

Report No.: EED32N81015701

Page 1 of 55

TEST REPORT

Product Mini Family Sports Wireless Speaker

with Night Light

Trade mark **MINISO**

Model/Type reference D-66 N/A Serial Number

Report Number EED32N81015701

FCC ID 2AUT6-D-66 Date of Issue : Oct. 26, 2021

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

SHENZHEN NARUI ELECTRONIC CO., LTD Bldg#1, Xianyuxing Ind, the 4th zone, Yuhe Road, Gonghe community, Shajing, Bao'an Dist, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

martin bee Martin Lee

David Wang

Reviewed by:

Aaron Ma

Date:

Oct. 26, 2021

Check No.: 9104131021

Contents

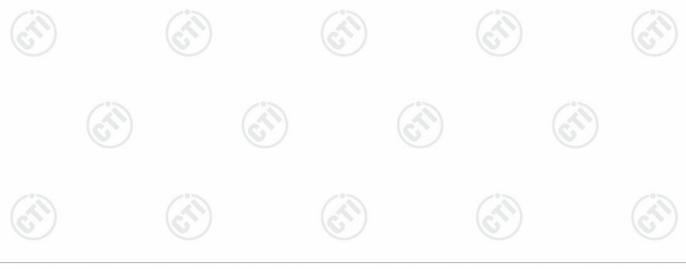
			Page
1 CONTENTS			
2 VERSION			3
3 TEST SUMMARY			4
4 GENERAL INFORMATION			
4.1 CLIENT INFORMATION			
5 EQUIPMENT LIST			9
6 TEST RESULTS AND MEASUREMENT DA	ATA	•••••	11
6.1 Antenna Requirement	SEQUENCE		
7 APPENDIX A			
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUCTION	AL DETAILS		49

Version No.	Date Desc		Description	a constant
00	Oct. 26, 2021	Original		
	100	10		

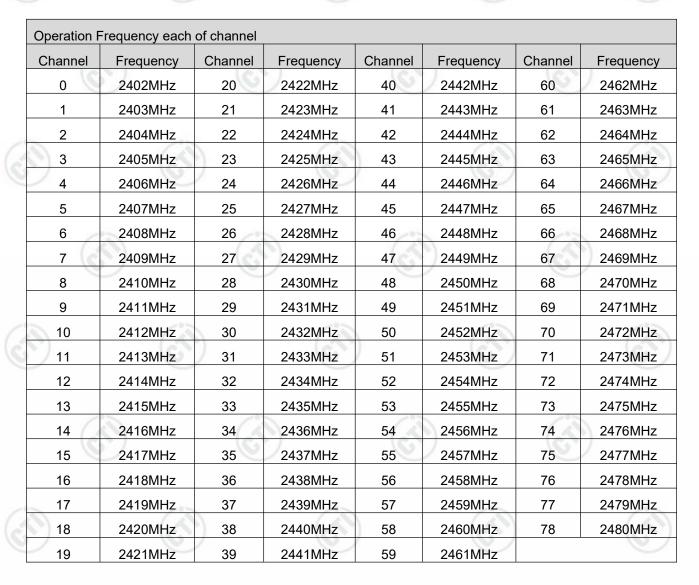
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.



4.1 **Client Information**


Applicant:	SHENZHEN NARUI ELECTRONIC CO., LTD
Address of Applicant:	Bldg#1, Xianyuxing Ind, the 4th zone, Yuhe Road, Gonghe community, Shajing, Bao'an Dist, Shenzhen
Manufacturer:	SHENZHEN NARUI ELECTRONIC CO., LTD
Address of Manufacturer: Bldg#1, Xianyuxing Ind, the 4th zone, Yuhe Road, Gonghe community Shajing, Bao'an Dist, Shenzhen	
Factory:	SHENZHEN NARUI ELECTRONIC CO., LTD
Address of Factory:	Bldg#1, Xianyuxing Ind, the 4th zone, Yuhe Road, Gonghe community, Shajing, Bao'an Dist, Shenzhen

General Description of EUT 4.2

Product Name:	Mini Family Sports Wireless Speaker with Night Light
Mode No.:	D-66
Trade mark:	MINISO
Bluetooth Version:	V5.0
Operation Frequency:	2402MHz~2480MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Antenna Type:	PCB antenna
Antenna Gain:	2.0dBi
Power Supply:	lithium battery: DC 3.7V, Charge by DC 5.0V
Test Voltage:	DC 3.7V
Sample Received Date:	Oct. 14, 2021
Sample tested Date:	Oct. 14, 2021 to Oct. 26, 2021

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

2480

EUT Test Software Settings	:			
Software:	BT_Tool (manufacturer declare)	(-11)		
EUT Power Grade:	Class2 (Power level is built-in set parameters and cannot be changed and selected)			
Use test software to set the lot transmitting of the EUT.	owest frequency, the middle frequency and	I the highest frequency keep		
Mode	Channel	Frequency(MHz)		
	CH0	2402		
DH1/DH3/DH5	CH39	2441		
	CH78	2480		
	CH0	2402		
2DH1/2DH3/2DH5	CH39	2441		
	CH78	2480		
	CH0	2402		
3DH1/3DH3/3DH5	CH39	2441		

CH78

Test Environment

Operating Environmer	nt:	1 2 5		1 20 0	
Radiated Spurious Em	issions:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		(3)		(3)
Atmospheric Pressure:	1010mbar		(6,7,2)		(67)
RF Conducted:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH	-0-		· · ·	
Atmospheric Pressure:	1010mbar	(27)			
Conducted Emissions	:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		-0.5		-0.00
Atmospheric Pressure:	1010mbar				

4.5 **Description of Support Units**

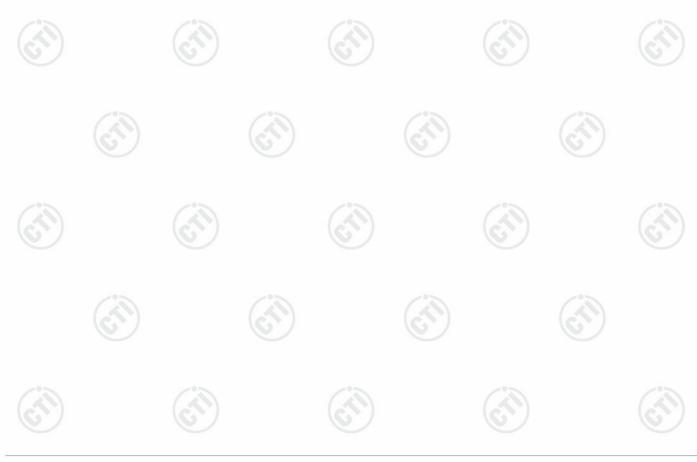
The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	DELL 3490	FCC ID and DOC	СТІ

All tests were performed at:

