

Page 1 of 59

Product **Trade mark** Model/Type reference **Serial Number Report Number** FCC ID Date of Issue **Test Standards Test result**

- Forte Data Glove
- **BeBop Sensors**, Inc
- DG1
- N/A :
- EED32L00283201
- : 2AUSB-BBSFDG1
- Nov. 14, 2019
- 47 CFR Part 15Subpart C
- : PASS

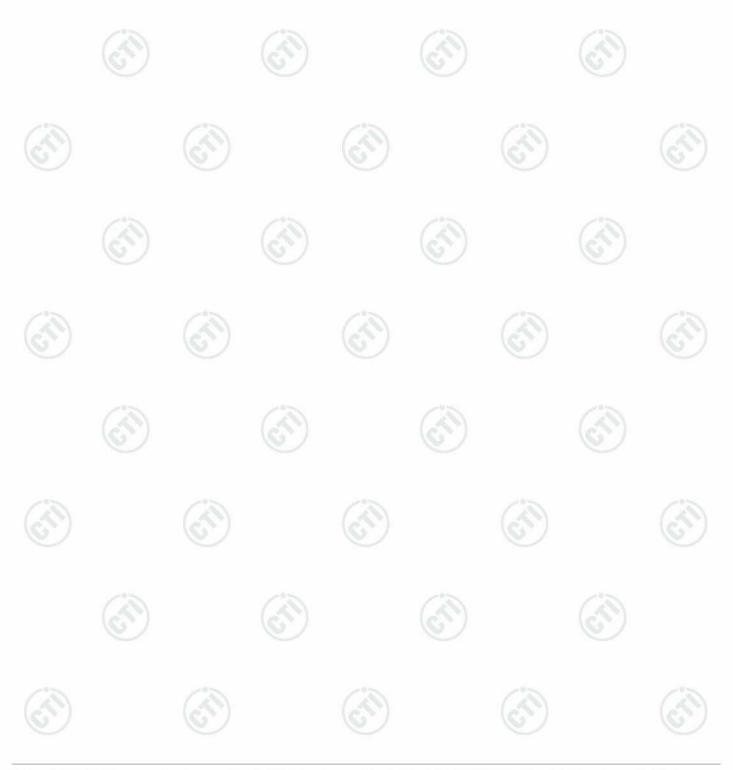
Prepared for: **BeBop Sensors**, Inc. 970 Miller ave. Berkeley CA, 94708

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

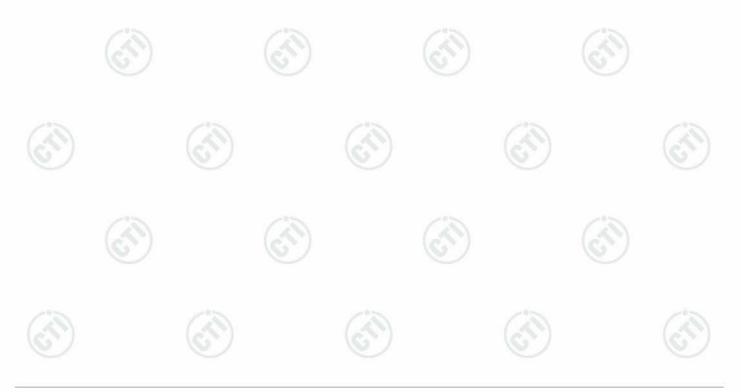
Reviewed by:

Tested By:



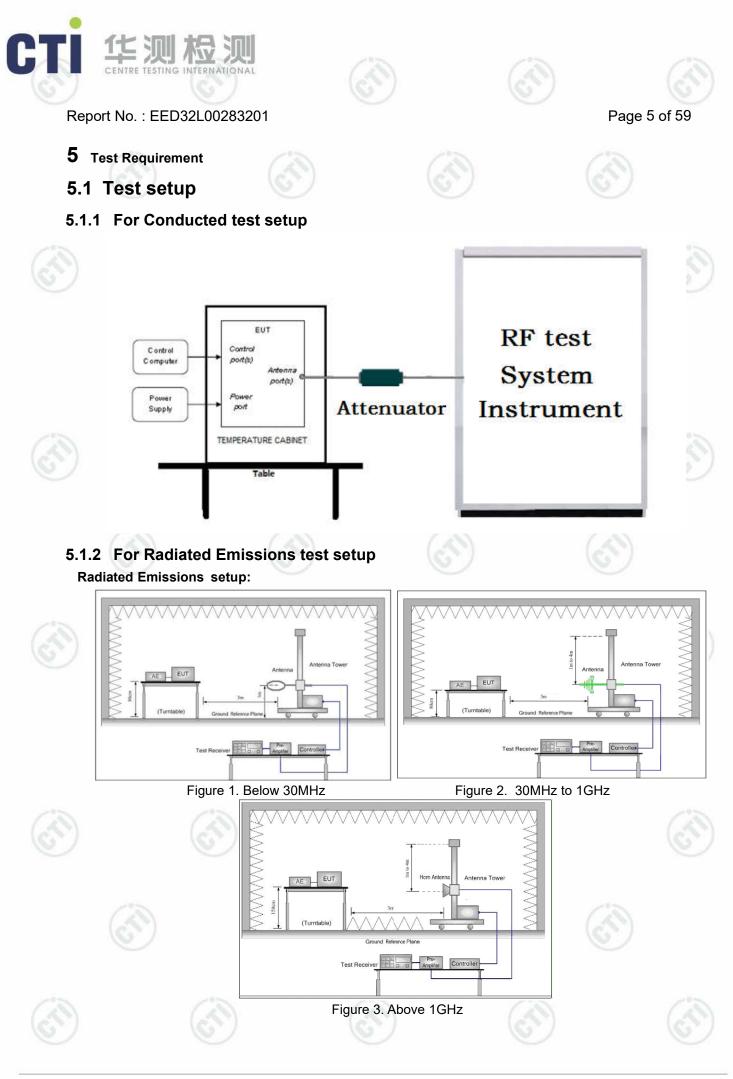
2 Version

Version No.	Date		Description	9
00	Nov. 14, 2019		Original	
	20	12	13	10
	(S)	(c^{S})		

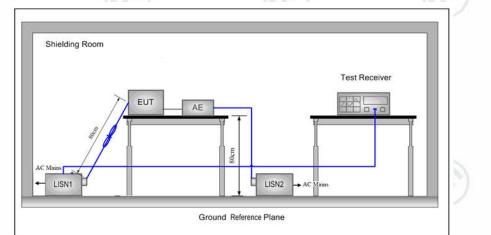

Test Summary 2

Page 3 of 59

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS


Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

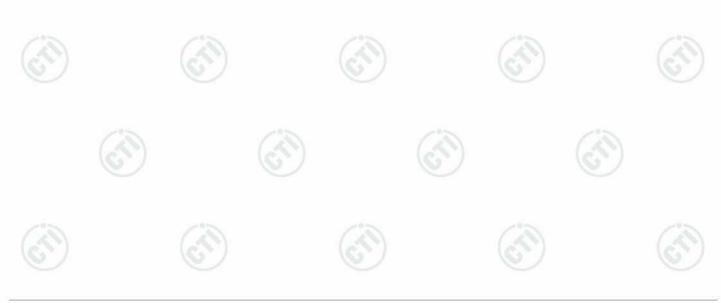
1 COVER PAGE			•••••
2 VERSION			
3 TEST SUMMARY			
4 CONTENT	25	<u> </u>	<u> </u>
5 TEST REQUIREMENT			
 5.1 TEST SETUP	etupsetup		
6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CC 6.8 OTHER INFORMATION REQUESTED BY 6.9 MEASUREMENT UNCERTAINTY (95% (ONDITIONS 7 THE CUSTOMER		
7 EQUIPMENT LIST	~		1
8 RADIO TECHNICAL REQUIREMENTS			
EUT DUTY CYCLE			
Appendix A): 6dB Occupied Bandwid Appendix B): Conducted Peak Outpu Appendix C): Band-edge for RF Con Appendix D): RF Conducted Spuriou Appendix E): Power Spectral Densit	ut Power nducted Emissions us Emissions y		
Appendix F): Antenna Requirement. Appendix G): AC Power Line Condu Appendix H): Restricted bands aroun Appendix I) Radiated Spurious Emis	icted Emission nd fundamental frequency (F	Radiated)	



