0000	5.77	39.23	45.00	74.00	29.00	PASS	Horizontal	PK
6	2	2390.0000	5.77	28.27	34.04	54.00	19.96	PASS	Horizontal	AV






Page 44 of 58

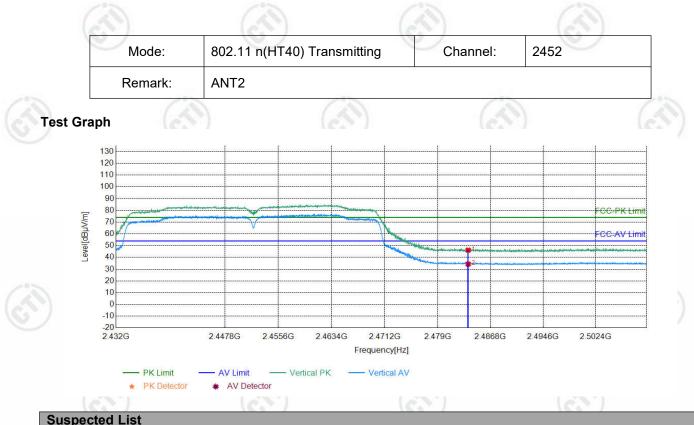



	Suspe					_				
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	2390.0000	5.77	39.55	45.32	74.00	28.68	PASS	Vertical	PK
(C)	2	2390.0000	5.77	28.28	34.05	54.00	19.95	PASS	Vertical	AV

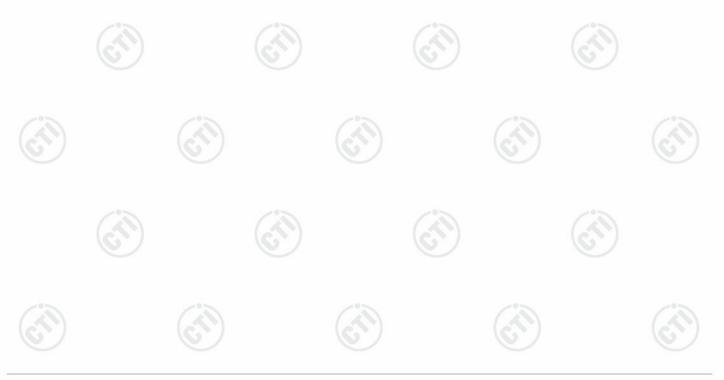





Page 45 of 58

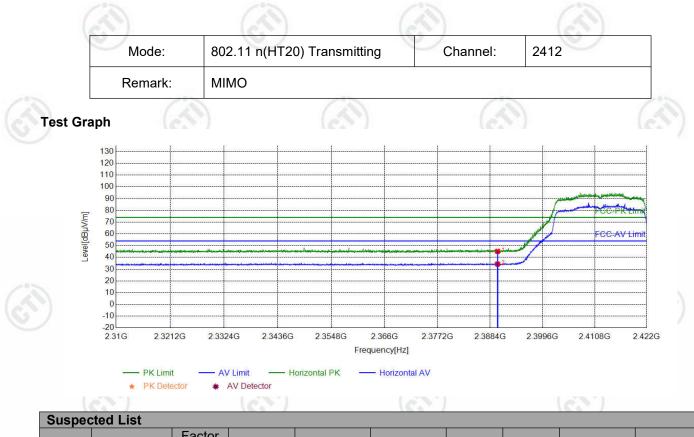



~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
$(\mathcal{A})$	1	2483.5000	6.57	39.09	45.66	74.00	28.34	PASS	Horizontal	PK
(U)	2	2483.5000	6.57	27.65	34.22	54.00	19.78	PASS	Horizontal	AV

