PROBE CALIBRATION CERTIFICATES

Add: No.51 Xueyua		10 (2220)(222 220)	CNAS L
Tel: +86-10-623046 E-mail: cttl@chinat	533-2512 Fax: +8	6-10-62304633-2504 www.chinattl.cn	
Client BAC	and a second	Certificate No: Z19	-60334
CALIBRATION CI	ERTIFICATI	E	
Object	EX3DV4	- SN:7329	
Calibration Procedure(s)	FF-Z11-(004-01	
		on Procedures for Dosimetric E-field Probes	
Online time data			
Calibration date:	October	22, 2019	
All calibrations have been humidity<70%.	conducted in th	ne closed laboratory facility: environment	temperature(22±3) °C and
humidity<70%. Calibration Equipment used	(M&TE critical for	r calibration)	
humidity<70%. Calibration Equipment used Primary Standards	(M&TE critical for ID #	r calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	(M&TE critical for ID # 101919	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125)	Scheduled Calibration Jun-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical for ID # 101919 101547	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125)	Scheduled Calibration Jun-20 Jun-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	(M&TE critical for ID # 101919 101547 101548	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125)	Scheduled Calibration Jun-20 Jun-20 Jun-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical for ID # 101919 101547	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 09-Feb-18(CTTL, No.J18X01133)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125)	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 Feb-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132)	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-20 Feb-20 2) May-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 24-May-19(SPEAG, No.EX3-7307_May19/2 26-Aug-19(SPEAG, No.DAE4-1525_Aug18)	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 2) May-20 9) Aug-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID #	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 24-May-19(SPEAG,No.EX3-7307_May19/	Scheduled Calibration Jun-20 Jun-20 Jun-20 Feb-20 Feb-20 2) May-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID #	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 24-May-19(SPEAG,No.EX3-7307_May19/2 26-Aug-19(SPEAG, No.DAE4-1525_Aug19) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 2) May-20 9) Aug -20 Scheduled Calibration
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 09-Feb-18(CTTL, No.J19X05125) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 24-May-19(SPEAG,No.EX3-7307_May19// 26-Aug-19(SPEAG, No.DAE4-1525_Aug19/ Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05127)	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 2) May-20 9) Aug -20 Scheduled Calibration Jun-20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 09-Feb-18(CTTL, No.J19X05125) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 24-May-19(SPEAG,No.EX3-7307_May19// 26-Aug-19(SPEAG, No.DAE4-1525_Aug18) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05127) 24-Jan-19 (CTTL, No.J19X00547)	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 2) May-20 3) Aug -20 Scheduled Calibration Jun-20 Jan -20
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	(M&TE critical for ID # 101919 101547 101548 18N50W-10dB 18N50W-20dB SN 7307 SN 1525 ID # 6201052605 MY46110673 Name	r calibration) Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 18-Jun-19 (CTTL, No.J19X05125) 09-Feb-18(CTTL, No.J18X01133) 09-Feb-18(CTTL, No.J18X01132) 24-May-19(SPEAG,No.EX3-7307_May19/2 26-Aug-19(SPEAG, No.DAE4-1525_Aug19 Cal Date(Calibrated by, Certificate No.) 18-Jun-19 (CTTL, No.J19X05127) 24-Jan-19 (CTTL, No.J19X00547)	Scheduled Calibration Jun-20 Jun-20 Feb-20 Feb-20 2) May-20 3) Aug -20 Scheduled Calibration Jun-20 Jan -20

Certificate No: Z19-60334

Page 1 of 11

e

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ Φ rotation around probe axis θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i Polarization θ θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

- Methods Applied and Interpretation of Parameters:
- NORMx, y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z^*$ frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z19-60334

Page 2 of 11

Probe EX3DV4

SN: 7329

Calibrated: October 22, 2019

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z19-60334

Page 3 of 11

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7329

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.48	0.40	0.47	±10.0%
DCP(mV) ^B	99.0	105.0	98.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	163.7	±3.1%
		Y	0.0	0.0	1.0		146.0	
		Z	0.0	0.0	1.0		161.3	-