Centre Testing International Group Co., Ltd


Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

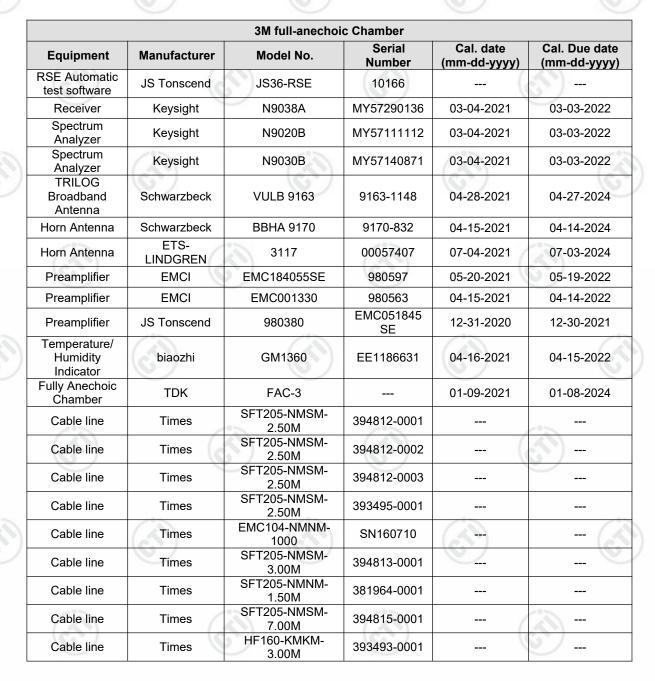
No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	RF power, conducted	0.46dB (30MHz-1GHz)
3	Kr power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious ethission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	R&S	FSV40	101200	08-26-2021	08-25-2022	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002				
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		- (<u> </u>	
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
PC-1	Lenovo	R4960d				
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3				

		3M Semi/full-anec	hoic Chamber		
Equipment	Manufacturer Model No. Serial Number		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9136-401	10-17-2021	10-16-2022
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024
Receiver	R&S	ESCI7	100009	04-15-2021	04-14-2022
Multi device Controller	maturo	NCD/070/10711 112	(4)	((S)
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022
Cable line	Fulai(7M)	SF106	5219/6A		
Cable line	Fulai(6M)	SF106	5220/6A		(3
Cable line	Fulai(3M)	SF106	5216/6A	(6)-	(6)
Cable line	Fulai(3M)	SF106	5217/6A		



Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022			
Temperature/ Humidity Indicator	Defu	TH128	/					
LISN R&S		ENV216	100098	03-04-2021	03-03-2022			
Barometer	changchun	DYM3	1188		<u> </u>			

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

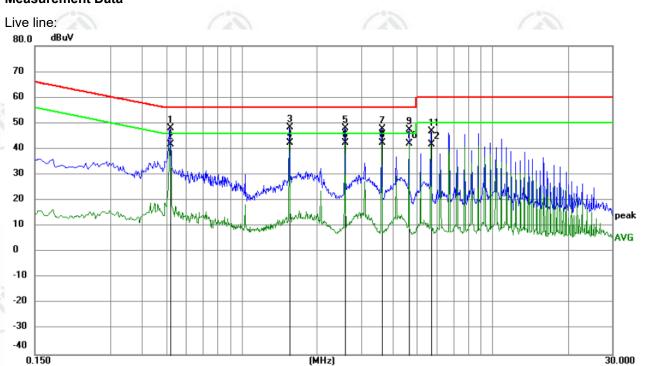
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 2.0dBi.

Test Results:



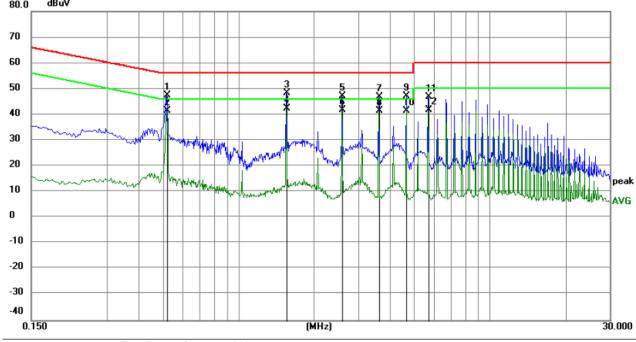
•	5.2 AC Power Line Col	lauctea Emissions						
	Test Requirement:	47 CFR Part 15C Section 15.2	207	-0-				
	Test Method:	ANSI C63.10: 2013	211					
	Test Frequency Range:	150kHz to 30MHz	(6,					
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
		Frequency range (MHz)	Limit (dl	BuV)				
		Trequency range (Wiriz)	Quasi-peak	Average				
	Limit:	0.15-0.5	66 to 56*	56 to 46*				
1	LIIIII.	0.5-5	56	46				
í		5-30	60	50				
		* Decreases with the logarithm	of the frequency.					
	Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 + AC N Ground Reference Plane	Test Receiver				
1 (1.3)	Test Procedure:	 The mains terminal disturbation. The EUT was connected to Impedance Stabilization Neimpedance. The power cabe connected to a second LISI reference plane in the same measured. A multiple socke power cables to a single LISE exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal ground reference plane. An invertical ground reference plane in the EUT shall be 0.4 m for vertical ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated equipment and all of the int ANSI C63.10: 2013 on condition. 	o AC power source thro etwork) which provides oles of all other units of N 2, which was bonded e way as the LISN 1 for et outlet strip was used SN provided the rating and for floor-standing arround reference plane, the a vertical ground reference to a ground reference on the vertical ground lane was bonded to the 1 was placed 0.8 m from the LISN 1 and the I was placed to the total ground reference plane. The of the LISN 1 and the I was placed on the country of the LISN 1 and the I was placed on the country of the LISN 1 and the I was ground the LISN 1 and the I was ground the country of the LISN 1 and the I was ground the LISN 1 and the I was ground the country of the LISN 1 and the I was ground the I was ground the I wa	ugh a LISN 1 (Line a 50Ω/50μH + 5Ω linear the EUT were It to the ground or the unit being to connect multiple of the LISN was not at table 0.8m above the angement, the EUT was been the end of the LISN at the EUT was been the end of the LISN at the EUT was been the end of the boundary of the plane for LISNs is distance was EUT. All other units of the end of the end of the LISN 2. The end of the end of the LISN 2. The end of the end of the LISN 2. The positions of the changed according to				
	Exploratory Test Mode:	Non-hopping transmitting mod data type at the lowest, middle	e, high channel.					
	Final Test Mode:	Through Pre-scan, find the 3DH5 of data type and 8DPSK modulation at the middle channel is the worst case. Only the worst case is recorded in the report.						
9	Test Voltage:	AC 120V/60Hz	(27)					
	-							