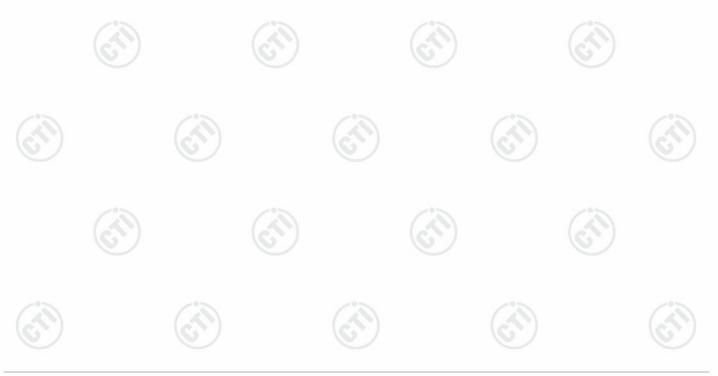




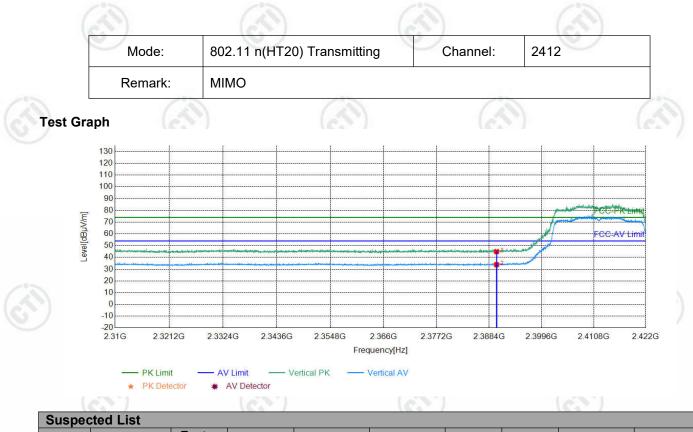

Page 46 of 58



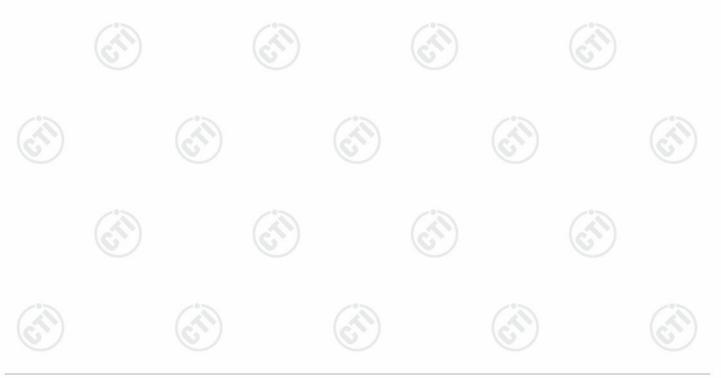

	Suspec									
~~~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2483.5000	6.57	39.62	46.19	74.00	27.81	PASS	Vertical	PK
6	2	2483.5000	6.57	27.75	34.32	54.00	19.68	PASS	Vertical	AV



Page 47 of 58

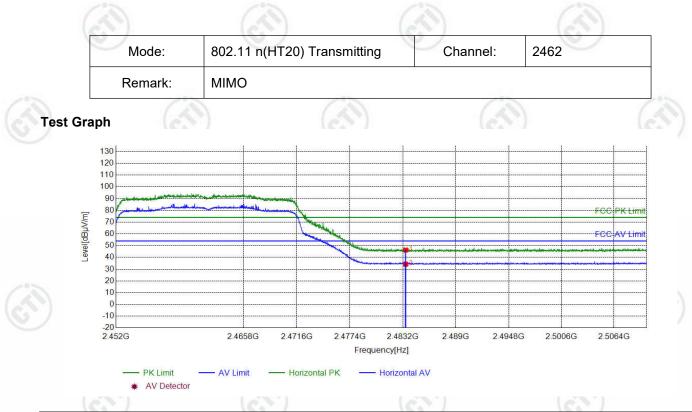