Page 6 of 59

Report No. : EED32L00283201

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:	1	S		e
Temperature:	24.0 °C			
Humidity:	55 % RH			
Atmospheric Pressure:	1010mbar		C	0
10.0	10.3	1 C		

5.3 Test Condition

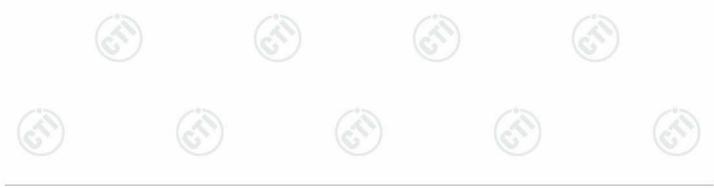
Test channel:

10-00	Test Mode	Tx/Rx		RF Channel	-01
X	Test Mode	TX/RX	Low(L)	Middle(M)	High(H)
5)	0501/		Channel 1	Channel 20	Channel 40
	GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz
	Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of n	nodulation and a	all kind of data

6 General Information

6.1 Client Information

Applicant:	BeBop Sensors, Inc.			
Address of Applicant:	970 Miller ave. Berkeley CA, 94708	25		~
Manufacturer:	BeBop Sensors, Inc.	(25)		(2)
Address of Manufacturer:	970 Miller ave. Berkeley CA, 94708	U		U
Factory:	RSP Inc			
Address of Factory:	12745 W. Townsend St. Brookfield, WI 53005	(3)	(1)	


Page 7 of 59

6.2 General Description of EUT

Product Name:	Forte Data Glo	ve		
Model No.(EUT):	DG1			(3)
Trade mark:	BeBop Sensor	s, Inc	$\langle \mathcal{O} \rangle$	G
EUT Supports Radios application:	4.0 BLE Single	e mode		
Power Supply:	Battery	3.7V,700mAh		15
Sample Received Date:	Oct. 08, 2019			(A)
Sample tested Date:	Oct. 08, 2019 t	to Nov. 13, 2019		I A A A A A A A A A A A A A A A A A A A

6.3 Product Specification subjective to this standard

Operation Frequency:	2400MHz to 2483.5MHz			
Bluetooth Version:	4.0	(3)		6
Modulation Technique:	DSSS	\sim		U
Modulation Type:	GFSK			
Number of Channel:	40	~	25	
Test Power Grade:	Default		(\mathcal{S})	
Test Software of EUT:	nRFgo Studio-Direct Test Mode U	IART interface	J	
Antenna Type and Gain:	Type: PCB antenna			
	Gain:0.24dBi			
Test Voltage:	DC 5V			(2)
	(2)	(63)		10

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at: Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

None.

6.8 Other Information Requested by the Customer

Hotline: 400-6788-333

Page 9 of 59

Report No. : EED32L00283201

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	RF power, conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
3	Padiated Spurious omission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
	Conduction emission	3.1dB (150kHz to 30MHz)	
)	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Equipment List 7

Equipment

Manufacturer

Serial

Number

MY53401106

MY54510339

15040701

MY46240094

MY53051549

1804186

RF test system

Mode No.

Cal. Due date

(mm-dd-yyyy)

02-29-2020

02-29-2020

02-29-2020

02-29-2020

02-29-2020

07-25-2020

Cal. Date

(mm-dd-yyyy)

03-01-2019

03-01-2019

03-01-2019

03-01-2019

03-01-2019

07-26-2019

	Signal Generator	Keysight	E8257D
	Spectrum Analyzer	Keysight	N9010A
	Attenuator	HuaXiang	SHX370
	Signal Generator	Keysight	N5181A
	Signal Generator	Keysight	N5182B
	Temperature/ Humidity Indicator	biaozhi	HM10
	High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002
	High-pass filter	MICRO- TRONICS	SPA-F-63029-4
	band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001
	band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001
	band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002
	band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001
	Communicati on test set	R&S	CMW500
	DC Power	Keysight	E3642A
	PC-1	Lenovo	R4960d

High-pass filter	Sinoscite	NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001		01-09-2019	01-08-2020
Communicati on test set	R&S	CMW500	107929	04-28-2019	04-27-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		03-01-2019	02-29-2020
high-low temperature test chamber	DongGuangQi nZhuo	LK-80GA	QZ20150611 879	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020

Page 11 of 59

	Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver R&S		ESCI	100435	05-20-2019	05-19-2020				
Temperature/ Humidity Indicator	Defu	TH128	/	06-14-2019	06-13-2020				
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2022				
Communication test set	- R&S		102898	01-18-2019	01-17-2020				
LISN	R&S	ENV216	100098	05-08-2019	05-07-2020				
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-07-2020				
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-12-2020				
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-19-2020				
ISN	TESEQ	ISN T800	30297	01-16-2019					
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020				

Page 12 of 59

	3M S	emi/full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	07-12-2019	07-11-2020
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-04-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 2	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-27-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-29-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2022
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line High-pass filter	Fulai(3M) Sinoscite	SF106 FL3CX03WG 18NM12- 0398-002	5217/6A 	01-09-2019 01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002	6	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 13 of 59

		3M full-anechoi	Serial	Cal. date	Cal. Due date
Equipment	Automatic IS Tonscend IS36-RSE		Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software			10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-24-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-24-2021
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-21-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	Agilent	8449B	3008A02425	07-12-2019	07-11-2020
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-29-2020
Fully Anechoic Chamber	TDK	FAC-3)	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Page 14 of 59

Report No. : EED32L00283201

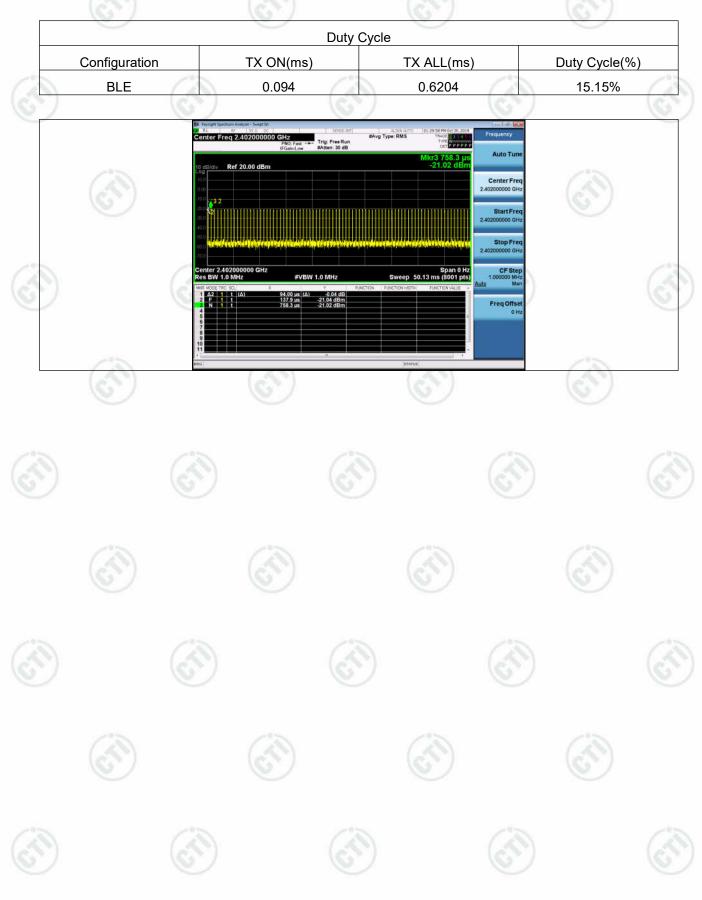
8 Radio Technical Requirements Specification

Reference documents for testing:

	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
2	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
π	act D	oculte Liet:	

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d) ANSI C63.10		RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c) ANSI C63.10		Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Page 15 of 59