Pass

No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5190	38.04	9.97	48.01	56.00	-7.99	peak	
2		0.5190	31.75	9.97	41.72	46.00	-4.28	AVG	
3		1.5540	38.50	9.81	48.31	56.00	-7.69	peak	
4		1.5540	32.47	9.81	42.28	46.00	-3.72	AVG	
5		2.5889	38.38	9.79	48.17	56.00	-7.83	peak	
6		2.5889	32.52	9.79	42.31	46.00	-3.69	AVG	
7		3.6240	37.91	9.78	47.69	56.00	-8.31	peak	
8	*	3.6240	32.60	9.78	42.38	46.00	-3.62	AVG	
9		4.6590	37.54	9.78	47.32	56.00	-8.68	peak	
10		4.6590	32.20	9.78	41.98	46.00	-4.02	AVG	
11		5.6940	37.00	9.78	46.78	60.00	-13.22	peak	
12		5.6940	31.88	9.78	41.66	50.00	-8.34	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.5190	37.55	9.97	47.52	56.00	-8.48	peak	
2		0.5190	31.62	9.97	41.59	46.00	-4.41	AVG	
3		1.5540	38.61	9.81	48.42	56.00	-7.58	peak	
4	*	1.5540	32.43	9.81	42.24	46.00	-3.76	AVG	
5		2.5889	37.50	9.79	47.29	56.00	-8.71	peak	
6		2.5889	32.05	9.79	41.84	46.00	-4.16	AVG	
7		3.6240	37.07	9.78	46.85	56.00	-9.15	peak	
8		3.6240	31.55	9.78	41.33	46.00	-4.67	AVG	
9		4.6590	37.36	9.78	47.14	56.00	-8.86	peak	
10		4.6590	31.69	9.78	41.47	46.00	-4.53	AVG	
11		5.6940	37.14	9.78	46.92	60.00	-13.08	peak	
12		5.6940	32.12	9.78	41.90	50.00	-8.10	AVG	

Remark:

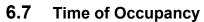
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

6.3 Maximum Conducted Output Power

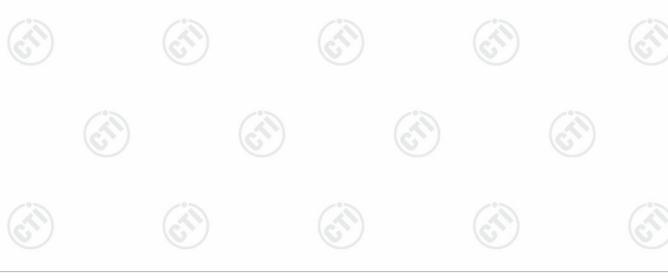
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.					
Limit:	21dBm					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Test Results:	Refer to Appendix A					

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup: Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a					
	hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.					
Limit:	NA					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Test Results:	Refer to Appendix A					

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1)	C.2
Test Method: ANSI C63.10:2013	(25)
Test Setup: Control Computer Power Power Podd Table EUT Control Power Podd Attenuator Ir	RF test System nstrument
Remark: Offset=Cable loss+ attenuation	n factor.
Test Procedure: 1. The RF output of EUT was connected cable and attenuator. The path loss was measurement. 2. Set to the maximum power setting and continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer so Span = wide enough to capture the peak set to approximately 30% of the channel best identify the center of each individual VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max how 5. Use the marker-delta function to deter peaks of the adjacent channels. Record the value in report.	s compensated to the results for each and enable the EUT transmit settings: ks of two adjacent channels; RBW is all spacing, adjust as necessary to all channel; hold.
Limit: Frequency hopping systems operating have hopping channel carrier frequencie two-thirds of the 20 dB bandwidth of greater.	es that are separated by 25 kHz or
Exploratory Test Mode: Hopping transmitting with all kind of mod	dulation and all kind of data type
Final Test Mode: Through Pre-scan, find the DH5 of data type modulation type, 2-DH5 of data type is type.	e is the worst case of $\pi/4DQPSK$
Test Results: Refer to Appendix A	



Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Supply Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Mode:	Hopping transmitting with all kind of modulation
Test Results:	Refer to Appendix A


Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Adenona Power Supply Table RF test System Instrument RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix A

Test Requirement:	47 CFR Part 15C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Control Compouter Power Supply Table RF test System System Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Test Results:	Refer to Appendix A					

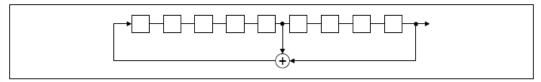
6.9 Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Compouler Power Power Pool Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mo	de: Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix A

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

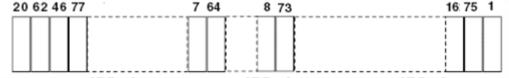
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

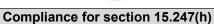

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

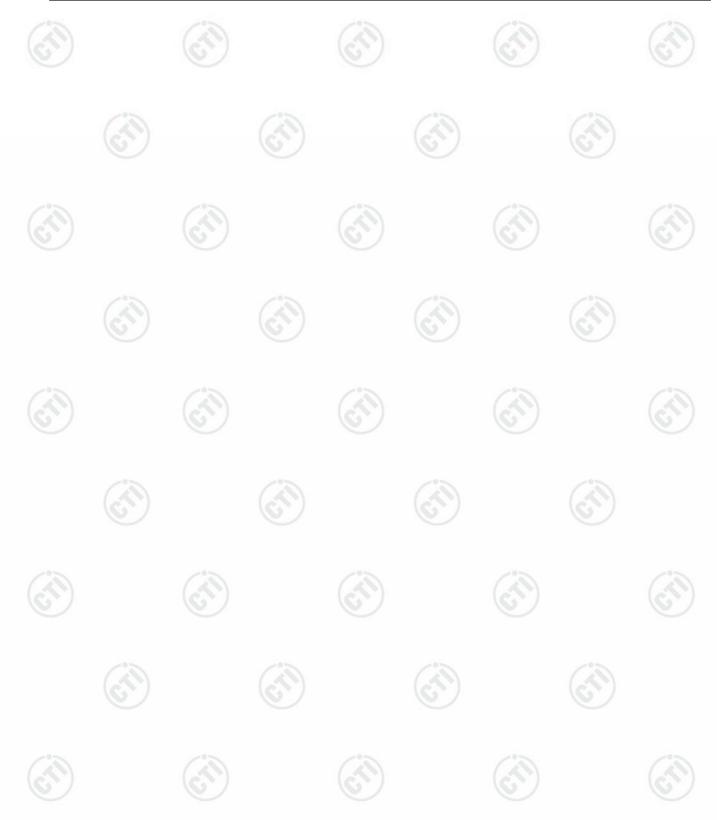
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