~~~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(A)	1	2390.0000	5.77	39.41	45.18	74.00	28.82	PASS	Horizontal	PK
6	2	2390.0000	5.77	28.56	34.33	54.00	19.67	PASS	Horizontal	AV

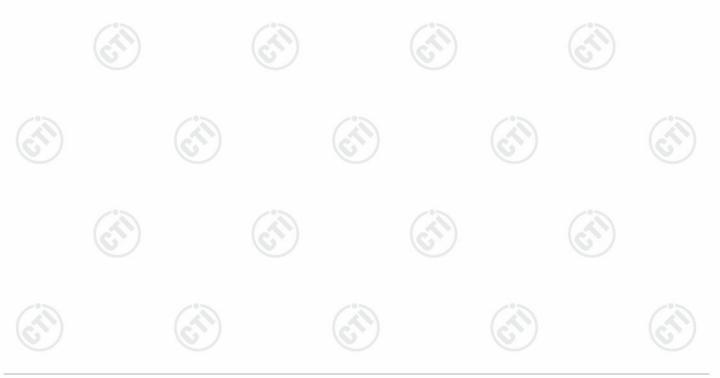





Page 48 of 58




	<b>Free</b>	Factor							
10	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.16	44.93	74.00	29.07	PASS	Vertical	PK
2	2390.0000	5.77	28.06	33.83	54.00	20.17	PASS	Vertical	AV
1	0 2	2390.0000	[MHz]         [UB]           2390.0000         5.77	[MHz]         [db]         [dBμV]           2390.0000         5.77         39.16	[MHz]         [dB]         [dBμV]         [dBμV/m]           2390.0000         5.77         39.16         44.93	[MHz]         [dB]         [dBμV]         [dBμV/m]         [dBμV/m]           2390.0000         5.77         39.16         44.93         74.00	[MHz]         [dB]         [dBµV]         [dBµV/m]         [dBµV/m]         [dB]           2390.0000         5.77         39.16         44.93         74.00         29.07	[MHz]         [dB]         [dBµV]         [dBµV/m]         [dBµV/m]         [dB]         Result           2390.0000         5.77         39.16         44.93         74.00         29.07         PASS	O     [MHz]     [dB]     [dB]     Result     Polarity       2390.0000     5.77     39.16     44.93     74.00     29.07     PASS     Vertical

