Dongguan Nore Testing Center Co., Ltd. Report No.: NTC1909266FV00 FCC ID: 2AUTE-HS-M300

FCC RADIO TEST REPORT

The device described below is tested by Dongguan Nore Testing Center Co., Ltd. to determine the maximum emission levels emanating from the device, the severe levels which the device can endure and E.U.T.'s performance criterion. The test results, data evaluation, test procedures, and equipment of configurations shown in this report were made in accordance with the procedures in ANSI C63.10(2013).

Applicant	Xiamen Hanin Electronic Technology Co.,Ltd.			
Address	Room 305A, Angye Building, Pioneering Park,Torch High-tech, Zone Xiamen, China	; ,		
Manufacturer	Xiamen Hanin Electronic Technology Co.,Ltd.			
Address	Room 305A, Angye Building, Pioneering Park,Torch High-tech, Zone Xiamen, China	',		
E.U.T.	Bluetooth Barcode Scanner			
Brand Name	HPRT			
Model No.	HS-M300, HS-M300S (For model difference refer to section 1)			
FCC ID	2AUTE-HS-M300			
Measurement Standard	FCC PART 15.247			
Date of Receiver	September 21, 2019			
Date of Test	September 21, 2019 to October 16, 2019			
Date of Report	October 16, 2019			
This Test Report is Issu	Under the Authority of :			
Pre	ared by Ar Soved & Authorized Signer			
Note testing center to				
Sundiy jiang / Engineer Iori Fan / Authorized Signatory				
This test report is for the customer shown above and their specific product only. This report applies to above tested sample only and shall not be reproduced in part without written approval of Dongguan Nore Testing Center Co., Ltd.				

TEL: +86-769-22022444 FAX: +86-769-22022799 Web: www.ntc-c.com Address: Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong Province, China

Page 1 of 35

Table of Contents

1	. GENERAL INFORMATION	. 5
	1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST	.5
	1.2 RELATED SUBMITTAL(S) / GRANT (S)	
	1.3 TEST METHODOLOGY	
	1.4 Equipment Modifications	.8
	1.5 SUPPORT DEVICE	.8
	1.6 TEST FACILITY AND LOCATION	
	1.7 SUMMARY OF TEST RESULTS	
	1.8 ABNORMALITIES FROM STANDARD CONDITIONS	
2	. SYSTEM TEST CONFIGURATION	11
	2.1 EUT CONFIGURATION	11
	2.2 Special Accessories	11
	2.3 DESCRIPTION OF TEST MODES	11
	2.4 EUT EXERCISE	
3	. CONDUCTED EMISSIONS TEST	12
	3.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	12
	3.2 TEST CONDITION.	
	3.3 MEASUREMENT RESULTS	12
4	. MAX. CONDUCTED OUTPUT POWER	15
	4.1 MEASUREMENT PROCEDURE	15
	4.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	15
	4.3 MEASUREMENT RESULTS	15
5	. 6DB BANDWIDTH	16
	5.1 MEASUREMENT PROCEDURE	16
	5.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	5.3 MEASUREMENT RESULTS	16
6	. POWER SPECTRAL DENSITY	19
	6.1 MEASUREMENT PROCEDURE	19
	6.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	6.3 MEASUREMENT RESULTS	19
7	. BAND EDGE AND CONDUCTED SPURIOUS EMISSIONS	22
	7.1 REQUIREMENT AND MEASUREMENT PROCEDURE	22
	7.2 Test SET-UP (Block Diagram of Configuration)	
	7.3 MEASUREMENT RESULTS	

8. RADIATED SPURIOUS EMISSIONS AND RESTRICTED BANDS.278.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)278.2 MEASUREMENT PROCEDURE288.3 LIMIT298.4 MEASUREMENT RESULTS299. ANTENNA APPLICATION349.1 ANTENNA REQUIREMENT.349.2 MEASUREMENT RESULTS3410. TEST EQUIPMENT LIST.35		
8.2 MEASUREMENT PROCEDURE 28 8.3 LIMIT 29 8.4 MEASUREMENT RESULTS 29 9. ANTENNA APPLICATION 34 9.1 ANTENNA REQUIREMENT. 34 9.2 MEASUREMENT RESULTS 34	8. RADIATED SPURIOUS EMISSIONS AND RESTRICTED BANDS	
8.3 LIMIT 29 8.4 MEASUREMENT RESULTS 29 9. ANTENNA APPLICATION 34 9.1 ANTENNA REQUIREMENT. 34 9.2 MEASUREMENT RESULTS 34	8.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	27
8.4 MEASUREMENT RESULTS 29 9. ANTENNA APPLICATION 34 9.1 ANTENNA REQUIREMENT. 34 9.2 MEASUREMENT RESULTS 34	8.2 MEASUREMENT PROCEDURE	
9. ANTENNA APPLICATION 34 9.1 ANTENNA REQUIREMENT. 34 9.2 MEASUREMENT RESULTS 34	8.3 LIMIT	
9.1 Antenna requirement	8.4 MEASUREMENT RESULTS	29
9.2 MEASUREMENT RESULTS	9. ANTENNA APPLICATION	
	9.1 ANTENNA REQUIREMENT	
10. TEST EQUIPMENT LIST	9.2 MEASUREMENT RESULTS	34
	10. TEST EQUIPMENT LIST	