EUT DUTY CYCLE

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 16 of 59

Report No. : EED32L00283201

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth

Limit	Shall be at least 500kHz	

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

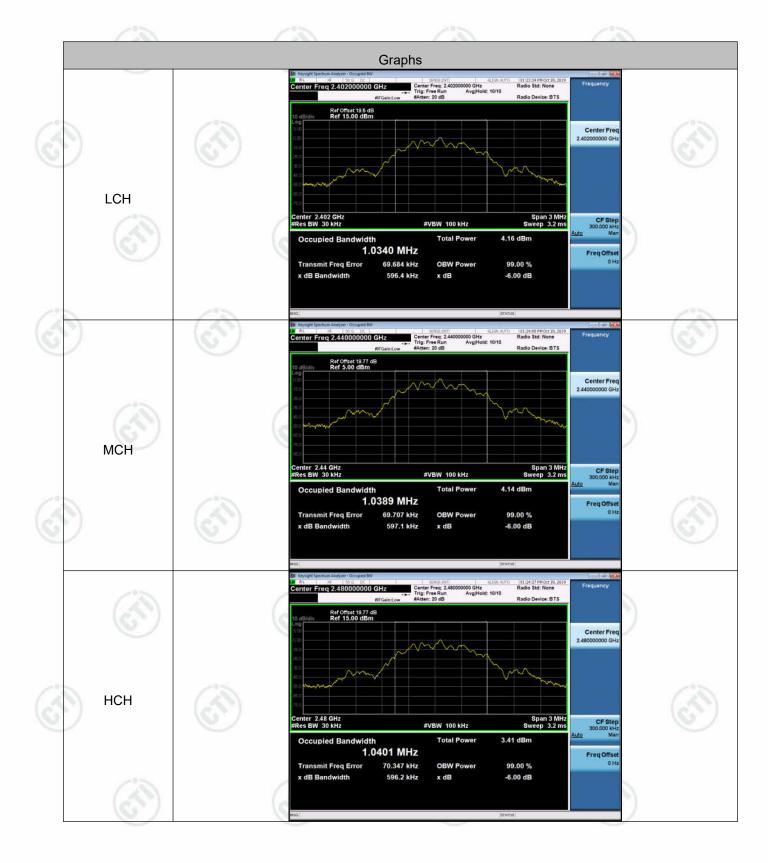
Test Setup

Test Result

Report No. : EED32L00283201

99% OBW[MHz] Verdict Mode Channel 6dB Bandwidth [MHz] BLE LCH 0.6872 1.034 PASS BLE MCH PASS 0.6862 1.0389 BLE HCH 0.6840 1.0401 PASS **Test Graphs** Graphs Radio Std: None eq 2.4020 00 GHz AvgiHold:>10/10 Center Freq: 2. Trig: Free Run adio Device: BTS Ref Offset 19.5 dB Ref 15.00 dBm Center Fre 2.40 LCH nter 2.402 GHz es BW 100 kHz Span 3 MH ep 1.067 m 3W 300 kH Occupied Bandwidth Total P 4 79 dB 1.0647 MHz Transmit Freq Error 63.281 kHz OBW Po 99.00 % x dB Bandw 687.2 kHz x dB -6.00 dB 12-44-20 PM Oct 30, 20 Radio Std: None enter Freq 2.440000000 GHz Center Freq: 2.440000000 GHz Trig: Free Run Avg|Hold:>10/10 Radio Device: BTS Ref Offset 19.77 dB Ref 15.00 dBm Center Fre MCH enter 2.44 GHz Res BW 100 kH Span 3 MH eep 1.067 m BW 300 kH: 4.75 dBn Occupied Bandwidth 1.0711 MHz Freq Off Transmit Freg Error 64.467 kHz OBW P 99.00 % dB Bandw 686.2 kHz x dB -6.00 dB Center Freq: 2.480000000 GHz Trig: Free Run Avg|Hold:>10/10 MAtten: 20 dB Radio Std: None Radio Device: BTS Ref Offset 19.77 dB Ref 15.00 dBm Center Fre 20 HCH r 2.48 GHz BW 100 kH Span 3 MH ep 1.067 m CFSt W 300 kH 4.02 dB Occupied Bandwidth Total Po 1.0741 MHz smit Freg Erro 65.525 kHz OBW Po 99.00 % x dB dB Bandw 684.0 kHz -6.00 dB

Hotline: 400-6788-333


www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 18 of 59

Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Page 19 of 59

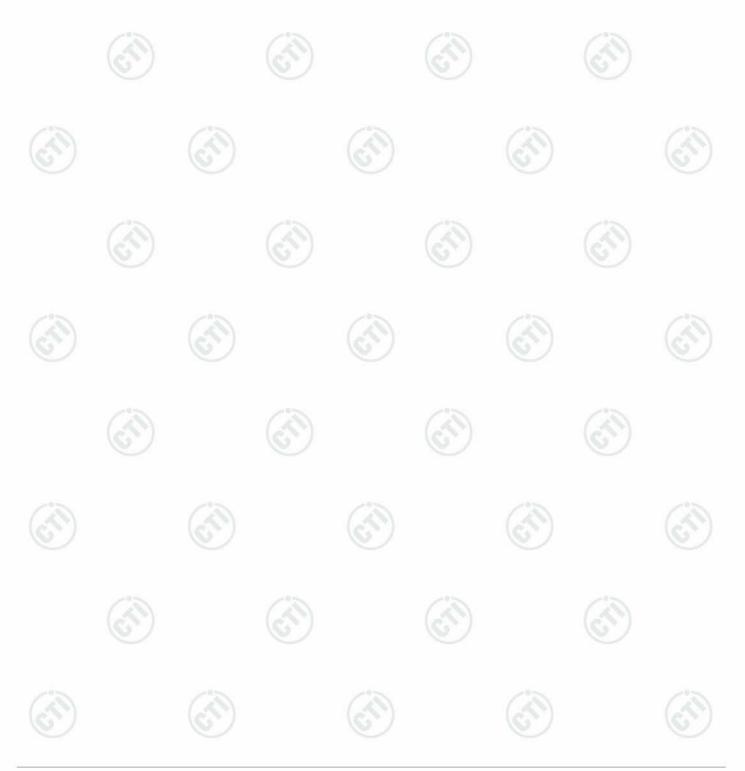
0	Antenna not exceed 6 dBi : 30dBm	0
Limit	Antenna with DG greater than 6 dBi [Limit = $30 - (DG - 6)$]	
	Point-to-point operation	

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- **4.** Measure and record the result of Peak output power and Average output power. in the test report.

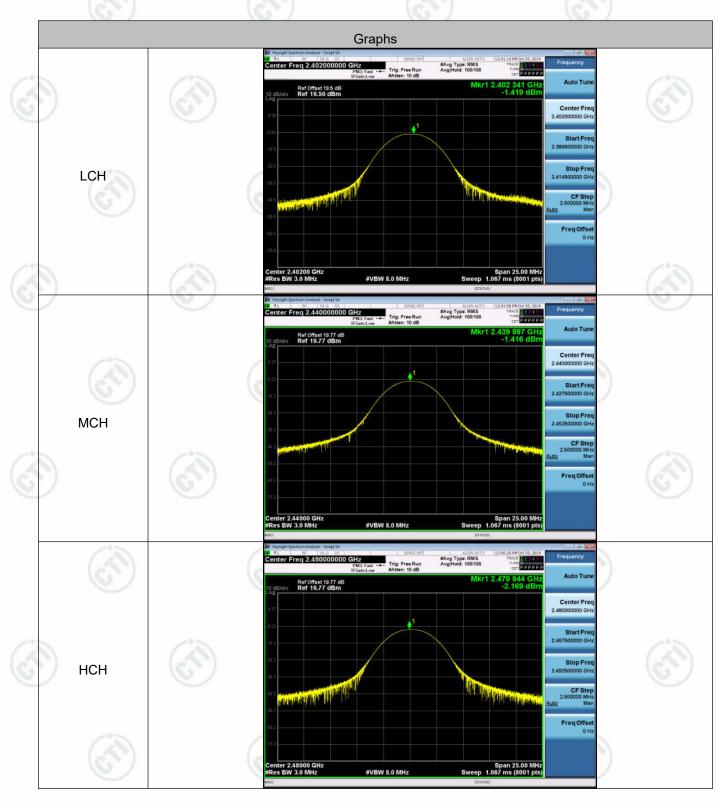
Test Setup



Page 20 of 59

<u>Test Result</u>

Mode	Channel	Conduct Peak Power[dBm]	Verdic
BLE	LCH	-1.419	PASS
BLE	МСН	-1.416	PASS
BLE	нсн	-2.169	PASS