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 4 of 11

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7329

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.97	9.97	9.97	0.40	0.80	±12.1%
900	41.5	0.97	9.68	9.68	9.68	0.16	1.35	±12.1%
1450	40.5	1.20	8.68	8.68	8.68	0.14	1.26	±12.1%
1750	40.1	1.37	8.39	8.39	8.39	0.22	1.09	±12.1%
1900	40.0	1.40	8.29	8.29	8.29	0.30	0.90	±12.1%
2300	39.5	1.67	7.90	7.90	7.90	0.52	0.74	±12.1%
2450	39.2	1.80	7.60	7.60	7.60	0.53	0.75	±12.1%
2600	39.0	1.96	7.42	7.42	7.42	0.50	0.82	±12.1%
5200	36.0	4.66	5.57	5.57	5.57	0.45	1.35	±13.3%
5300	35.9	4.76	5.30	5.30	5.30	0.50	1.25	±13.3%
5600	35.5	5.07	4.72	4.72	4.72	0.50	1.40	±13.3%
5800	35.3	5.27	4.67	4.67	4.67	0.50	1.55	±13.3%

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: Z19-60334

Page 5 of 11

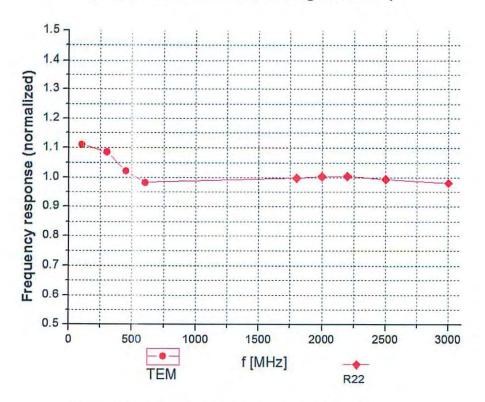
DASY/EASY – Parameters of Probe: EX3DV4 – SN: 7329

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	10.14	10.14	10.14	0.16	1.49	±12.1%

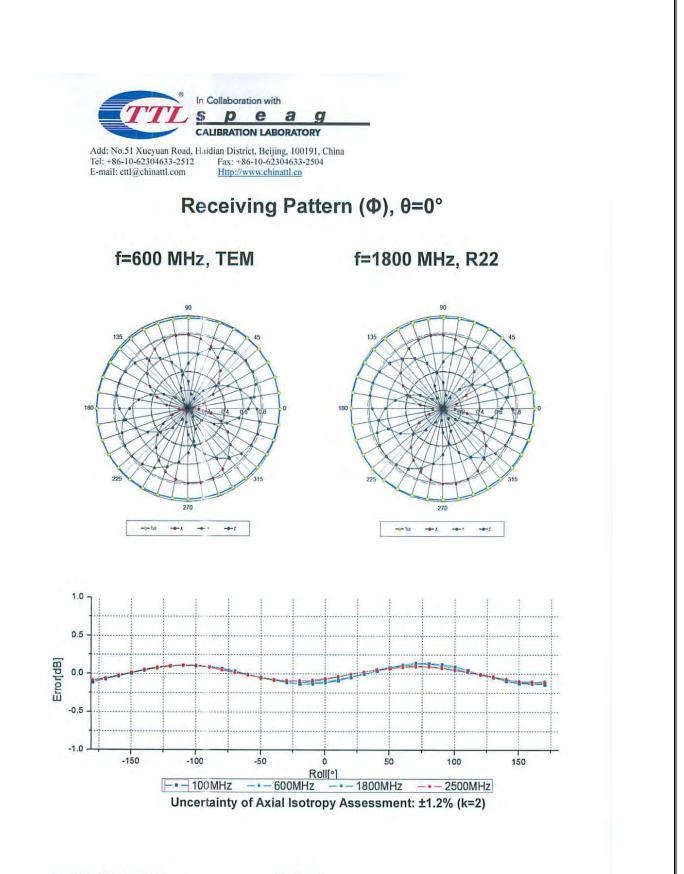
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