Revision History of This Test Report

Report Number	Description	Issued Date
NTC1909266FV00	Initial Issue	2019-10-16

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test

E.U.T.	:	Bluetooth Barcode Scanner
Main Model Name	:	HS-M300
Additional models	:	HS-M300S
Brand Name	:	HPRT
Е.U.T. Туре	:	Class B
Rating	:	DC 5V (From Micro USB Port) or DC 3.7V (From built-in battery)
Test Voltage	:	AC 120V 60Hz (Adapter input), DC 3.7V (Only the worst case was recorded in this report)
Hardware version	:	HS-M300MB
Software version	:	V1.0
Cable	:	Micro USB Line: 0.55m unshielded.
Model different	:	Both of models have the same circuit schematic, construction, PCB Layout and critical components. The difference is model number only due to trading purpose.
Note	:	According to the model difference, all tests were performed on model HS-M300.

Technical Specification:

BT Function	
Version	: V4.2 (BLE)
Frequency Range	: 2402-2480MHz
Modulation Type	: GFSK
Number of Channel	: 40
Channel Space	: 2MHz
Antenna Type	: PCB Antenna
Antenna Gain	: 0 dBi

Channel	Frequency MHz	Channel	Frequency MHz	Channel	Frequency MHz	Channel	Frequency MHz
1	2402	11	2422	21	2442	31	2462
2	2404	12	2424	22	2444	32	2464
3	2406	13	2426	23	2446	33	2466
4	2408	14	2428	24	2448	34	2468
5	2410	15	2430	25	2450	35	2470
6	2412	16	2432	26	2452	36	2472
7	2414	17	2434	27	2454	37	2474
8	2416	18	2436	28	2456	38	2476
9	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

Bluetooth (BLE) Channel List

Note: According to section 15.31(m), regards to the operating frequency range over 10MHz, the Lowest, Middle, and the Highest frequency of channel were selected to perform the test. The selected frequency see below:

Channel	Frequency MHz
1	2402
20	2440
40	2480

Test SW version	EMI_Test_Tool_v1.4.exe
-----------------	------------------------

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AUTE-HS-M300 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rule.

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement, was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters. All other measurements were made in accordance with the procedures in 47 CFR part 2.

1.4 Equipment Modifications

Not available for this EUT intended for grant.

1.5 Support Device

Notebook :	Manufacturer: Lenovo Model: TP00067A P/N: SL10G10768 S/N: PF-0DS3YC 15/12
	CE, FCC: DOC
Adapter :	Manufacturer: Lenovo
(For Notebook)	Model: ADLX65NLC3A
	I/P: AC 100-240V 50-60Hz, 1.8A
	O/P: DC 20V 3.25A
Adapter :	Manufacturer: HUWEI
	Model No.: HW-050200C01
	Input: AC100-240V 50/60Hz, 0.5A Output: DC5V 2A
	-

1.6 Test Facility and Location

Site Description EMC Lab	:	Listed by CNAS, August 13, 2018 The certificate is valid until August 13, 2024 The Laboratory has been assessed and proved to be in compliance with CNAS/CL01 The Certificate Registration Number is L5795.
		Listed by A2LA, November 01, 2017 The certificate is valid until December 31, 2019 The Laboratory has been assessed and proved to be in compliance with ISO17025 The Certificate Registration Number is 4429.01
		Listed by FCC, November 06, 2017 The Designation Number is CN1214 Test Firm Registration Number: 907417
Name of Firm	:	Listed by Industry Canada, June 08, 2017 The Certificate Registration Number. Is 46405-9743 Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)
Site Location	:	Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong Province, China

1.7 Summary of Test Results

FCC Rules	Description Of Test	Uncertainty	Result
§15.207 (a)	AC Power Conducted Emission	±1.06dB	Compliant
§15.247(b)(3)	Max. Conducted Output Power	±1.06dB	Compliant
§15.247(a)(2)	6dB Bandwidth ±1.42 x10 ⁻⁴ %		Compliant
§15.247(e)	Power Spectral Density	±1.06dB	Compliant
§15.247(d)	Band Edge and Conducted Spurious Emissions	±1.70dB	Compliant
§15.247(d),§15.209, §15.205	Radiated Spurious Emissions and Restricted Bands	±3.70dB	Compliant
§15.203	Antenna Requirement	N/A	Compliant

1.8 Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

2. System Test Configuration

2.1 EUT Configuration

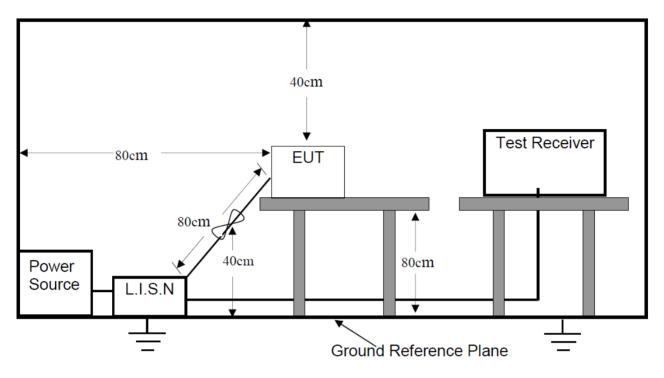
The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 Special Accessories

Not available for this EUT intended for grant.