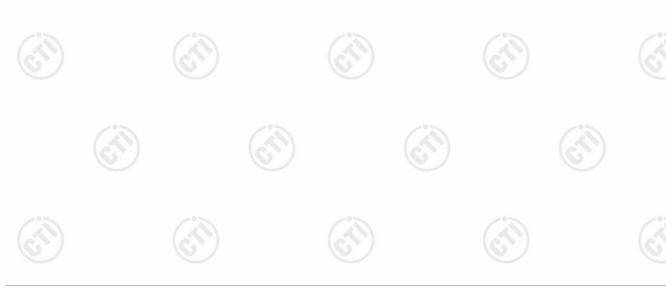

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

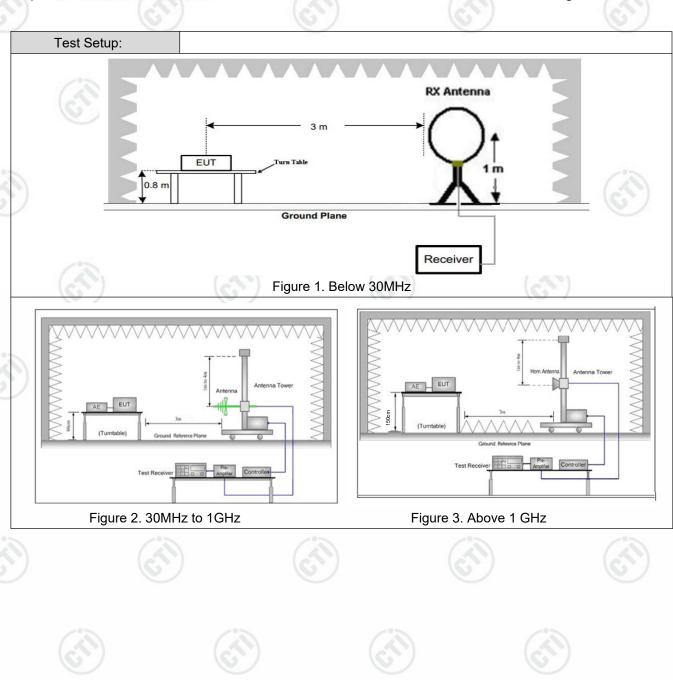
Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.



According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

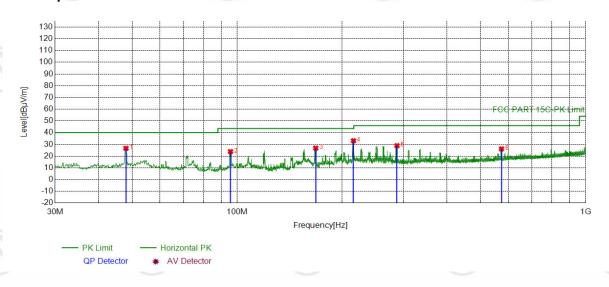

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



6.11 Radiated Spurious Emission & Restricted bands

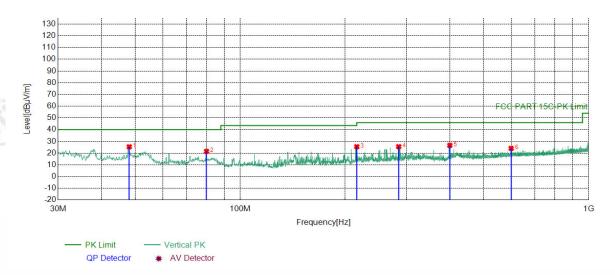
Test Requirement:	47 CFR Part 15C Section	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MH	z Average	10kHz	30kHz	Average			
	0.090MHz-0.110MH	z Quasi-peak	10kHz	30kHz	Quasi-peak			
Danniyan Catum	0.110MHz-0.490MH	z Peak	10kHz	30kHz	Peak			
Receiver Setup:	0.110MHz-0.490MH	z Average	10kHz	30kHz	Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Peak	100 kH	z 300kHz	Peak			
	Ab 4011-	Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10kHz	Average			
	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
	1.705MHz-30MHz	30	-	- (1)	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
Limit:	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Note: 15.35(b), Unless of emissions is 20dB applicable to the expeak emission lev	above the maxinequipment under t	num permi est. This p	tted average	emission limit			

Test Procedure:	 a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth wi
Exploratory Tes	 (2441MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
	Through Pre-scan, find the 3DH5 of data type and 8DPSK modulation is the
Final Test Mode	worst case.
Final Test Mode	Pretest the EUT at Transmitting mode, For below 1GHz part, through prescan, the worst case is the middle channel. Only the worst case is recorded in the report.

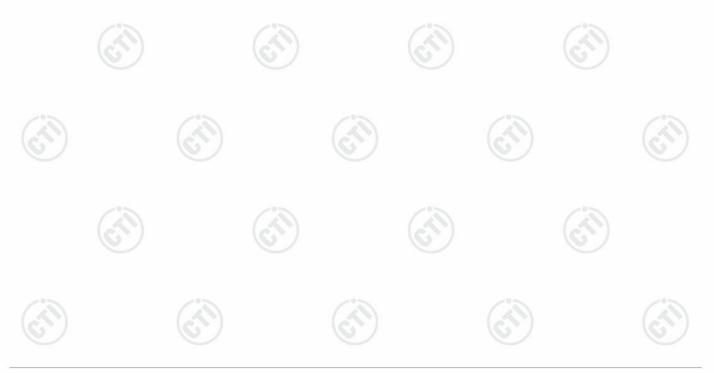


Radiated Spurious Emission below 1GHz:

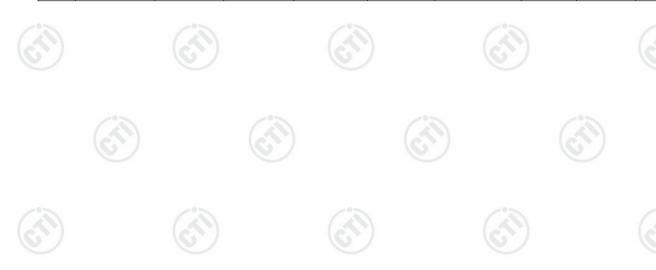
During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case middle channel of 3DH5 for 8DPSK was recorded in the report.



NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	47.9468	-17.17	43.84	26.67	40.00	13.33	PASS	Horizontal	Peak
2	95.6756	-19.15	43.01	23.86	43.50	19.64	PASS	Horizontal	Peak
3	168.0448	-20.59	47.39	26.80	43.50	16.70	PASS	Horizontal	Peak
4	215.6766	-17.43	50.54	33.11	43.50	10.39	PASS	Horizontal	Peak
5	287.4637	-15.77	44.68	28.91	46.00	17.09	PASS	Horizontal	Peak
6	573.4483	-9.22	35.39	26.17	46.00	19.83	PASS	Horizontal	Peak



NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	48.0438	-17.17	42.59	25.42	40.00	14.58	PASS	Vertical	Peak
2	80.0570	-22.55	44.05	21.50	40.00	18.50	PASS	Vertical	Peak
3	216.0646	-17.42	42.90	25.48	46.00	20.52	PASS	Vertical	Peak
4	285.0385	-15.83	41.38	25.55	46.00	20.45	PASS	Vertical	Peak
5	399.6070	-12.94	39.55	26.61	46.00	19.39	PASS	Vertical	Peak
6	599.3499	-8.65	32.70	24.05	46.00	21.95	PASS	Vertical	Peak