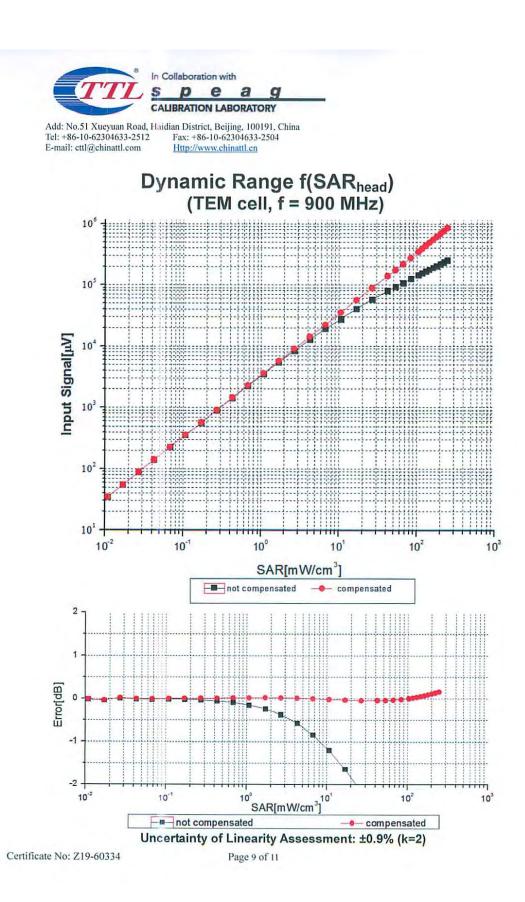

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

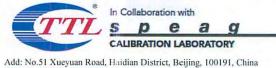
Certificate No: Z19-60334

Page 6 of 11


Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

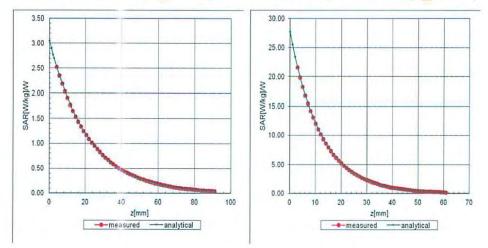
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

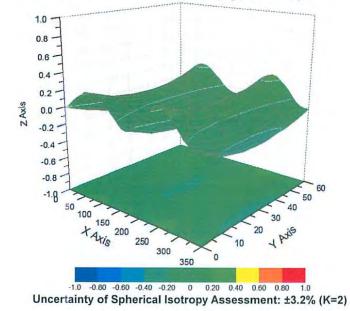

Certificate No: Z19-60334


Page 7 of 11

Certificate No: Z19-60334

Page 8 of 11




Conversion Factor Assessment

f=750 MHz, WGLS R9(H_convF)

f=1900 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Certificate No: Z19-60334

Page 10 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7329

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	46.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No: Z19-60334