2.3 Description of test modes

The EUT has been tested under continuous operating condition (The duty cycle >98%). Test program used to control the EUT staying in continuous transmitting mode. The Lowest, Middle and highest channel were chosen for testing, and modulation type GFSK was tested, but only the worst case data is shown in this report.


2.4 EUT Exercise

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

3. Conducted Emissions Test

3.1 Test SET-UP (Block Diagram of Configuration)

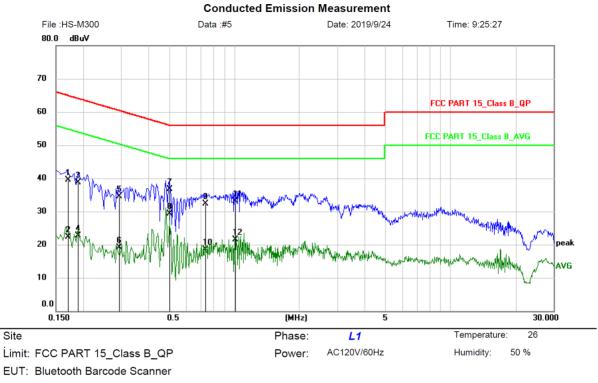
3.2 Test Condition

Test Requirement: FCC Part 15.207

Frequency Range: 150KHz ~ 30MHz

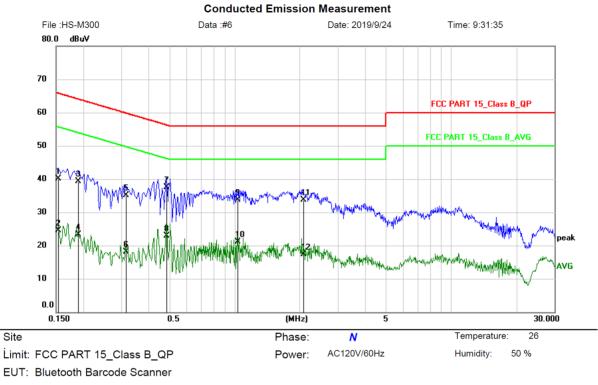
Detector: RBW 9KHz, VBW 30KHz

Operation Mode: TX+ Charging


3.3 Measurement Results

Please refer to following plots of the worst case: GFSK Low channel.

Dongguan NTC Co., Ltd. Tel: +86-769-22022444 Fax: +86-769-22022799 Web: <u>Http://www.ntc-c.com</u>


EUT: Bluetooth Barcode Scanr M/N: HS-M300 Mode: TX+Charging Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1700	28.90	10.60	39.50	64.96	-25.46	QP	
2	0.1700	11.70	10.60	22.30	54.96	-32.66	AVG	
3	0.1900	28.20	10.60	38.80	64.04	-25.24	QP	
4	0.1900	12.20	10.60	22.80	54.04	-31.24	AVG	
5	0.2938	23.90	10.60	34.50	60.42	-25.92	QP	
6	0.2938	8.60	10.60	19.20	50.42	-31.22	AVG	
7	0.5020	26.07	10.63	36.70	56.00	-19.30	QP	
8 *	0.5020	18.67	10.63	29.30	46.00	-16.70	AVG	
9	0.7378	21.74	10.66	32.40	56.00	-23.60	QP	
10	0.7378	7.94	10.66	18.60	46.00	-27.40	AVG	
11	1.0100	22.50	10.70	33.20	56.00	-22.80	QP	
12	1.0100	10.80	10.70	21.50	46.00	-24.50	AVG	

Dongguan NTC Co., Ltd. Tel: +86-769-22022444 Fax: +86-769-22022799 Web: <u>Http://www.ntc-c.com</u>

EUT: Bluetooth Barcode Scanne M/N: HS-M300 Mode: TX+Charging Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1539	29.60	10.60	40.20	65.79	-25.59	QP	
2	0.1539	13.90	10.60	24.50	55.79	-31.29	AVG	
3	0.1900	28.80	10.60	39.40	64.04	-24.64	QP	
4	0.1900	12.80	10.60	23.40	54.04	-30.64	AVG	
5	0.3140	24.50	10.60	35.10	59.86	-24.76	QP	
6	0.3140	7.60	10.60	18.20	49.86	-31.66	AVG	
7 *	0.4858	26.87	10.63	37.50	56.24	-18.74	QP	
8	0.4858	12.27	10.63	22.90	46.24	-23.34	AVG	
9	1.0300	23.00	10.70	33.70	56.00	-22.30	QP	
10	1.0300	10.40	10.70	21.10	46.00	-24.90	AVG	
11	2.0779	23.10	10.70	33.80	56.00	-22.20	QP	
12	2.0779	6.60	10.70	17.30	46.00	-28.70	AVG	

4. Max. Conducted Output Power

4.1 Measurement Procedure

Maximum Conducted Output power at Antenna Terminals, FCC Rules 15.247(b)(3):

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

4.2 Test SET-UP (Block Diagram of Configuration)

4.3 Measurement Results

Please refer to following table.