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 21 of 59

Test Graphs

Page 22 of 59

Report No. : EED32L00283201

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

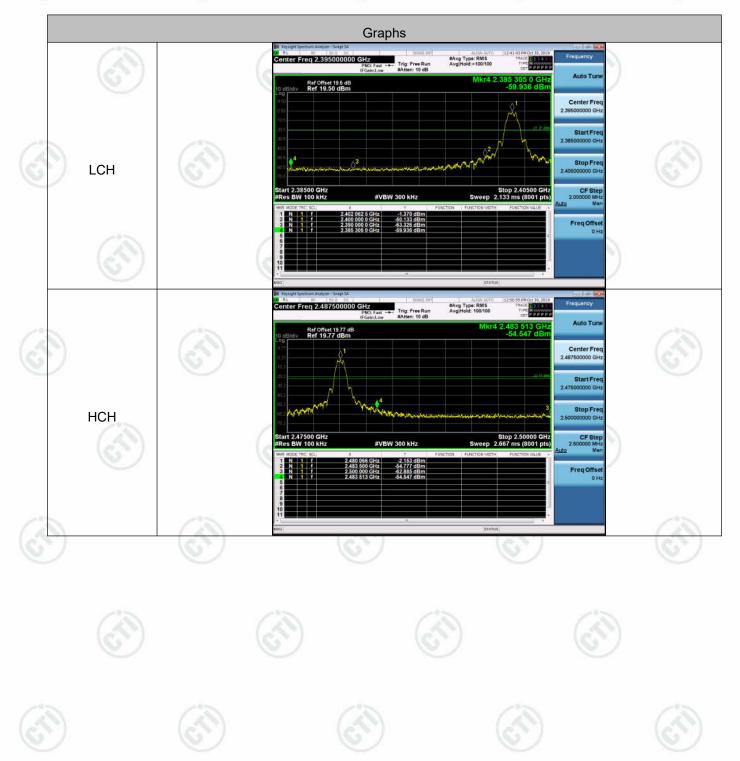
Test method Refer as KDB 558074 D01 v04, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

<u>Test Setup</u>



Page 23 of 59

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-1.370	-59.936	-21.37	PASS
BLE	НСН	-2.153	-54.547	-22.15	PASS
Test Gra	phs (

Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

<u>Test Setup</u>

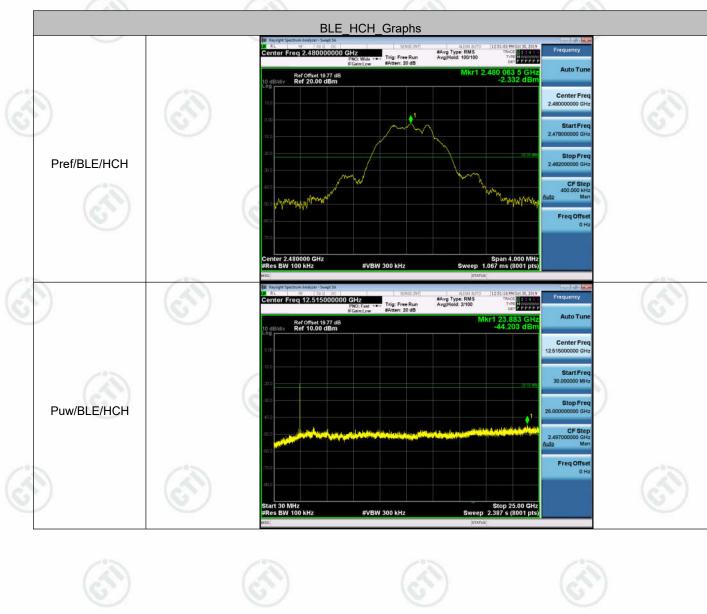
Result Table

Report No. : EED32L00283201

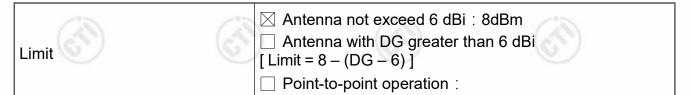
Page 25 of 59


Mode	Channel	Pref [dB	m]	Puw	[dBm]	Verdict
BLE	LCH	-1.567		<	imit	PASS
BLE	MCH	-1.605	5	<	imit	PASS
BLE	HCH	-2.332	2	<l< th=""><th>imit</th><th>PASS</th></l<>	imit	PASS

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com


Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Page 29 of 59

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

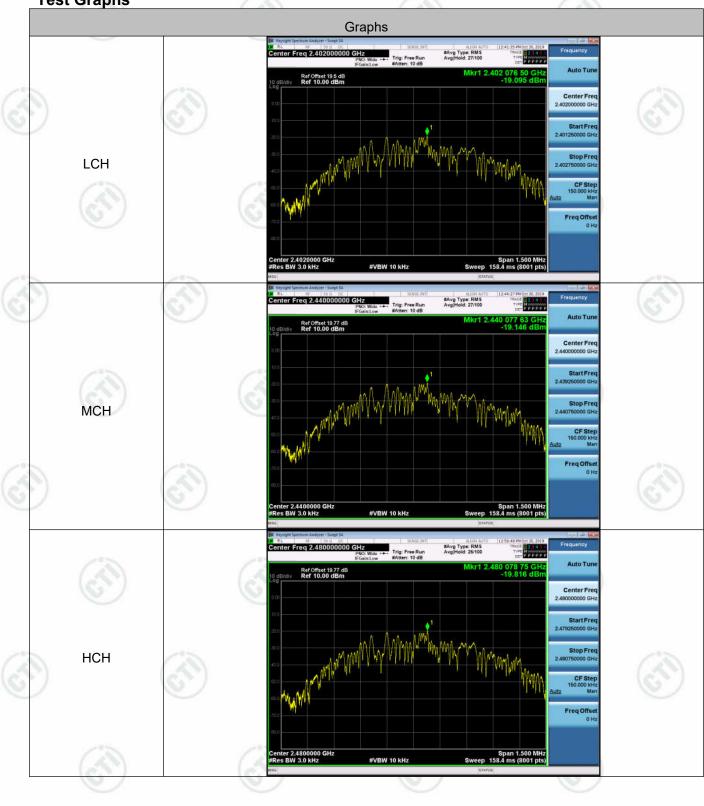
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.

Measure and record the result of power spectral density. in the test report.

Test Setup

Page 30 of 59

Res	ult Table							
	Mode		Channel		PSD [dE		- <u>-</u>	Verdict
	BLE		LCH MCH		-19.09 -19.14			PASS PASS
3	BLE	(3)	НСН	1	-19.14 -19.81	and 10 miles		PASS
9		S		S		S		G

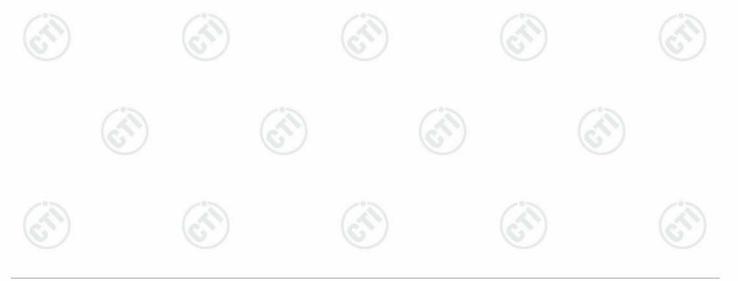

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Graphs

Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

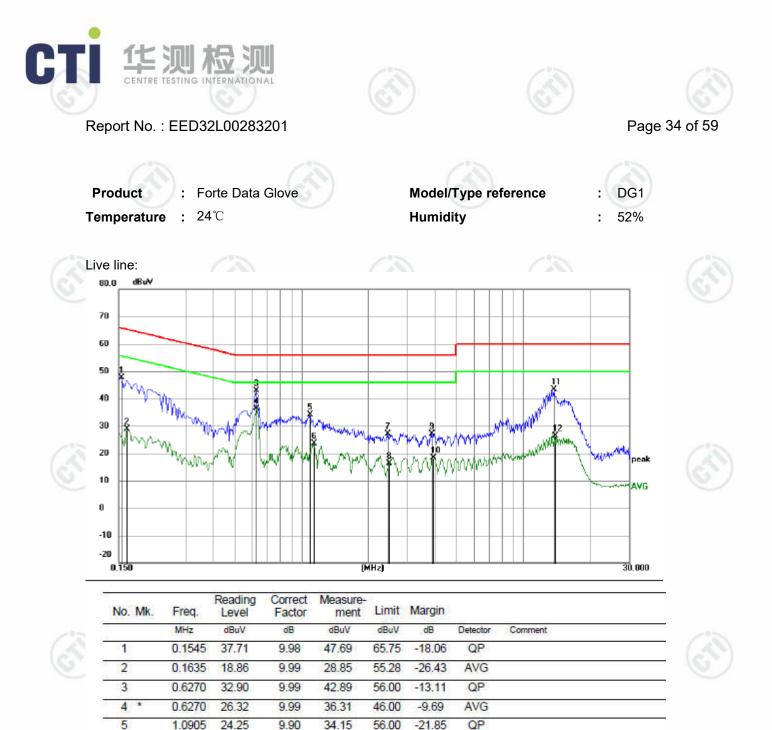

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.24dBi.