Radiated Spurious Emission above 1GHz:

Mode	: :		GFSK Transmit	tting		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1398.2398	1.38	42.72	44.10	74.00	29.90	Pass	Н	PK
2	1779.6780	3.21	42.46	45.67	74.00	28.33	Pass	Н	PK
3	4804.1203	-16.23	55.93	39.70	74.00	34.30	Pass	Н	PK
4	7206.2804	-11.83	59.67	47.84	74.00	26.16	Pass	Н	PK
5	9608.4406	-7.37	57.94	50.57	74.00	23.43	Pass	Н	PK
6	14361.7575	0.59	49.09	49.68	74.00	24.32	Pass	Н	PK
7	1312.4312	1.10	43.02	44.12	74.00	29.88	Pass	V	PK
8	1800.4800	3.28	42.72	46.00	74.00	28.00	Pass	V	PK
9	4804.1203	-16.23	56.33	40.10	74.00	33.90	Pass	V	PK
10	7206.2804	-11.83	61.08	49.25	74.00	24.75	Pass	V	PK
11	9608.4406	-7.37	60.93	53.56	74.00	20.44	Pass	V	PK
12	12561.6374	-4.39	53.23	48.84	74.00	25.16	Pass	V	PK
		(63)	*)	(6,5))	(%))		(6.5)

//		10.0	/	10.0	/	10.0	/		10.0
Mode	:		GFSK Transmi	tting		Channel:		2441 MHz	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1425.6426	1.41	42.92	44.33	74.00	29.67	Pass	Н	PK
2	1780.0780	3.21	42.09	45.30	74.00	28.70	Pass	Н	PK
3	4879.1253	-16.21	57.04	40.83	74.00	33.17	Pass	Н	PK
4	7323.2882	-11.65	56.39	44.74	74.00	29.26	Pass	Н	PK
5	9764.4510	-7.50	60.47	52.97	74.00	21.03	Pass	Н	PK
6	13734.7156	-1.72	50.74	49.02	74.00	24.98	Pass	Н	PK
7	1310.6311	1.10	44.18	45.28	74.00	28.72	Pass	V	PK
8	1891.8892	3.97	41.48	45.45	74.00	28.55	Pass	V	PK
9	4616.1077	-16.68	56.11	39.43	74.00	34.57	Pass	V	PK
10	7323.2882	-11.65	56.08	44.43	74.00	29.57	Pass	V	PK
11	9764.4510	-7.50	59.37	51.87	74.00	22.13	Pass	V	PK
12	14323.7549	-0.05	49.75	49.70	74.00	24.30	Pass	V	PK

Mode	:		GFSK Transmit	ting		Channel:		2480 MHz	
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1327.6328	1.15	43.08	44.23	74.00	29.77	Pass	Н	PK
2	1766.6767	3.17	42.48	45.65	74.00	28.35	Pass	Н	PK
3	4992.1328	-15.85	56.17	40.32	74.00	33.68	Pass	Н	PK
4	7440.2960	-11.34	56.16	44.82	74.00	29.18	Pass	Н	PK
5	9920.4614	-7.10	60.03	52.93	74.00	21.07	Pass	Н	PK
6	14395.7597	1.15	49.05	50.20	74.00	23.80	Pass	Н	PK
7	1255.6256	0.94	44.50	45.44	74.00	28.56	Pass	V	PK
8	1594.8595	2.25	44.08	46.33	74.00	27.67	Pass	V	PK
9	4977.1318	-15.91	55.41	39.50	74.00	34.50	Pass	V	PK
10	7588.3059	-11.20	54.65	43.45	74.00	30.55	Pass	V	PK
11	9920.4614	-7.10	59.20	52.10	74.00	21.90	Pass	V	PK
12	13752.7168	-1.70	50.90	49.20	74.00	24.80	Pass	V	PK

Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1266.4266	0.97	43.28	44.25	74.00	29.75	Pass	Н	PK
2	1806.2806	3.33	42.44	45.77	74.00	28.23	Pass	Н	PK
3	4852.1235	-16.21	56.25	40.04	74.00	33.96	Pass	Н	PK
4	7206.2804	-11.83	60.25	48.42	74.00	25.58	Pass	Н	PK
5	9608.4406	-7.37	58.22	50.85	74.00	23.15	Pass	Н	PK
6	13741.7161	-1.71	51.14	49.43	74.00	24.57	Pass	Н	PK
7	1396.0396	1.38	44.01	45.39	74.00	28.61	Pass	V	PK
8	1937.0937	4.22	41.55	45.77	74.00	28.23	Pass	V	PK
9	4839.1226	-16.22	56.11	39.89	74.00	34.11	Pass	V	PK
10	7206.2804	-11.83	61.96	50.13	74.00	23.87	Pass	V	PK
11	9612.4408	-7.39	60.04	52.65	74.00	21.35	Pass	V	PK
12	13759.7173	-1.69	51.11	49.42	74.00	24.58	Pass	V	PK

Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2441 MHz	
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1271.8272	0.99	43.46	44.45	74.00	29.55	Pass	Н	PK
2	1790.8791	3.25	42.32	45.57	74.00	28.43	Pass	Н	PK
3	4900.1267	-16.20	55.91	39.71	74.00	34.29	Pass	Н	PK
4	7323.2882	-11.65	57.82	46.17	74.00	27.83	Pass	Н	PK
5	9764.4510	-7.50	59.91	52.41	74.00	21.59	Pass	Н	PK
6	14392.7595	1.10	49.16	50.26	74.00	23.74	Pass	Н	PK
7	1256.2256	0.95	43.78	44.73	74.00	29.27	Pass	V	PK
8	1773.4773	3.19	41.78	44.97	74.00	29.03	Pass	V	PK
9	4807.1205	-16.23	55.25	39.02	74.00	34.98	Pass	V	PK
10	7323.2882	-11.65	57.85	46.20	74.00	27.80	Pass	V	PK
11	9764.4510	-7.50	58.59	51.09	74.00	22.91	Pass	V	PK
12	13292.6862	-3.43	52.72	49.29	74.00	24.71	Pass	V	PK

Mode	:	π	/4DQPSK Tra	nsmitting		Channel:		2480 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1311.0311	1.10	42.75	43.85	74.00	30.15	Pass	Н	PK
2	1855.0855	3.69	42.98	46.67	74.00	27.33	Pass	Н	PK
3	4822.1215	-16.22	55.75	39.53	74.00	34.47	Pass	Н	PK
4	7588.3059	-11.20	54.51	43.31	74.00	30.69	Pass	Н	PK
5	9920.4614	-7.10	58.99	51.89	74.00	22.11	Pass	Н	PK
6	13843.7229	-1.78	50.70	48.92	74.00	25.08	Pass	Н	PK
7	1323.2323	1.14	42.54	43.68	74.00	30.32	Pass	V	PK
8	1797.4797	3.27	43.76	47.03	74.00	26.97	Pass	V	PK
9	4831.1221	-16.22	55.71	39.49	74.00	34.51	Pass	V	PK
10	5760.1840	-13.71	54.23	40.52	74.00	33.48	Pass	V	PK
11	7440.2960	-11.34	55.80	44.46	74.00	29.54	Pass	V	PK
12	9920.4614	-7.10	56.76	49.66	74.00	24.34	Pass	V	PK