Modulation: Temperature :	GFSK 24 ℃	Humidity :	50 %
Test By: Test Result:	Sance PASS	Test Date :	September 27, 2019

Frequency MHz	Data Rate Mbps	Peak Output Power dBm	Limit dBm			
Low Channel: 2402	1	5.146	30			
Middle Channel: 2440	1	5.013	30			
High Channel: 2480	1	4.885	30			
The signal of duty cycle is ≥98%						

5. 6dB Bandwidth

5.1 Measurement Procedure

DTS 6dB Channel Bandwidth, FCC Rule 15.247(a)(2):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074(v03r05):

- 1. For 6dB bandwidth, Set the RBW = 100KHz.
- 2. Set the VBW \ge 3 x RBW
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.2 Test SET-UP (Block Diagram of Configuration)

5.3 Measurement Results

Please refer to following table and plots.

Modulation:	GFSK		
Temperature :	22 °C	Humidity :	53 %
Test By:	Sance	Test Date :	September 27, 2019
Test Result:	PASS		

Frequency MHz	Data Rate Mbps	6dB Bandwidth KHz	Limit
Low Channel: 2402	1	1394	>500KHz
Middle Channel: 2440	1	1541	>500KHz
High Channel: 2480	1	1580	>500KHz

Keysight S 04:20:10 PM Sep 27, 2019 Radio Std: None ALIGN AUTO Center Freq: 2.402000000 GHz Trig: Free Run Avg|Hold #Atten: 30 dB Center Freq 2.402000000 GHz Frequency #IFGain:Low Avg|Hold:>10/10 Radio Device: BTS Ref 45.00 dBm 15 dB/div Log **Center Freq** 2.402000000 GHz Center 2.402 GHz #Res BW 100 kHz Span 10 MHz Sweep 1.267 ms CF Step 1.000000 MHz #VBW 300 kHz Auto Man Total Power 14.5 dBm **Occupied Bandwidth** 3.6995 MHz **Freq Offset** 0 Hz Transmit Freq Error 512.56 kHz % of OBW Power 99.00 % x dB Bandwidth 1.394 MHz x dB -6.00 dB STATUS

6dB bandwidth Low Channel

6dB bandwidth Middle Channel

Keysight Spectrum Analyzer - Occupied BW 04:22:13 PM Sep 27, 2019 Radio Std: None ALIGN AUTO GHz Center Freq: 2.48000000 GHz Trig: Freq Run Avg|Hold #Atten: 30 dB Frequency Center Freq 2.480000000 GHz Avg|Hold:>10/10 Radio Device: BTS 15 dB/div Ref 45.00 dBm **Center Freq** 2.480000000 GHz Center 2.48 GHz #Res BW 100 kHz Span 10 MHz Sweep 1.267 ms **CF Step** 1.000000 MHz Man #VBW 300 kHz Auto **Total Power** 14.5 dBm **Occupied Bandwidth** 4.1115 MHz **Freq Offset** 0 Hz Transmit Freq Error 579.93 kHz % of OBW Power 99.00 % x dB Bandwidth 1.580 MHz x dB -6.00 dB STATUS

6dB bandwidth High Channel

6. Power Spectral Density

6.1 Measurement Procedure

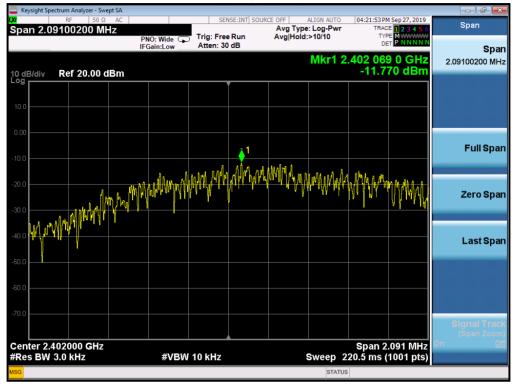
The power spectral density, FCC Rule 15.247(e):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074 (v05):

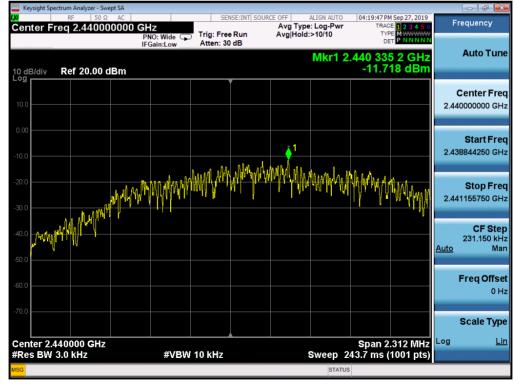
- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz≤RBW≤100KHz
- 4. Set the VBW \ge 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.2 Test SET-UP (Block Diagram of Configuration)

6.3 Measurement Results


Please refer to following table and plots.