Page 33 of 59


Appendix G): AC Power Line Conducted Emission

 The mains terminal disturban The EUT was connected to Stabilization Network) which power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a s exceeded. The tabletop EUT was place reference plane. And for floor 	AC power source thro h provides a 50Ω/50µ hits of the EUT were ound reference plane d. A multiple socket of ingle LISN provided t ed upon a non-metalli	bugh a LISN 1 (Line uH + 5Ω linear impe connected to a sec in the same way as butlet strip was used he rating of the LISN	e Impedance edance. Th cond LISN s the LISN d to conne						
Stabilization Network) which power cables of all other un which was bonded to the gr for the unit being measured multiple power cables to a s exceeded. 3)The tabletop EUT was place	h provides a 50Ω/50μ hits of the EUT were ound reference plane d. A multiple socket of ingle LISN provided t ed upon a non-metalli	uH + 5Ω linear impe connected to a sec in the same way as outlet strip was used he rating of the LISM	edance. Th ond LISN s the LISN d to conne						
3)The tabletop EUT was place		c table 0.8m above							
horizontal ground reference									
EUT shall be 0.4 m from the	e vertical ground refer	ence plane. The ve	rtical grour						
1 was placed 0.8 m from the boundary of the unit under test and bonded to									
plane. This distance was be	etween the closest po	ints of the LISN 1 a	nd the EU						
	Limit (dBuV)								
Frequency range (MHz)	Quasi-peak	Average	-						
0.15-0.5	66 to 56*	56 to 46*	62						
0.5-5	56	46							
5-30	60	50							
MHz to 0.50 MHz.	13	10	∍ range 0.						
	 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonder 1 was placed 0.8 m from the ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables in conducted measurement. 	 4) The test was performed with a vertical ground referreference plane was bonded to the horizontal ground reference plane was bonded to the horizontal ground reference plane for LISNs mounted or plane. This distance was between the closest por All other units of the EUT and associated equipmer LISN 2. 5) In order to find the maximum emission, the relative of the interface cables must be changed a conducted measurement. Example Trequency range (MHz) Limit (d) Quasi-peak 0.15-0.5 66 to 56* 5-30 60 * The limit decreases linearly with the logarithm of the MHz to 0.50 MHz. 	 4) The test was performed with a vertical ground reference plane. The EUT shall be 0.4 m from the vertical ground reference plane. The vertice reference plane was bonded to the horizontal ground reference plane 1 was placed 0.8 m from the boundary of the unit under test and 1 ground reference plane for LISNs mounted on top of the ground plane. This distance was between the closest points of the LISN 1 a All other units of the EUT and associated equipment was at least 0.8 LISN 2. 5) In order to find the maximum emission, the relative positions of equip of the interface cables must be changed according to ANSI conducted measurement. Frequency range (MHz) Limit (dBµV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * The limit decreases linearly with the logarithm of the frequency in the 						

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

6	11 12	13.7625 13.8525	9.98 9.98	43.30 26.44	-16.70 -23.56		

46.00

56.00

46.00

56.00

46.00

-22.39

-28.94

-29.57

-28.79

-27.67

AVG

QP

AVG

QP

AVG

6

7

8

9

10

1.1355

2.4450

2.4855

3.8715

3.9120

13.71

17.23

6.60

17.38

8.50

9.90

9.83

9.83

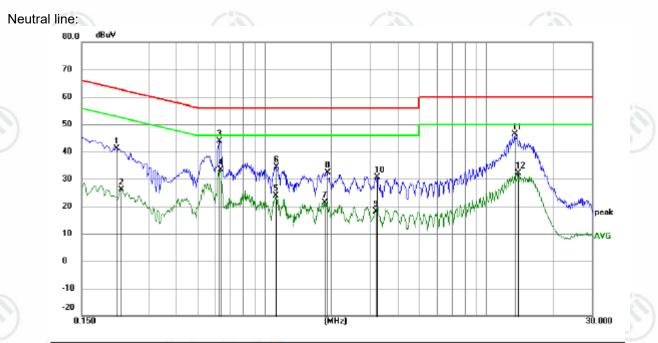
9.83

9.83

23.61

27.06

16.43


27.21

18.33

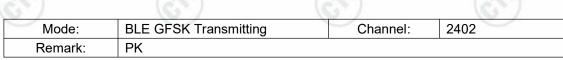
Page 35 of 59

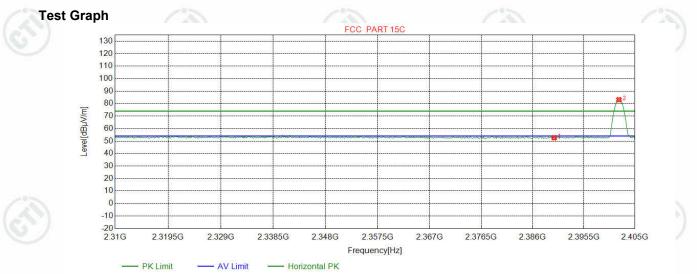
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2151	31.09	10.03	41.12	63.01	-21.89	QP	
2		0.2265	16.01	10.04	26.05	52.58	-26.53	AVG	
3	*	0.6270	34.00	9.99	43.99	56.00	-12.01	QP	
4		0.6315	23.46	9.97	33.43	46.00	-12.57	AVG	
5		1.1265	13.86	9.90	23.76	46.00	-22.24	AVG	
6		1.1310	24.60	9.90	34.50	56.00	-21.50	QP	
7		1.8735	11.43	9.84	21.27	46.00	-24.73	AVG	
8		1.9185	22.50	9.84	32.34	56.00	-23.66	QP	
9		3.1605	8.29	9.83	18.12	46.00	-27.88	AVG	
10		3.2235	20.75	9.83	30.58	56.00	-25.42	QP	
11		13.4520	36.39	9.97	46.36	60.00	-13.64	QP	
12		13.8525	22.12	9.98	32.10	50.00	-17.90	AVG	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)