Page 11 of 11

DIPOLE CALIBRATION CERTIFICATES

11	T SP		中国认可国际互认
Add: No.51 Xueyu		TION LABORATORY	NAS 校准 CALIBRATIC
Tel; +86-10-623046 E-mail: cttl@chinat		-86-10-62304633-2504	CNAS L057
Client BACL		Certificate No: Z1	8-60268
CALIBRATION C	ERTIFICAT	E	
Object	D835V	2 - SN: 453	
Calibration Procedure(s)			
		-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	Septen	nber 6, 2018	
humidity<70%. Calibration Equipment used	i conducted in		temperature(22±3)℃ ar
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	I conducted in	or calibration) Cal Date(Calibrated by, Certificate No.)	
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD	I conducted in (M&TE critical for ID # 102083	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration Oct-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-25	I conducted in (M&TE critical for ID # 102083 100542	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration Oct-18 Oct-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe EX3DV4	ID # 102083 100542 SN 7464	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17)	Scheduled Calibration Oct-18 Oct-18 Sep-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-25	I conducted in (M&TE critical for ID # 102083 100542	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756)	Scheduled Calibration Oct-18 Oct-18 Sep-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe EX3DV4	ID # 102083 100542 SN 7464	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17)	Scheduled Calibration Oct-18 Oct-18 Sep-18 Sep-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4	ID # 102083 100542 SN 7464 SN 1524	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17 (SPEAG,No.EX3-7464_Sep17) 13-Sep-17 (SPEAG,No.DAE4-1524_Sep17)	Scheduled Calibration Oct-18 Oct-18 Sep-18 Sep-18
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe EX3DV4 DAE4 Secondary Standards	I conducted in (M&TE critical for 102083 100542 SN 7464 SN 1524 ID #	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17 (CTTL, No.J17X08756) 12-Sep-17 (SPEAG,No.EX3-7464_Sep17) 13-Sep-17 (SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	Conducted in (M&TE critical fe 102083 100542 SN 7464 SN 1524 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration Jan-19 Jan-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	Conducted in (M&TE critical fe 102083 100542 SN 7464 SN 1524 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function	Scheduled Calibration Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration Jan-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	Conducted in (M&TE critical fe 102083 100542 SN 7464 SN 1524 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561)	Scheduled Calibration Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration Jan-19 Jan-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	Conducted in (M&TE critical fe 102083 100542 SN 7464 SN 1524 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function	Scheduled Calibration Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration Jan-19 Jan-19
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRVD Power sensor NRV-25 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	Conducted in (M&TE critical for 102083 100542 SN 7464 SN 1524 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 01-Nov-17 (CTTL, No.J17X08756) 01-Nov-17 (CTTL, No.J17X08756) 12-Sep-17(SPEAG,No.EX3-7464_Sep17) 13-Sep-17(SPEAG,No.DAE4-1524_Sep17) Cal Date(Calibrated by, Certificate No.) 23-Jan-18 (CTTL, No.J18X00560) 24-Jan-18 (CTTL, No.J18X00561) Function SAR Test Engineer	Scheduled Calibration Oct-18 Oct-18 Sep-18 Sep-18 Scheduled Calibration Jan-19 Jan-19

Certificate No: Z18-60268

Page 1 of 8

Glossary: TSI

ISL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60268

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.1.1476
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.7 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.33 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.35 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.53 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.13 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.0 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.66 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.64 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.46 mW /g ± 18.7 % (k=2)

Certificate No: Z18-60268

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.2Ω- 4.08jΩ
Return Loss	- 27.5dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0Ω- 6.04jΩ
Return Loss	- 23.8dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.256 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

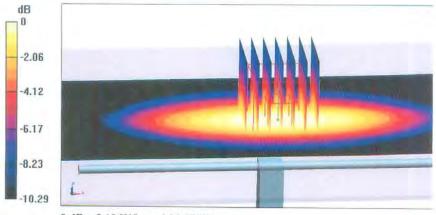
Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z18-60268

Page 4 of 8

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

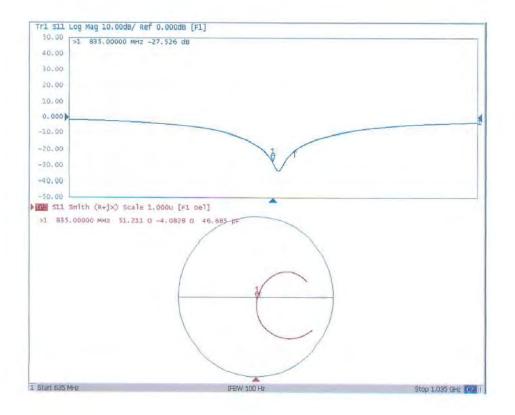

Date: 09.04.2018

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 453 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.904$ S/m; $\varepsilon_r = 42.71$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(10.28, 10.28, 10.28) @ 835 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.49 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.51 W/kg SAR(1 g) = 2.33 W/kg; SAR(10 g) = 1.53 W/kg Maximum value of SAR (measured) = 3.10 W/kg