Modulation:	GFSK		
Temperature :	22 °C	Humidity :	53 %
Test By: Test Result:	Sance PASS	Test Date :	September 27, 2019


Frequency MHz	Data Rate Mbps	PSD dBm/3kHz	Limit dBm/3kHz
Low Channel: 2402	1	-11.770	8
Middle Channel: 2440	1	-11.718	8
High Channel: 2480	1	-12.074	8

Low Channel

Middle Channel

High Channel

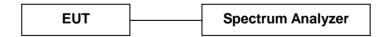
7. Band Edge and Conducted Spurious Emissions

7.1 Requirement and Measurement Procedure

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below.

MEASUREMENT PROCEDURE REF


- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

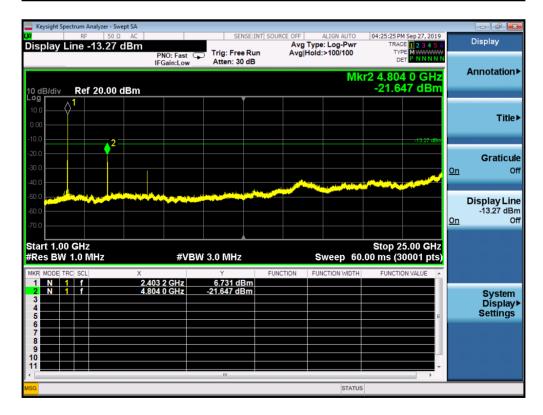
- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

7.2 Test SET-UP (Block Diagram of Configuration)

7.3 Measurement Results

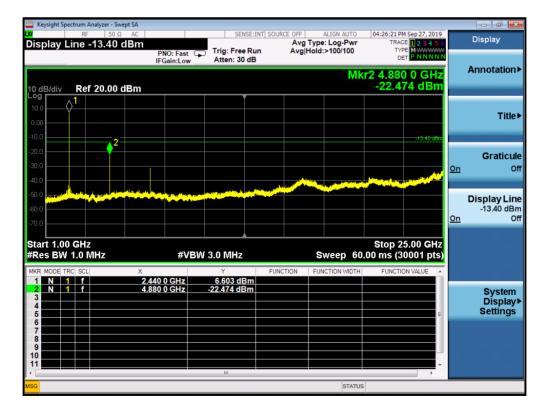
The test plots and table showed all spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the highest level of the desired power in the passband. Please refer to below plots.

Band Edge Low Channel

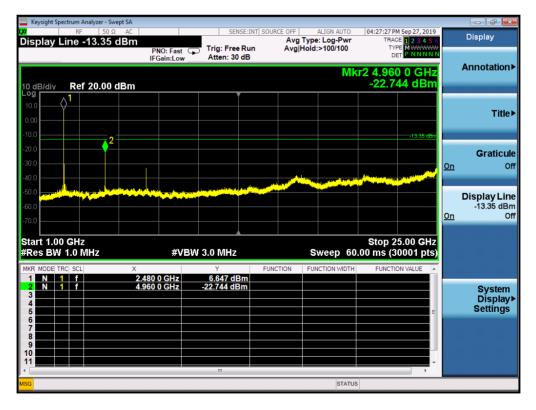

High Channel

Keysight Spectrum Analyzer - Swept SA				
IX RF 50 Ω AC Display Line -14.80 dBm	SENSE:INT	SOURCE OFF ALIGN AUTO Avg Type: Log-Pwr	04:24:32 PM Sep 27, 2019 TRACE 1 2 3 4 5 6	Display
10 dB/div Ref 20.00 dBm	PNO: Wide Trig: Free Run IFGain:Low Atten: 30 dB	AvgiHoid:>100/100	2 2.483 55 GHz -20.882 dBm	Annotation►
10.0 0.00 -10.0			-14.80 dĐm	Title►
-20.0				Graticule On Off
-50.0 -60.0 -70.0				Display Line -14.80 dBm <u>On</u> Off
Center 2.483500 GHz #Res BW 100 kHz	#VBW 300 kHz		Span 10.00 MHz 000 ms (1001 pts)	
	0 34 GHz 5.199 dBm 3 55 GHz -20.882 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	System Display▶ Settings
MSG		STATUS		