(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
-		Peak	1MHz	3MHz	Peak	1
(°)	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	 Below 1GHz test procedu Test method Refer as KDB a. The EUT was placed of at a 3 meter semi-anece determine the position b. b. The EUT was set 3 me was mounted on the to c. The antenna height is was determine the maximum polarizations of the anten d. For each suspected em the antenna was tuned was turned from 0 degree. The test-receiver system Bandwidth with Maximum for the system bandwidth with Maximu	re as below: 558074 D01 v0 n the top of a ro hoic camber. Th of the highest ra ters away from p of a variable-h varied from one n value of the fi enna are set to hission, the EUT to heights from rees to 360 deg m was set to Pe	14, Section tating table table wat adiation. the interfer meter to for eld strength make the r was arran 1 meter to rees to find eak Detect	12.1 e 0.8 meter is rotated 3 ence-recei nna tower. our meters n. Both hor neasureme ged to its 4 meters a the maxin	rs above the g 360 degrees t ving antenna above the gro izontal and ve ent. worst case an and the rotata num reading.	, wh ouncertic
0	frequency to show com		easure any	emission:	s in the restric	
	frequency to show com bands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measurer Transmitting mode, and	pliance. Also m um analyzer plo channel re as below: re is the test site ber change forr 1 meter and tabl west channel , to ments are perfo d found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position	emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	s in the restric ower and mod Anechoic Ch .5 meter(Abc positioning for t is worse cas	amt ove
Limit:	frequency to show com bands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measurer Transmitting mode, and j. Repeat above procedu	pliance. Also m um analyzer plo channel re as below: re is the test site ber change forr 1 meter and tabl west channel , t ments are perfo d found the X av res until all freq	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highes rmed in X, tis position uencies me	emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restric ower and mod Anechoic Ch .5 meter(Abc positioning for t is worse cas as complete.	amt ove
Limit:	frequency to show com bands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measurer Transmitting mode, and	pliance. Also m um analyzer plo channel re as below: re is the test site ber change forr 1 meter and tabl west channel , to ments are perfo d found the X ax	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restric ower and mod Anechoic Ch .5 meter(Abc positioning for t is worse cas as complete. mark	amt ove
Limit:	frequency to show com bands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measurer Transmitting mode, and j. Repeat above procedu	pliance. Also m um analyzer plo channel re as below: re is the test site ber change forr 1 meter and tabl west channel , f ments are perfo d found the X av res until all freq Limit (dBµV/	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, dis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-pe	s in the restric ower and mod Anechoic Ch .5 meter(Abc positioning for t is worse cas as complete.	amt ove
Limit:	frequency to show combands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz	pliance. Also m um analyzer plo channel re as below: re is the test site ber change form 1 meter and tabl west channel , is ments are perfo d found the X av res until all frequent Limit (dBµV, 40.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe	s in the restric ower and mod Anechoic Ch .5 meter(Abc positioning for t is worse cas as complete. mark eak Value	amt ove
Limit:	frequency to show combands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between above to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	pliance. Also m um analyzer plo channel re as below: re is the test site ber change forr 1 meter and tabl west channel , f ments are perfo d found the X as res until all freq Limit (dBµV 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe Quasi-pe	s in the restric ower and mod Anechoic Ch .5 meter(Abd oositioning for t is worse cas as complete. mark eak Value eak Value	amt ove
Limit:	frequency to show combands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	pliance. Also m um analyzer plo channel re as below: re is the test site ber change forr 1 meter and tabl west channel , f ments are perfo d found the X as res until all freq Limit (dBµV/ 40.0 43.5	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, tis position uencies me (m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	s in the restric ower and mod Anechoic Ch .5 meter(Abc oositioning for t is worse cas as complete. mark eak Value eak Value eak Value	amb ove
Limit:	frequency to show combands. Save the spectr for lowest and highest of Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measurer Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	pliance. Also m um analyzer plo channel re as below: re is the test site ber change form 1 meter and tabl west channel , is ments are perford found the X aver res until all freque Limit (dBµV/ 40.0 43.5 46.0 54.0	easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me (m @3m)))	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Quasi-pe Averag	s in the restric ower and mod Anechoic Ch .5 meter(Abd oositioning for t is worse cas as complete. mark eak Value eak Value eak Value eak Value	amb ove

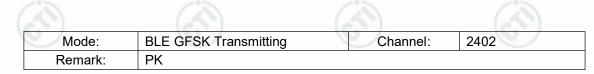


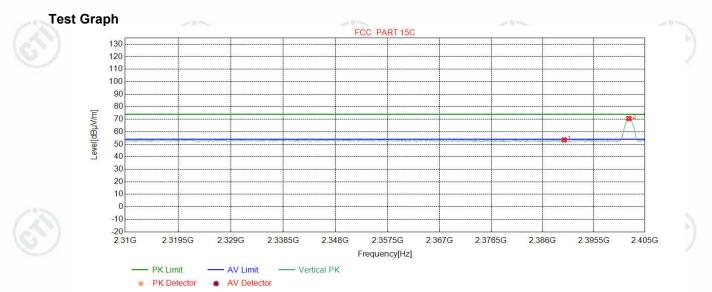
Page 37 of 59

Test plot as follows:

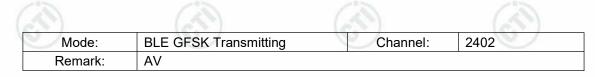
* AV Detector

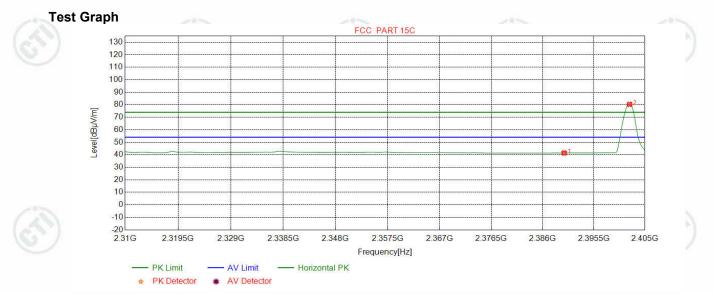
	1										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	
1	2390.0000	32.25	13.37	-42.44	49.42	52.60	74.00	21.40	Pass	Horizontal	
2	2402.0275	32.26	13.31	-42.43	79.94	83.08	74.00	-9.08	Pass	Horizontal	
2		6			(\mathcal{A})		(5))		(~ 1)	

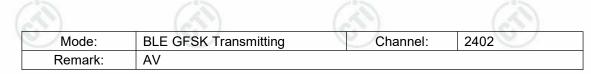


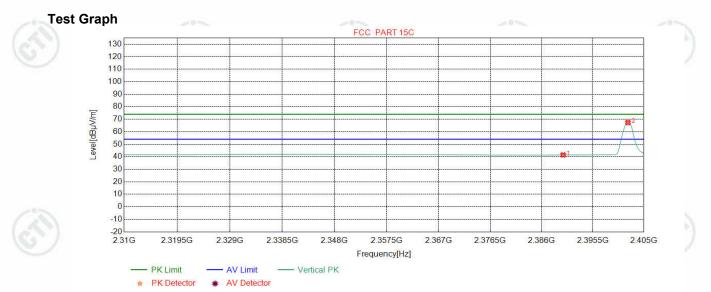


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.30	53.48	74.00	20.52	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	67.43	70.57	74.00	3.43	Pass	Vertical
1	() () () () () () () () () ()	1.1					128			1



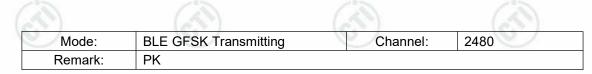


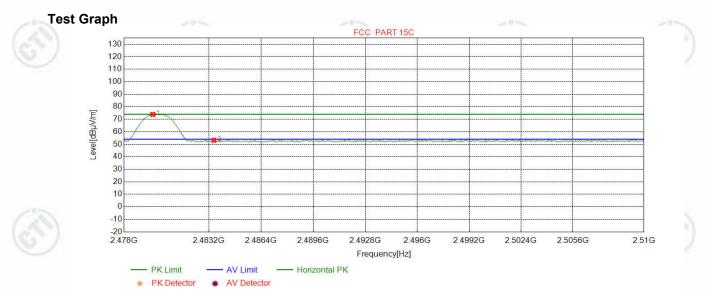




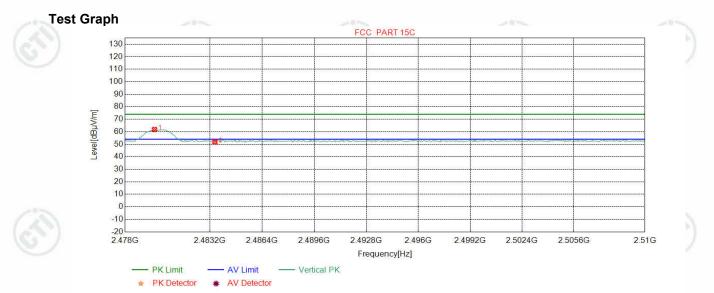
Susp	ected List						_			_	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Ren
1	2390.0000	32.25	13.37	-42.44	38.27	41.45	54.00	12.55	Pass	Horizontal	
2	2402.1464	32.26	13.31	-42.43	77.17	80.31	54.00	-26.31	Pass	Horizontal	Pe
G)	6			67)		3)		G	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.28	41.46	54.00	12.54	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	64.21	67.35	54.00	-13.35	Pass	Vertical
1	() () () () () () () () () ()	1.1					128			1

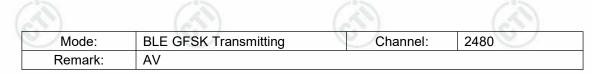


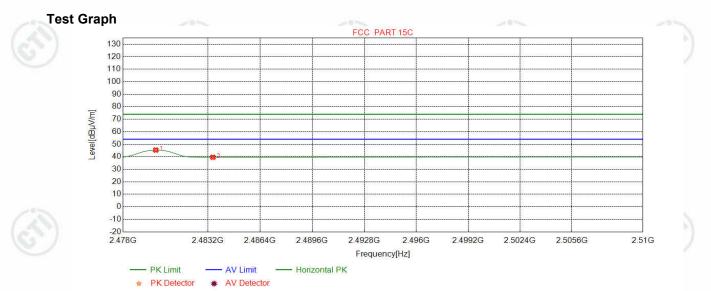


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7622	32.37	13.39	-42.39	70.48	73.85	74.00	0.15	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	49.81	53.17	74.00	20.83	Pass	Horizontal
12		1.4					12			