Mode	:		8DPSK Transm	nitting		Channel:		2402 MHz	4
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1313.6314	1.10	43.75	44.85	74.00	29.15	Pass	Н	PK
2	1796.4796	3.27	42.41	45.68	74.00	28.32	Pass	Н	PK
3	4804.1203	-16.23	57.12	40.89	74.00	33.11	Pass	Н	PK
4	7206.2804	-11.83	59.44	47.61	74.00	26.39	Pass	Н	PK
5	9608.4406	-7.37	58.74	51.37	74.00	22.63	Pass	Н	PK
6	12659.6440	-4.58	52.21	47.63	74.00	26.37	Pass	Н	PK
7	1398.0398	1.38	44.01	45.39	74.00	28.61	Pass	V	PK
8	1997.2997	4.54	43.51	48.05	74.00	25.95	Pass	V	PK
9	4804.1203	-16.23	56.30	40.07	74.00	33.93	Pass	V	PK
10	7205.2804	-11.83	61.58	49.75	74.00	24.25	Pass	V	PK
11	9608.4406	-7.37	61.56	54.19	74.00	19.81	Pass	V	PK
12	9609.4406	-7.37	53.02	45.65	54.00	8.35	Pass	V	AV
13	12961.6641	-4.16	51.80	47.64	74.00	26.36	Pass	V	PK
N)		(6)	3)	(6))	(6))		(62)
Mode	:		8DPSK Transm	nitting		Channel:		2441 MHz	

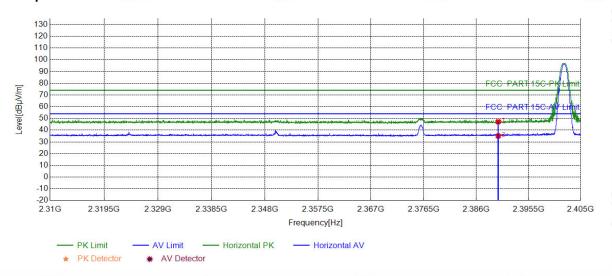
Mode	:		8DPSK Transm	nitting		Channel:		2441 MHz	
NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1436.2436	1.42	42.76	44.18	74.00	29.82	Pass	Н	PK
2	1884.6885	3.92	42.22	46.14	74.00	27.86	Pass	Н	PK
3	4882.1255	-16.21	56.08	39.87	74.00	34.13	Pass	Н	PK
4	7323.2882	-11.65	58.15	46.50	74.00	27.50	Pass	Н	PK
5	9764.4510	-7.50	59.69	52.19	74.00	21.81	Pass	Н	PK
6	12565.6377	-4.36	53.12	48.76	74.00	25.24	Pass	Н	PK
7	1308.8309	1.09	42.97	44.06	74.00	29.94	Pass	V	PK
8	1797.0797	3.27	43.64	46.91	74.00	27.09	Pass	V	PK
9	4818.1212	-16.22	55.22	39.00	74.00	35.00	Pass	V	PK
10	7323.2882	-11.65	58.96	47.31	74.00	26.69	Pass	V	PK
11	9764.4510	-7.50	51.96	44.46	74.00	29.54	Pass	V	PK
12	13756.7171	-1.69	50.58	48.89	74.00	25.11	Pass	V	PK

Mode	:		8DPSK Transm	itting		Channel:		2480 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1269.2269	0.98	42.78	43.76	74.00	30.24	Pass	Н	PK
2	1736.6737	3.06	41.80	44.86	74.00	29.14	Pass	Н	PK
3	4859.1239	-16.21	55.47	39.26	74.00	34.74	Pass	Н	PK
4	7439.2960	-11.34	55.77	44.43	74.00	29.57	Pass	Н	PK
5	9920.4614	-7.10	60.56	53.46	74.00	20.54	Pass	Н	PK
6	12794.6530	-4.21	52.37	48.16	74.00	25.84	Pass	Н	PK
7	1252.0252	0.94	43.11	44.05	74.00	29.95	Pass	V	PK
8	1866.0866	3.78	41.03	44.81	74.00	29.19	Pass	V	PK
9	4890.1260	-16.20	54.92	38.72	74.00	35.28	Pass	V	PK
10	7439.2960	-11.34	54.97	43.63	74.00	30.37	Pass	V	PK
11	9919.4613	-7.10	56.18	49.08	74.00	24.92	Pass	V	PK
12	14384.7590	0.97	49.50	50.47	74.00	23.53	Pass	V	PK

Remark:

Hotline:400-6788-333

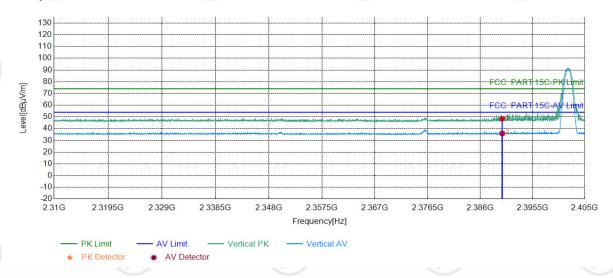
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


www.cti-cert.com E-mail:info@cti-cert.com

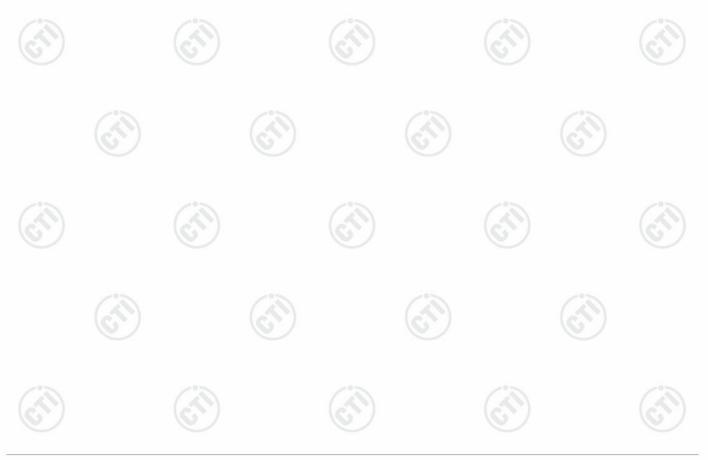

Restricted bands:

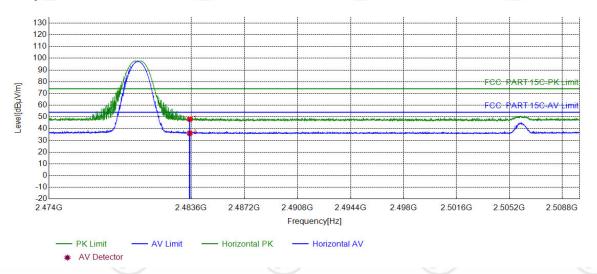
Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402 MHz
Remark:			

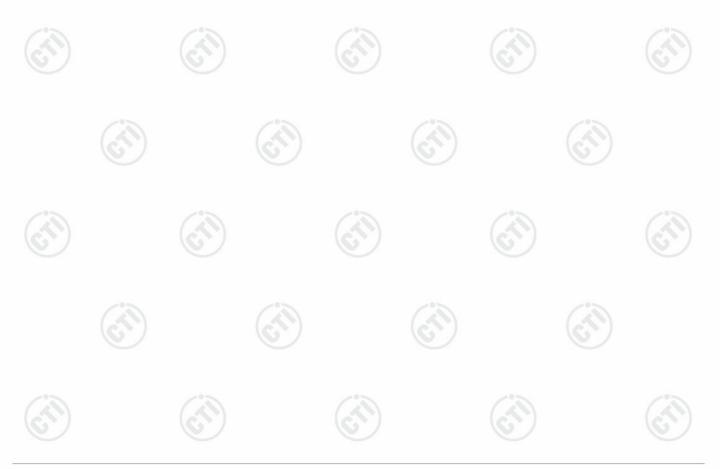


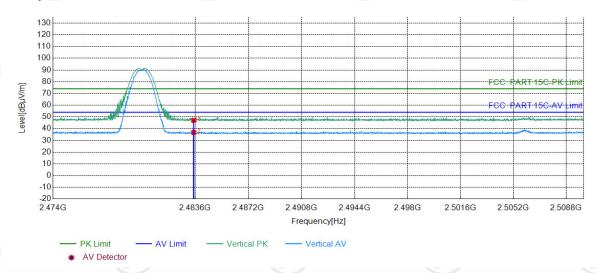
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	41.43	47.20	74.00	26.80	PASS	Horizontal	PK
pc ()	2	2390.0000	5.77	29.34	35.11	54.00	18.89	PASS	Horizontal	AV



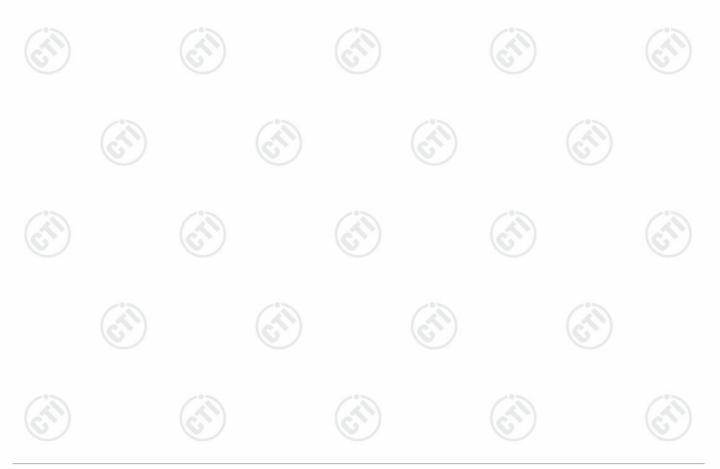


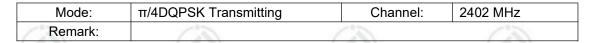
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	42.71	48.48	74.00	25.52	PASS	Vertical	PK
2	2390.0000	5.77	30.15	35.92	54.00	18.08	PASS	Vertical	AV

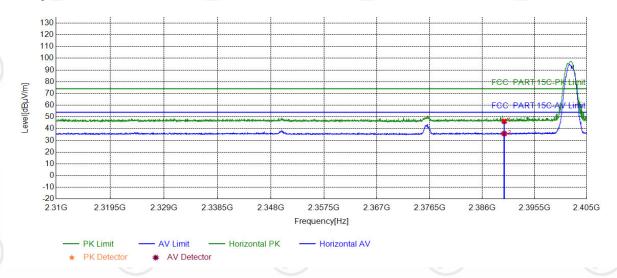




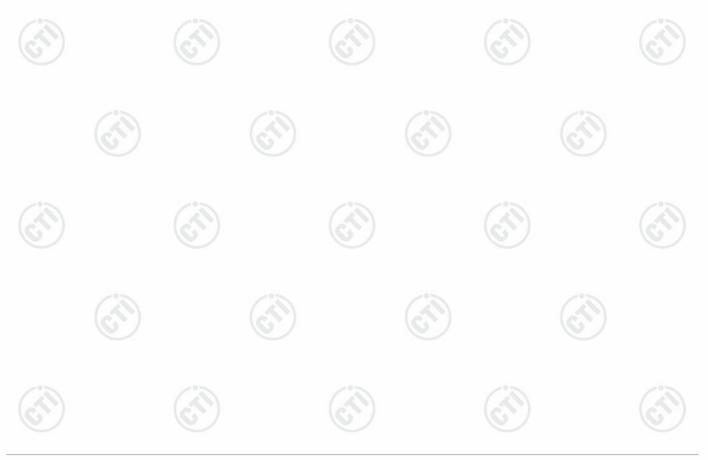
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.52	48.09	74.00	25.91	PASS	Horizontal	PK
2	2483.5000	6.57	29.53	36.10	54.00	17.90	PASS	Horizontal	AV

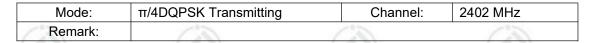


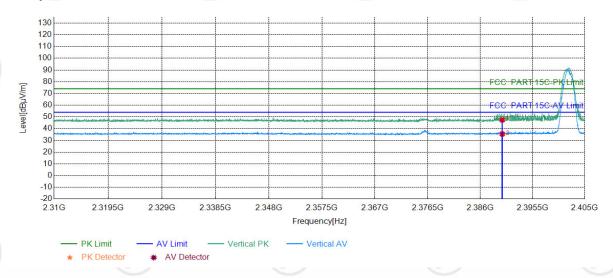




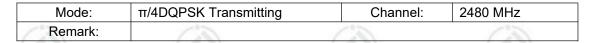
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.56	47.13	74.00	26.87	PASS	Vertical	PK
2	2483.5000	6.57	30.24	36.81	54.00	17.19	PASS	Vertical	AV