Conducted Spurious Emissions Low Channel

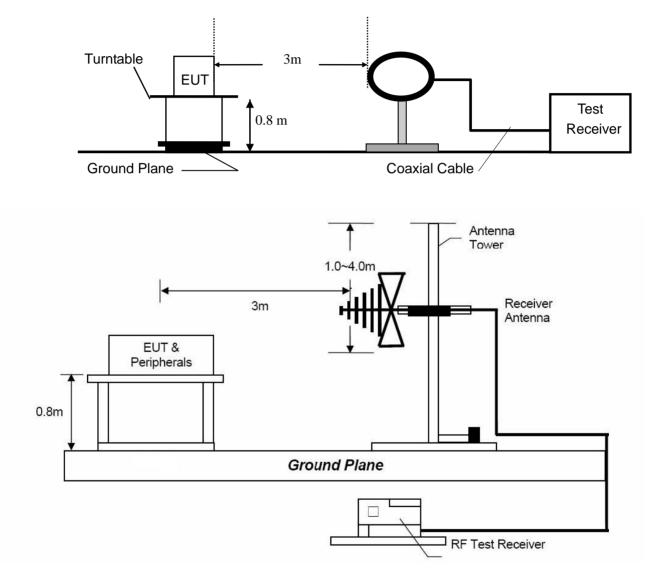

Keysight Spectrum Analyzer - Swept SA				
RF 50 Ω AC Marker 1 64.0146666667	NHZ PNO: Fast D Trig: Free Ru		04:25:44 PM Sep 27, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN	Peak Search
10 dB/div Ref 20.00 dBm	IFGain:Low Atten: 30 dB		/kr1 64.01 MHz -49.315 dBm	Next Peal
10.0 .000			-13:27 dBm	Next Pk Righ
-20.0 -30.0 -40.0				Next Pk Le
-50.0 -60.0 -70.0				Marker Delt
Start 0.0300 GHz #Res BW 100 kHz MKR MODE TRC SCL X	#VBW 300 kHz	FUNCTION FUNCTION WIDTH	Stop 1.0000 GHz .00 ms (30001 pts)	Mkr→C
1 N 1 f 2 3 4 4 5 6 9	64.01 MHz49.315 dBm		= = = =	Mkr→RefL
7 8 9 10 11				Mor 1 of
/SG		STATU	3	

Middle Channel

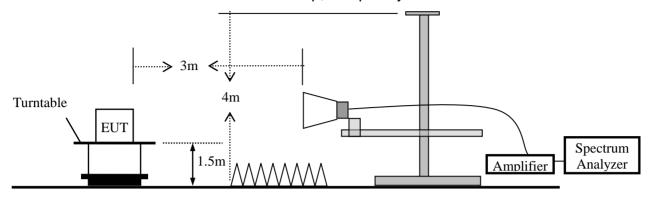

🔤 Keysight Spectrum Analyzer - Swept SA 👘			
Marker 1 64.0146666667 M	HZ PNO: Fast	AVG Type: Log-Pwr Avg Hold:>100/100	:51 PM Sep 27, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N
10 dB/div Ref 20.00 dBm	IFGain:Low Atten: 30 dB		64.01 MHz 8.975 dBm
Log 10.0 0.00			Next Pk Righ
-20.0			Next Pk Lef
-50.0 -60.0 -70.0	neg gan bet en en gelernen en gener ne besenen (N v Der verennen) neg gan bet en en gelernen en gener het besenen (N v Der verennen)		Marker Delta
Start 0.0300 GHz #Res BW 100 kHz MKRI MODEL TRCI SCLI X	#VBW 300 kHz	Sweep 94.00 m) 1.0000 GHz s (30001 pts) Mkr→Ci
	64.01 MHz48.975 dBm		Mkr→RefLv
7 8 9 10 11 11			More 1 of 2
MSG		STATUS	

High Channel

🔤 Keysight Spectrum Analyzer - Swept SA 👘					
Marker 1 64.0146666667 M	Hz	SENSE:INT SOURCE OFF	ALIGN AUTO	04:27:45 PM Sep 27, 2019 TRACE 1 2 3 4 5 6	Peak Search
10 dB/div Ref 20.00 dBm	PNO: Fast Trig: F IFGain:Low Atten:		(Hold:>100/100	TYPE MWWWW DET P NNNNN Ikr1 64.01 MHz -49.305 dBm	Next Peak
10.0 				-13.35 uBm	Next Pk Right
-20.0 -30.0 -40.0					Next Pk Left
-50.0 -60.0 -70.0	yya ny ana a sana kang sa gara ta kang sa gara ya kang sa sana sa	ten in the sent of the only processory. The set of the sector in the sector is the sec	n de la constant de l La constant de la cons	n men di kana men kala di kenan terta bara terta men digi ke Kala men di kenan ken	Marker Delta
Start 0.0300 GHz #Res BW 100 kHz MKR MODE TRC SCL X	#VBW 300 kF	FUNCTION	Sweep 94	Stop 1.0000 GHz .00 ms (30001 pts)	Mkr→CF
1 N 1 F 6 2 -	64.01 MHz -49.305			E	Mkr→RefLvl
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					More 1 of 2
MSG			STATUS	•	


Note: Sweep points=30001pts

8. Radiated Spurious Emissions and Restricted Bands


8.1 Test SET-UP (Block Diagram of Configuration)

8.1.1 Radiated Emission Test Set-Up, Frequency Below 30MHz and 30-1000MHz.

8.1.2 Radiated Emission Test Set-Up, Frequency above 1GHz

8.2 Measurement Procedure

- a. Blow 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:
- The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