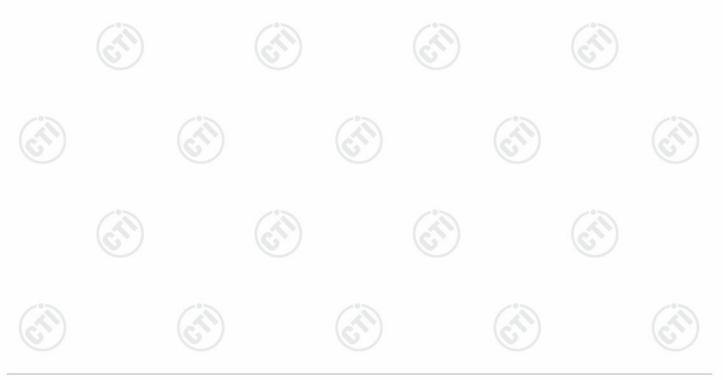




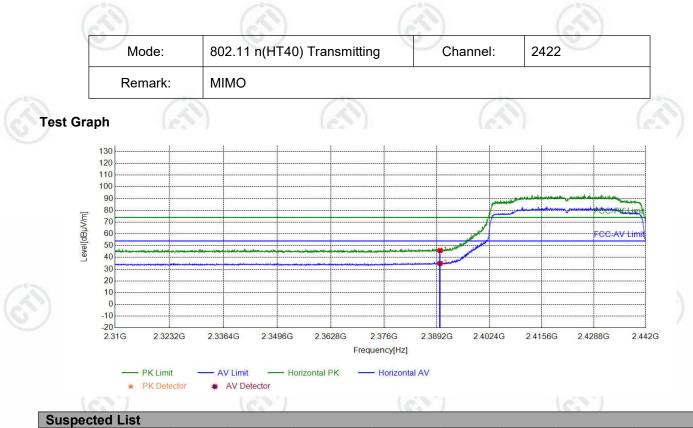

Page 49 of 58



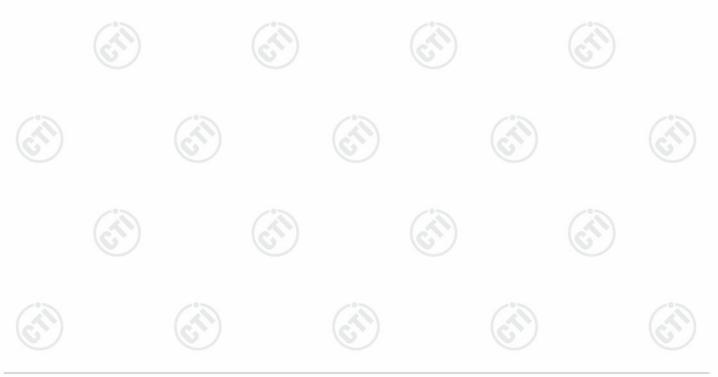
	Suspected List										
~~~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
(\mathcal{A})	1	2483.5000	6.57	39.71	46.28	74.00	27.72	PASS	Horizontal	PK	
C	2	2483.5000	6.57	27.71	34.28	54.00	19.72	PASS	Horizontal	AV	



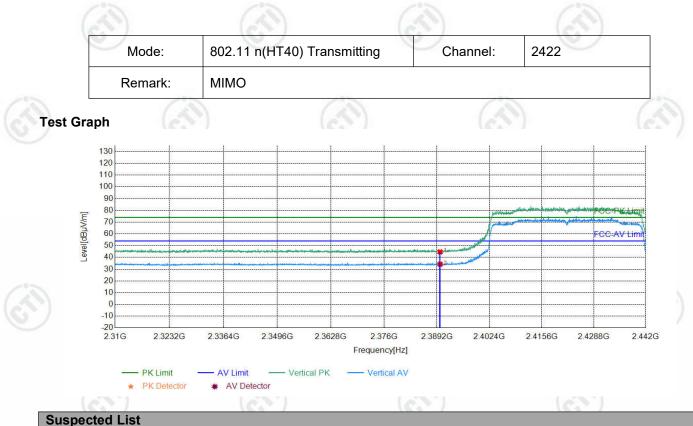
Page 50 of 58



	Suspected List										
S.	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2483.5000	6.57	39.18	45.75	74.00	28.25	PASS	Vertical	PK	
	2	2483.5000	6.57	27.80	34.37	54.00	19.63	PASS	Vertical	AV	

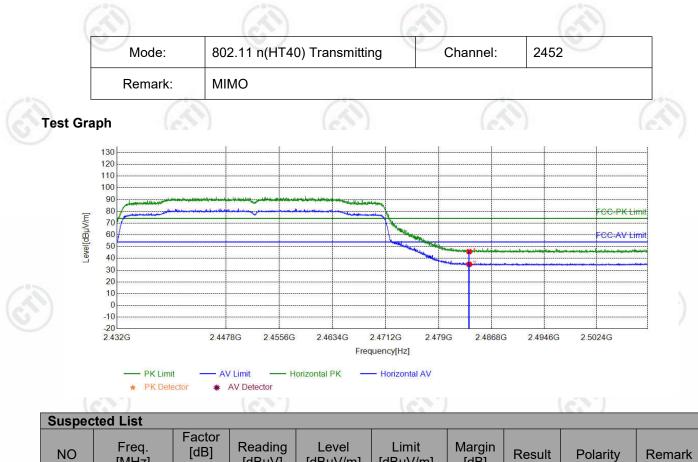


Page 51 of 58

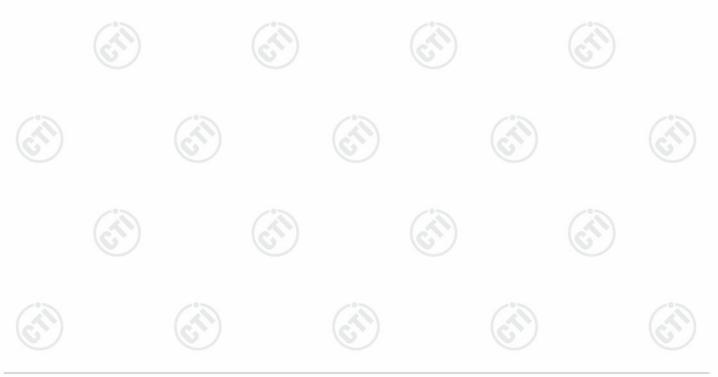


100	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
(\mathcal{A})	1	2390.0000	5.77	40.16	45.93	74.00	28.07	PASS	Horizontal	PK		
C	2	2390.0000	5.77	29.10	34.87	54.00	19.13	PASS	Horizontal	AV		

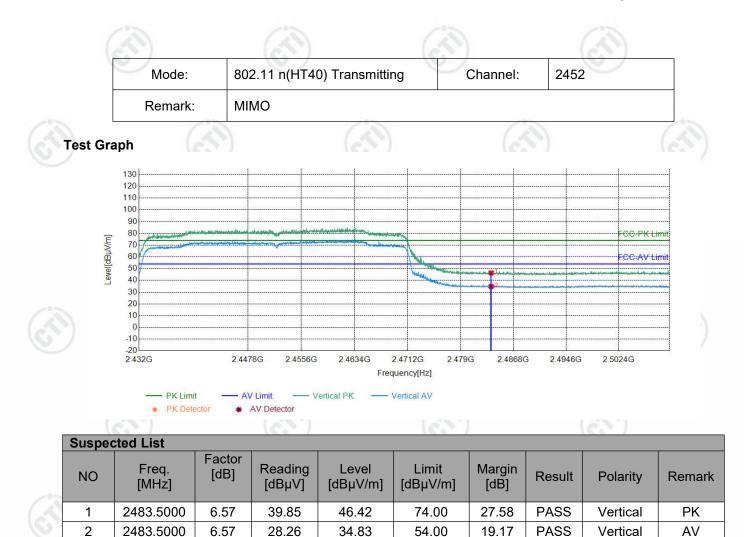
Page 52 of 58



NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390.0000	5.77	38.90	44.67	74.00	29.33	PASS	Vertical	PK		
2	2390.0000	5.77	28.44	34.21	54.00	19.79	PASS	Vertical	AV		