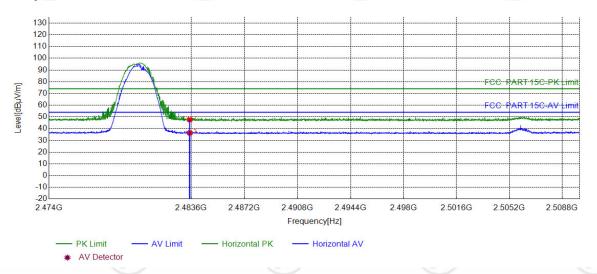






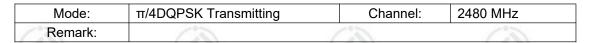
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.49	46.26	74.00	27.74	PASS	Horizontal	PK
2	2390.0000	5.77	30.00	35.77	54.00	18.23	PASS	Horizontal	AV

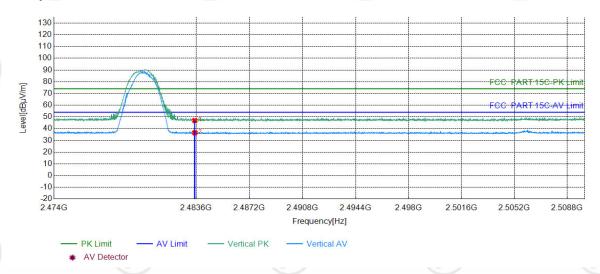




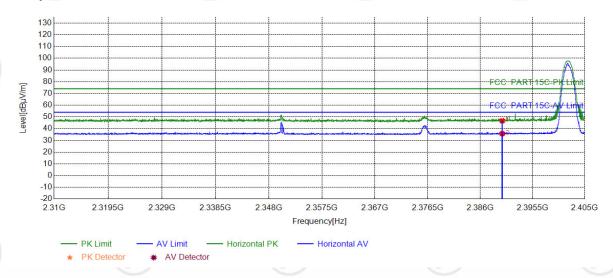
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	41.71	47.48	74.00	26.52	PASS	Vertical	PK
2	2390.0000	5.77	29.69	35.46	54.00	18.54	PASS	Vertical	AV



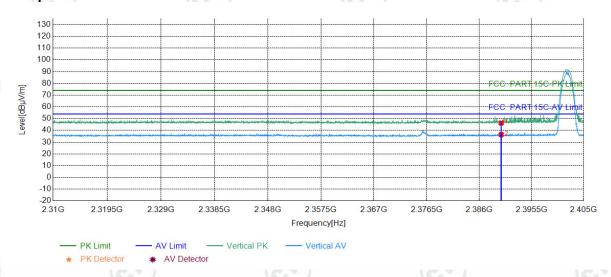




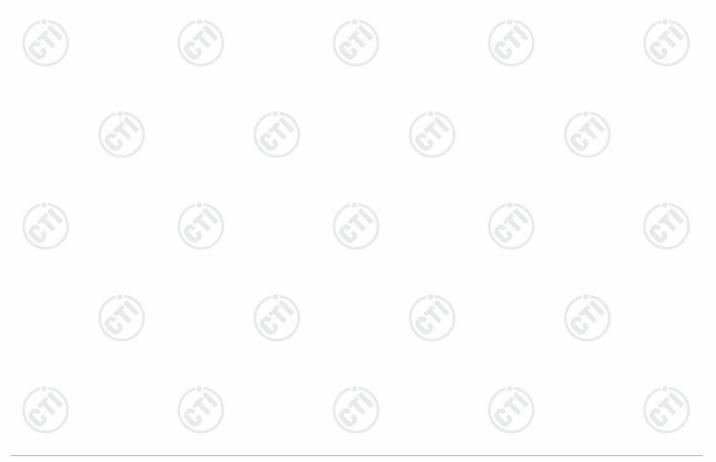
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.12	47.69	74.00	26.31	PASS	Horizontal	PK
2	2483.5000	6.57	29.84	36.41	54.00	17.59	PASS	Horizontal	AV



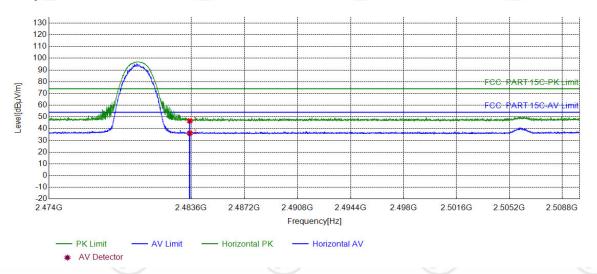
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.35	46.92	74.00	27.08	PASS	Vertical	PK
2	2483.5000	6.57	29.97	36.54	54.00	17.46	PASS	Vertical	AV



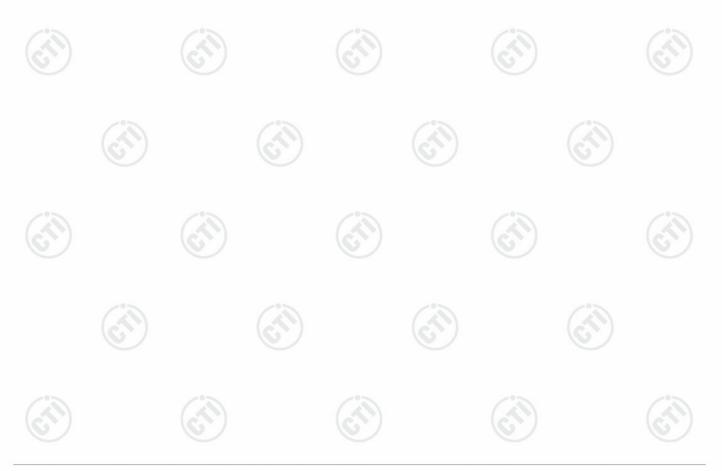
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	40.94	46.71	74.00	27.29	PASS	Horizontal	PK
2	2390.0000	5.77	29.97	35.74	54.00	18.26	PASS	Horizontal	AV

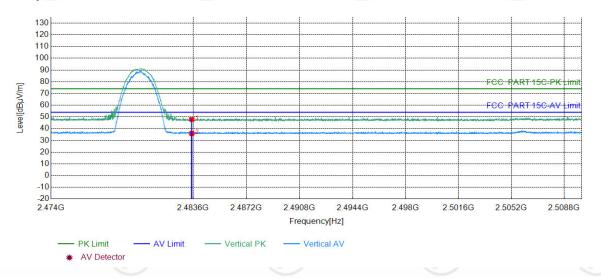


Mode:	8DPSK Transmitting	Channel:	2402 MHz
Remark:			



	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	40.56	46.33	74.00	27.67	PASS	Vertical	PK
Ī	2	2390.0000	5.77	30.62	36.39	54.00	17.61	PASS	Vertical	AV





NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.12	46.69	74.00	27.31	PASS	Horizontal	PK
2	2483.5000	6.57	29.54	36.11	54.00	17.89	PASS	Horizontal	AV

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	41.38	47.95	74.00	26.05	PASS	Vertical	PK
2	2483.5000	6.57	29.37	35.94	54.00	18.06	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor



7 Appendix A

Refer to Appendix: Bluetooth Classic of EED32N81015701.