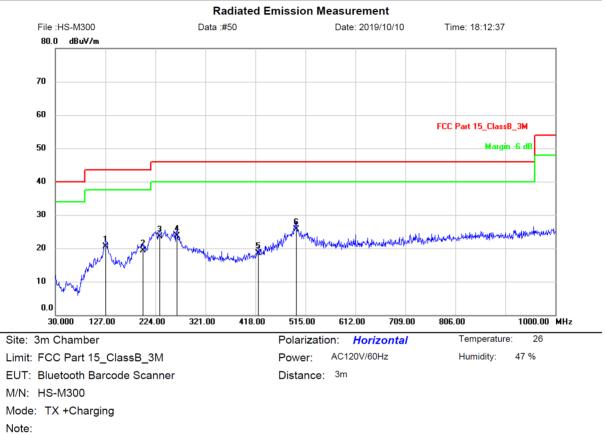
Frequency Band (MHz)	Level	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
	Average	1 MHz	10 Hz

8.3 Limit

Frequency range	Distance Meters	Field Strengths Limit (15.209)
MHz		μV/m
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
1.705 ~ 30	30	30
30 ~ 88	3	100
88 ~ 216	3	150
216 ~ 960	3	200
Above 960	3	500

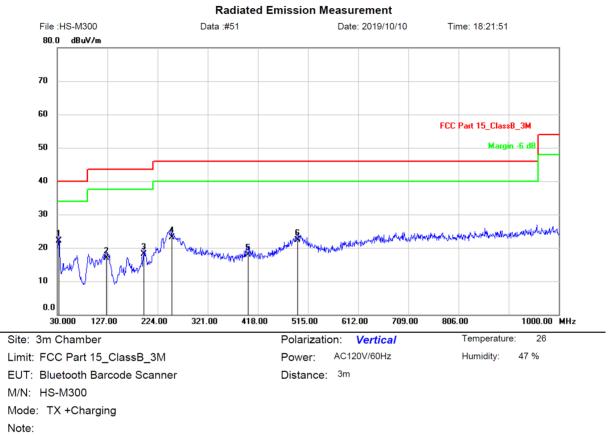
Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.
- (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.


8.4 Measurement Results

Please refer to following plots of the worst case: GFSK Low channel.

Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799 Web: <u>Http://www.ntc-c.com</u>



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		127.9700	35.44	-14.94	20.50	43.50	-23.00	QP			
2		199.7500	32.83	-13.43	19.40	43.50	-24.10	QP			
3		231.7600	35.88	-12.38	23.50	46.00	-22.50	QP			
4		265.7100	34.99	-11.29	23.70	46.00	-22.30	QP			
5		423.8200	27.05	-8.55	18.50	46.00	-27.50	QP			
6	*	497.5400	32.62	-6.82	25.80	46.00	-20.20	QP			

Dongguan NTC Co., Ltd. Tel:+86-769-22022444 Fax:+86-769-22022799 Web: <u>Http://www.ntc-c.com</u>

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	32.9100	37.77	-15.67	22.10	40.00	-17.90	QP			
2		125.0600	34.52	-17.62	16.90	43.50	-26.60	QP			
3		197.8100	34.53	-16.43	18.10	43.50	-25.40	QP			
4		251.1600	36.87	-13.67	23.20	46.00	-22.80	QP			
5		398.6000	29.11	-11.11	18.00	46.00	-28.00	QP			
6		494.6300	31.28	-8.88	22.40	46.00	-23.60	QP			

Modulation: GFSP Frequency Range: 1-250		September 27, 2019
Test Result: PASS Measured Distance: 3m Test By: Sance	Temperature : Humidity :	•

Eroa	Ant Dol	Reading Level(dBuV)		ading Factor		Emission Level		Limit 3m		Margin			
Freq.	Ant.Pol.				(dBu	(dBuV)		V/m)	(d	B)			
	(MHz) (H/V) PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV				
	Operation Mode: TX Mode (Low)												
4804	V	52.61	36.46	6.30	58.91	42.76	74.00	54.00	-15.09	-11.24			
7206	V	47.07	32.67	10.44	57.51	43.11	74.00	54.00	-16.49	-10.89			
4804	Н	61.63	42.67	6.30	67.93	48.97	74.00	54.00	-6.07	-5.03			
7206	Н	47.09	32.59	10.44	57.53	43.03	74.00	54.00	-16.47	-10.97			
			Ope	ration Mo	ode: TX N	lode (Mi	d)						
4880	V	53.74	37.96	6.60	60.34	44.56	74.00	54.00	-13.66	-9.44			
7320	V	43.85	30.70	10.55	54.40	41.25	74.00	54.00	-19.60	-12.75			
4880	Н	61.02	41.69	6.60	67.62	48.29	74.00	54.00	-6.38	-5.71			
7320	Н	47.67	30.44	10.55	58.22	40.99	74.00	54.00	-15.78	-13.01			
			Oper	ation Mo	de: TX M	ode (Hig	jh)						
4960	V	51.79	36.21	6.89	58.68	43.10	74.00	54.00	-15.32	-10.90			
7440	V	47.14	30.54	10.60	57.74	41.14	74.00	54.00	-16.26	-12.86			
4960	Н	56.90	39.02	6.89	63.79	45.91	74.00	54.00	-10.21	-8.09			
7440	Н	46.81	32.34	10.60	57.41	42.94	74.00	54.00	-16.59	-11.06			

Other harmonics emissions are lower than 10dB below the allowable limit.