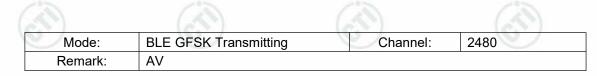


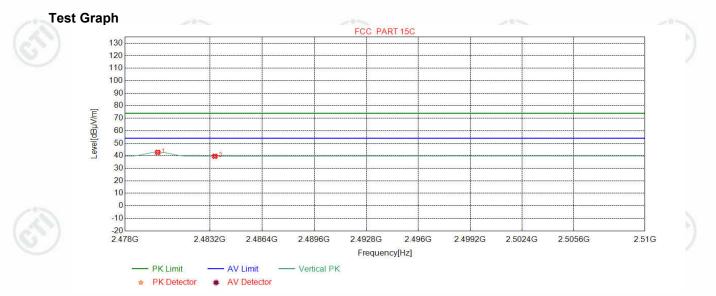
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.8023	32.37	13.39	-42.39	58.46	61.83	74.00	12.17	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	48.46	51.82	74.00	22.18	Pass	Vertical
1.2	V	1.4		•			128			120



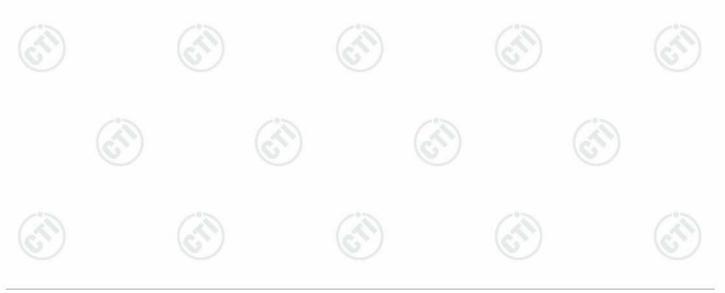


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	41.99	45.36	54.00	8.64	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.24	39.60	54.00	14.40	Pass	Horizontal
12	()	1.					100			120





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0025	32.37	13.39	-42.39	39.36	42.73	54.00	11.27	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.23	39.59	54.00	14.41	Pass	Vertical


Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
\sim	Above 1GHz	Peak	1MHz	10Hz	Average	
				•	·	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(2)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(62)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

j. Repeat above procedures until all frequencies measured was complete.

e: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

		DLE GF	SK Transm	nitting			Channel:		2402	
Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
43.9694	13.01	0.74	-32.11	53.79	35.43	40.00	4.57	Pass	Н	PK
132.0542	7.60	1.34	-32.01	57.11	34.04	43.50	9.46	Pass	Н	PK
156.0156	7.76	1.46	-31.99	61.29	38.52	43.50	4.98	Pass	Н	PK
299.9780	13.20	2.06	-31.85	51.42	34.83	46.00	11.17	Pass	Н	PK
467.9988	16.49	2.58	-31.87	52.53	39.73	46.00	6.27	Pass	Н	PK
852.0602	21.52	3.51	-31.74	38.33	31.62	46.00	14.38	Pass	Н	PK
40.3800	12.37	0.72	-32.11	55.17	36.15	40.00	3.85	Pass	V	PK
131.9572	7.60	1.34	-32.01	46.77	23.70	43.50	19.80	Pass	V	PK
179.9770	9.00	1.58	-31.99	50.89	29.48	43.50	14.02	Pass	V	PK
276.0166	12.72	1.98	-31.91	47.52	30.31	46.00	15.69	Pass	V	PK
467.9988	16.49	2.58	-31.87	44.98	32.18	46.00	13.82	Pass	V	PK
839.5460	21.37	3.50	-31.89	43.46	36.44	46.00	9.56	Pass	V	PK
	[MHz] 43.9694 132.0542 156.0156 299.9780 467.9988 852.0602 40.3800 131.9572 179.9770 276.0166 467.9988	Freq. [MHz]Factor [dB]43.969413.01132.05427.60156.01567.76299.978013.20467.998816.49852.060221.5240.380012.37131.95727.60179.97709.00276.016612.72467.998816.49	Freq. [MHz]Factor [dB]loss [dB]43.969413.010.74132.05427.601.34156.01567.761.46299.978013.202.06467.998816.492.58852.060221.523.5140.380012.370.72131.95727.601.34179.97709.001.58276.016612.721.98467.998816.492.58	Freq. [MHz]Factor [dB]loss [dB]gain [dB]43.969413.010.74-32.11132.05427.601.34-32.01156.01567.761.46-31.99299.978013.202.06-31.85467.998816.492.58-31.87852.060221.523.51-31.7440.380012.370.72-32.11131.95727.601.34-32.01179.97709.001.58-31.99276.016612.721.98-31.91467.998816.492.58-31.87	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dBµV]43.969413.010.74-32.1153.79132.05427.601.34-32.0157.11156.01567.761.46-31.9961.29299.978013.202.06-31.8551.42467.998816.492.58-31.8752.53852.060221.523.51-31.7438.3340.380012.370.72-32.1155.17131.95727.601.34-32.0146.77179.97709.001.58-31.9950.89276.016612.721.98-31.9147.52467.998816.492.58-31.8744.98	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dBµV]Level [dBµV/m]43.969413.010.74-32.1153.7935.43132.05427.601.34-32.0157.1134.04156.01567.761.46-31.9961.2938.52299.978013.202.06-31.8551.4234.83467.998816.492.58-31.8752.5339.73852.060221.523.51-31.7438.3331.6240.380012.370.72-32.1155.1736.15131.95727.601.34-32.0146.7723.70179.97709.001.58-31.9950.8929.48276.016612.721.98-31.9147.5230.31467.998816.492.58-31.8744.9832.18	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dBµV]Level [dBµV]Limit 	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dBµV]Level [dBµV]Limit [dBµV/m]Margin [dBµV/m]43.969413.010.74-32.1153.7935.4340.004.57132.05427.601.34-32.0157.1134.0443.509.46156.01567.761.46-31.9961.2938.5243.504.98299.978013.202.06-31.8551.4234.8346.0011.17467.998816.492.58-31.8752.5339.7346.006.27852.060221.523.51-31.7438.3331.6240.003.85131.95727.601.34-32.0146.7723.7043.5019.80179.97709.001.58-31.9950.8929.4843.5014.02276.016612.721.98-31.9147.5230.3146.0015.69467.998816.492.58-31.8744.9832.1846.0013.82	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dBµV/m]Result43.969413.010.74-32.1153.7935.4340.004.57Pass132.05427.601.34-32.0157.1134.0443.509.46Pass156.01567.761.46-31.9961.2938.5243.504.98Pass299.978013.202.06-31.8551.4234.8346.0011.17Pass467.998816.492.58-31.8752.5339.7346.006.27Pass40.380012.370.72-32.1155.1736.1540.003.85Pass131.95727.601.34-32.0146.7723.7043.5019.80Pass179.97709.001.58-31.9147.5230.3146.0015.69Pass276.016612.721.98-31.9147.5230.3146.0013.82Pass276.016612.721.98-31.8744.9832.1846.0013.82Pass	Freq. [MHz]Factor [dB]loss [dB]gain [dB]Reading [dBµV]Level [dBµV/m]Limit [dBµV/m]Margin [dB]ResultPolarity43.969413.010.74-32.1153.7935.4340.004.57PassH132.05427.601.34-32.0157.1134.0443.509.46PassH156.01567.761.46-31.9961.2938.5243.504.98PassH299.978013.202.06-31.8551.4234.8346.0011.17PassH467.998816.492.58-31.8752.5339.7346.006.27PassH40.380012.370.72-32.1155.1736.1540.003.85PassV131.95727.601.34-32.0146.7723.7043.5019.80PassV131.95727.601.34-32.0147.5230.3146.0015.69PassV276.016612.721.98-31.9147.5230.3146.0013.82PassV467.998816.492.58-31.8744.9832.1846.0013.82PassV