0 dB = 3.10 W/kg = 4.91 dBW/kg

Certificate No: Z18-60268

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: Z18-60268

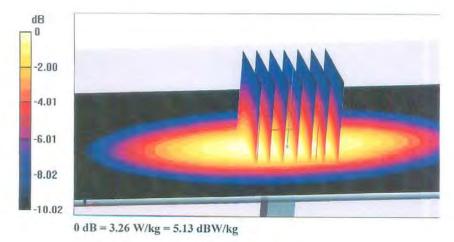
Page 6 of 8

 DASY5 Validation Report for Body TSL
 Date: 09.06.2018

 Test Laboratory: CTTL, Beijing, China
 DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 453

 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

 Medium provestor words for 825 MHz; and 50 Stores 56 044

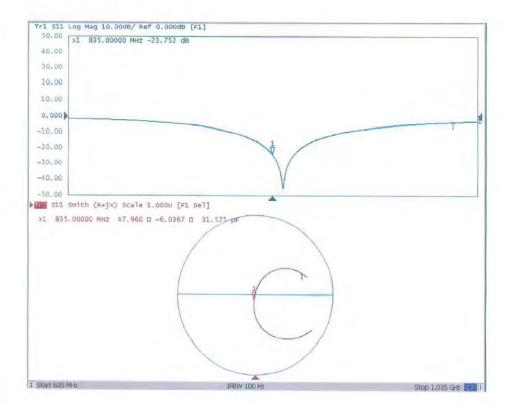

Medium parameters used: f = 835 MHz; σ = 0.998 S/m; ϵ_r = 56.04; ρ = 1000 kg/m3 Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(10.21, 10.21, 10.21) @ 835 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.56 V/m; Power Drift = 0.00 dBPeak SAR (extrapolated) = 3.67 W/kgSAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.64 W/kgMaximum value of SAR (measured) = 3.26 W/kg