	NO 1 2	NO Freq. [MHz] 1 2390.0000	NO Freq. [MHz] Factor [dB] 1 2390.0000 5.77	NO Freq. [MHz] Factor [dB] Reading [dBμV] 1 2390.0000 5.77 38.90	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] 1 2390.0000 5.77 38.90 44.67	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] 1 2390.0000 5.77 38.90 44.67 74.00	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] 1 2390.0000 5.77 38.90 44.67 74.00 29.33	NO Freq. [MHz] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result 1 2390.0000 5.77 38.90 44.67 74.00 29.33 PASS	NOFreq. [MHz]Factor [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity12390.00005.7738.9044.6774.0029.33PASSVertical		



Page 53 of 58



	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remai
(A)	1	2483.5000	6.57	39.22	45.79	74.00	28.21	PASS	Horizontal	PK
6	2	2483.5000	6.57	28.40	34.97	54.00	19.03	PASS	Horizontal	AV

Page 54 of 58

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

8 Appendix A

Refer to Appendix: 2.4G WIFI of EED32O81465503

Page 55 of 58

9 PHOTOGRAPHS OF TEST SETUP

Test model No.: MD-150

Radiated spurious emission Test Setup-1(Below 1GHz)

Page 57 of 58

Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

10 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32O81465501 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