Mode	•		BLE GF	SK Transn	nitting	_		Channel:	_	2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	43.3873	12.91	0.74	-32.11	54.80	36.34	40.00	3.66	Pass	Н	PK
2	132.0542	7.60	1.34	-32.01	58.35	35.28	43.50	8.22	Pass	Н	PK
3	156.0156	7.76	1.46	-31.99	62.55	39.78	43.50	3.72	Pass	Н	PK
4	299.9780	13.20	2.06	-31.85	52.17	35.58	46.00	10.42	Pass	Н	PK
5	467.9988	16.49	2.58	-31.87	53.25	40.45	46.00	5.55	Pass	Н	PK
6	876.1186	21.81	3.55	-31.69	38.47	32.14	46.00	13.86	Pass	Н	PK
7	37.5668	11.52	0.69	-32.12	56.11	36.20	40.00	3.80	Pass	V	PK
8	132.0542	7.60	1.34	-32.01	48.75	25.68	43.50	17.82	Pass	V	PK
9	179.9770	9.00	1.58	-31.99	53.38	31.97	43.50	11.53	Pass	V	PK
10	276.0166	12.72	1.98	-31.91	50.68	33.47	46.00	12.53	Pass	V	PK
11	467.9988	16.49	2.58	-31.87	47.93	35.13	46.00	10.87	Pass	V	PK
12	839.1579	21.37	3.50	-31.90	46.32	39.29	46.00	6.71	Pass	V	PK
6		6	\sim		63		1.	<u>(</u>		6	

Page 47 of 59

						- 24						
Mode	Mode:			BLE GFSK Transmitting					Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	42.9993	12.84	0.74	-32.12	54.90	36.36	40.00	3.64	Pass	Н	PK	
2	132.0542	7.60	1.34	-32.01	58.43	35.36	43.50	8.14	Pass	Н	PK	
3	156.0156	7.76	1.46	-31.99	62.18	39.41	43.50	4.09	Pass	Н	PK	
4	299.9780	13.20	2.06	-31.85	52.04	35.45	46.00	10.55	Pass	Н	PK	
5	467.9988	16.49	2.58	-31.87	53.41	40.61	46.00	5.39	Pass	Н	PK	
6	876.1186	21.81	3.55	-31.69	38.12	31.79	46.00	14.21	Pass	Н	PK	
7	42.2232	12.70	0.73	-32.11	55.29	36.61	40.00	3.39	Pass	V	PK	
8	132.0542	7.60	1.34	-32.01	49.71	26.64	43.50	16.86	Pass	V	PK	
9	179.9770	9.00	1.58	-31.99	53.78	32.37	43.50	11.13	Pass	V	PK	
10	276.0166	12.72	1.98	-31.91	50.55	33.34	46.00	12.66	Pass	V	PK	
11	467.9988	16.49	2.58	-31.87	48.29	35.49	46.00	10.51	Pass	V	PK	
12	837.6058	21.35	3.49	-31.91	46.81	39.74	46.00	6.26	Pass	V	PK	
e			I I I I I I I I I I I I I I I I I I I		6			2				

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 48 of 59

-	Transmitte	r Emiss	sion ab	ove 1G	Hz	1	1°22			(°)		
Mode	Mode:			BLE GFSK Transmitting				Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1991.0991	31.64	3.46	-42.61	53.06	45.55	74.00	28.45	Pass	н	PK	
2	2273.9274	32.08	3.79	-42.48	56.53	49.92	74.00	24.08	Pass	Н	PK	
3	4804.0000	34.50	4.55	-40.66	54.59	52.98	74.00	21.02	Pass	Н	PK	
4	7206.0000	36.31	5.81	-41.02	53.04	54.14	74.00	19.86	Pass	Н	PK	
5	9608.0000	37.64	6.63	-40.76	47.36	50.87	74.00	23.13	Pass	н	PK	
6	12010.0000	39.31	7.60	-41.21	46.29	51.99	74.00	22.01	Pass	Н	PK	
7	2661.7662	32.66	4.10	-42.31	52.53	46.98	74.00	27.02	Pass	V	PK	
8	3991.0661	33.79	4.33	-40.79	51.91	49.24	74.00	24.76	Pass	V	PK	
9	4804.0000	34.50	4.55	-40.66	53.39	51.78	74.00	22.22	Pass	V	PK	
10	7206.0000	36.31	5.81	-41.02	46.93	48.03	74.00	25.97	Pass	V	PK	
11	9608.0000	37.64	6.63	-40.76	45.72	49.23	74.00	24.77	Pass	V	PK	
12	12010.0000	39.31	7.60	-41.21	46.31	52.01	74.00	21.99	Pass	V	PK	
								97				

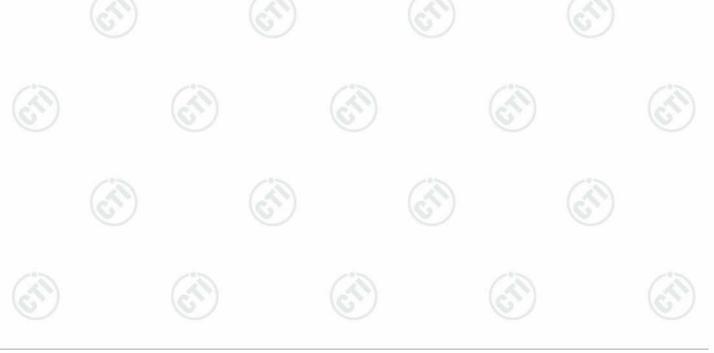
Mode:			BLE GF	SK Transm	nitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1417.2417	28.32	2.92	-42.68	54.02	42.58	74.00	31.42	Pass	Н	PK
2	4057.0705	33.88	4.33	-40.80	50.53	47.94	74.00	26.06	Pass	Н	PK
3	5006.1337	34.51	4.83	-40.51	51.13	49.96	74.00	24.04	Pass	Н	PK
4	7320.0000	36.42	5.85	-40.92	46.17	47.52	74.00	26.48	Pass	Н	PK
5	9760.0000	37.70	6.73	-40.62	46.88	50.69	74.00	23.31	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.17	45.04	50.96	74.00	23.04	Pass	Н	PK
7	1906.6907	31.08	3.42	-42.65	52.54	44.39	74.00	29.61	Pass	V	PK
8	3997.0665	33.80	4.33	-40.79	51.70	49.04	74.00	24.96	Pass	V	PK
9	4880.0000	34.50	4.80	-40.60	48.60	47.30	74.00	26.70	Pass	V	PK
10	7320.0000	36.42	5.85	-40.92	46.59	47.94	74.00	26.06	Pass	V	PK
11	9760.0000	37.70	6.73	-40.62	46.82	50.63	74.00	23.37	Pass	V	PK
12	12200.0000	39.42	7.67	-41.17	45.49	51.41	74.00	22.59	Pass	V	PK

Page 49 of 59

			1			- 22	100 miles		-20-			
Mode	Mode:			BLE GFSK Transmitting					Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1912.4912	31.12	3.42	-42.65	51.41	43.30	74.00	30.70	Pass	Н	PK	
2	3458.0305	33.38	4.44	-41.84	50.25	46.23	74.00	27.77	Pass	Н	PK	
3	5006.1337	34.51	4.83	-40.51	51.08	49.91	74.00	24.09	Pass	Н	PK	
4	7440.0000	36.54	5.85	-40.82	47.00	48.57	74.00	25.43	Pass	Н	PK	
5	9920.0000	37.77	6.79	-40.48	46.33	50.41	74.00	23.59	Pass	Н	PK	
6	11003.5336	38.60	7.62	-41.11	47.94	53.05	74.00	20.95	Pass	Н	PK	
7	2227.3227	32.02	3.73	-42.52	53.07	46.30	74.00	27.70	Pass	V	PK	
8	3316.0211	33.33	4.56	-41.93	50.08	46.04	74.00	27.96	Pass	V	PK	
9	4997.1331	34.50	4.82	-40.50	51.36	50.18	74.00	23.82	Pass	V	PK	
10	7440.0000	36.54	5.85	-40.82	47.88	49.45	74.00	24.55	Pass	V	PK	
11	9920.0000	37.77	6.79	-40.48	46.50	50.58	74.00	23.42	Pass	V	PK	
12	12400.0000	39.54	7.86	-41.12	46.83	53.11	74.00	20.89	Pass	V	PK	
					0	1				0	1	

Note:

1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.


2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