Certificate No: Z18-60268

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: Z18-60268

Page 8 of 8

			中国认可国际互认权准
Add: No.51 Xueyu Tel: +86-10-623046 E-mail: ettl@china	533-2079 Fax: +	strict, Beijing, 100191, China	CALIBRATIC CNAS L057
Client BAC		www.chinattl.cn Certificate No: Z	19-60335
CALIBRATION C			
Object	D1900	V2 - SN: 543	
Calibration Procedure(s)			
Calibration 1 rocedure(s)		-003-01	
	Calibra	tion Procedures for dipole validation kits	
Calibration date:	Octobe	r 15, 2019	
		the closed laboratory facility: environment	temperature(22±3)°C an
All calibrations have been humidity<70%.	conducted in		temperature(22±3) ⁻ C an
	conducted in		temperature(22±3) [•] C an Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used	Conducted in	or calibration)	
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards	Conducted in (M&TE critical for ID #	or calibration) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4	Conducted in (M&TE critical for ID # 106276 101369 SN 3617	Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Scheduled Calibration Apr-20 Apr-20 Jan-20
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A	Conducted in (M&TE critical for ID # 106276 101369	Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605)	Scheduled Calibration Apr-20 Apr-20
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4	Conducted in (M&TE critical for ID # 106276 101369 SN 3617	Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19) 22-Aug-19(CTTL-SPEAG,No.Z19-60295)	Scheduled Calibration Apr-20 Apr-20 Jan-20 Aug-20
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4	Conducted in (M&TE critical for ID # 106276 101369 SN 3617 SN 1555	Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19)	Scheduled Calibration Apr-20 Apr-20 Jan-20 Aug-20
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards	Conducted in (M&TE critical for 106276 101369 SN 3617 SN 1555 ID #	Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration Apr-20 Apr-20 Jan-20 Aug-20 Scheduled Calibration
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	Conducted in (M&TE critical for 106276 101369 SN 3617 SN 1555 ID # MY49071430	Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 23-Jan-19 (CTTL, No.J19X00336)	Scheduled Calibration Apr-20 Apr-20 Jan-20 Aug-20 Scheduled Calibration Jan-20
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C	Conducted in (M&TE critical for 10 # 106276 101369 SN 3617 SN 1555 ID # MY49071430 MY46110673	Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 23-Jan-19 (CTTL, No.J19X00336) 24-Jan-19 (CTTL, No.J19X00547)	Scheduled Calibration Apr-20 Jan-20 Aug-20 Scheduled Calibration Jan-20 Jan-20
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	Conducted in (M&TE critical for 10 # 106276 101369 SN 3617 SN 1555 ID # MY49071430 MY46110673 Name	Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 23-Jan-19 (CTTL, No.J19X00336) 24-Jan-19 (CTTL, No.J19X00547) Function	Scheduled Calibration Apr-20 Jan-20 Aug-20 Scheduled Calibration Jan-20 Jan-20
All calibrations have been humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	Conducted in (M&TE critical for 10# 106276 101369 SN 3617 SN 1555 ID # MY49071430 MY46110673 Name Zhao Jing	Cal Date(Calibrated by, Certificate No.) 11-Apr-19 (CTTL, No.J19X02605) 11-Apr-19 (CTTL, No.J19X02605) 31-Jan-19(SPEAG,No.EX3-3617_Jan19) 22-Aug-19(CTTL-SPEAG,No.Z19-60295) Cal Date(Calibrated by, Certificate No.) 23-Jan-19 (CTTL, No.J19X00336) 24-Jan-19 (CTTL, No.J19X00547) Function SAR Test Engineer	Scheduled Calibration Apr-20 Jan-20 Aug-20 Scheduled Calibration Jan-20 Jan-20

Certificate No: Z19-60335 Page 1 of 6

lossary:

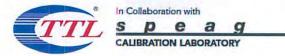
TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook


Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60335

Page 2 of 6

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.2 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.6 W/kg ± 18.7 % (k=2)

Certificate No: Z19-60335

Page 3 of 6

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8Ω+ 4.08jΩ	
Return Loss	- 27.2dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.062 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG	Manufactured by	SPEAG
-----------------------	-----------------	-------

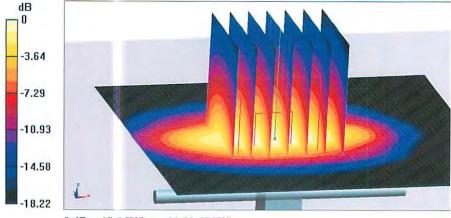
Page 4 of 6

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 10.15.2019

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 543 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.376$ S/m; $\varepsilon_r = 39.82$; $\rho = 1000$ kg/m3

Phantom section: Center Section

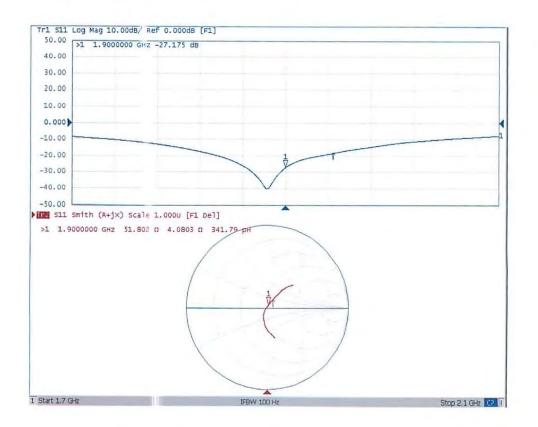

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 8/22/2019
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.2 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.13 W/kg

Maximum value of SAR (measured) = 15.8 W/kg


0 dB = 15.8 W/kg = 11.99 dBW/kg

Certificate No: Z19-60335

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: Z19-60335

Page 6 of 6