- Note: (1) All Readings are Peak Value and AV.
 - (2) Emission Level= Reading Level + Factor
 - (3) Factor= Antenna Gain + Cable Loss Amplifier Gain
 - (4) Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.
 - (5) Measurement uncertainty : ±3.7dB.
 - (6) Horn antenna used for the emission over 1000MHz.

Spurious Emission in restricted band:

Operation Mode:	ТХ	Test Date :	September 27, 2019
Frequency Range:	Above 1GHz	Temperature :	24 °C
Test Result:	PASS	Humidity :	47 %
Measured Distance:	3m	Test By:	Sance

Freq.	Ant.Pol. (H/V)	Rea Level(BuV) Factor		Emission Level (dBuV)		Limit 3m (dBuV/m)		Margin (dB)	
(MHz)		PK	AV	(dB/m)	PK	AV	PK	AV	PK	AV
2399.000	Н	65.37	34.21	0.13	65.50	34.34	74.00	54.00	-8.50	-19.66
2399.000	V	51.74	34.47	0.13	51.87	34.60	74.00	54.00	-22.13	-19.40
2483.500	Н	70.75	41.20	0.35	71.10	41.55	74.00	54.00	-2.90	-12.45
2483.500	V	61.15	34.88	0.35	61.50	35.23	74.00	54.00	-12.50	-18.77

Note:

(1) All Readings are Peak Value and AV.(2) Emission Level= Reading Level+Probe Factor +Cable Loss

(3) Measurement uncertainty : ±3.7dB

9. Antenna Application

9.1 Antenna requirement

According to of FCC part 15C section 15.203 and 15.240:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

9.2 Measurement Results

The antenna is PCB antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 0dBi, So, the antenna is consider meet the requirement.

					lesti	lig center
10. Test	Equipment Li	ist				
Description	Manufacturer	Model Number	Serial Number	Characteristics	Calibration Date	Calibration Due Date
Test Receiver	Rohde & Schwarz	ESCI7	100837	9KHz~7GHz	Mar. 14, 2019	1 Year
Antenna	Schwarzbeck	VULB9162	9162-010	30MHz~7GHz	Mar. 23, 2019	1 Year
Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	20Hz~26.5GHz	Mar. 14, 2019	1 Year
Spectrum Analyzer	Keysight	N9020A	MY54200831	20Hz~26.5GHz	Apr. 24, 2019	1 Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	101003	10Hz~40GHz	Apr. 24, 2019	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-372	15GHz~40GHz	Mar. 23, 2019	1 Year
Pre-Amplifier	EMCI	EMC 184045	980102	18GHz~40GHz	Apr. 24, 2019	1 Year
Power Sensor	DARE	RPR3006W	15I00041SN 064	100MHz~6GHz	Mar. 14, 2019	1 Year
Communication Tester	Rohde & Schwarz	CMW500	149004	70MHz~6GHz	Mar. 14, 2019	1 Year
Horn Antenna	COM-Power	AH-118	071078	500MHz~18GHz	Mar. 23, 2019	1 Year
Pre-Amplifier	HP	HP 8449B	3008A00964	1GHz~26.5GHz	Mar. 14, 2019	1 Year
Pre-Amplifier	HP	HP 8447D	1145A00203	100KHz~1.3GHz	Mar. 14, 2019	1 Year
Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	9KHz~30MHz	Apr. 24, 2019	1 Year
Temperature & Humidity Chamber	REMAFEE	SYHR225L	N/A	-40~150°C	Apr. 24, 2019	1 Year
DC Source	MY	MY8811	N/A	0~30V	N/A	N/A
Temporary antenna connector	TESCOM	SS402	N/A	9KHz~25GHz	N/A	N/A
Power Meter	Anritsu	ML2495A	1139001	100k-65GHz	Apr. 24, 2019	1 Year
Power Sensor	Anritsu	MA2411B	100345	300M-40GHz	Apr. 24, 2019	1 Year
Test Receiver	Rohde & Schwarz	ESCI	101152	9KHz-3GHz	Mar. 14, 2019	1 Year
L.I.S.N	Rohde & Schwarz	ENV 216	101317	9KHz-30MHz	Mar. 14, 2019	1 Year
RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	9KHz-3GHz	Mar.14, 2019	1 Year
Test Software	EZ	EZ_EMC	N/A	N/A	N/A	N/A
		•	•			

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

---End---