

FCC Test Report (BT-EDR)

Report No.: RFBHKO-WTW-P21090237-4

FCC ID: 2AUS4-NFD1

Test Model: NF-D1

Received Date: 2021/9/8

Test Date: 2021/10/25 ~ 2021/11/1

Issued Date: 2021/11/15

Applicant: Neatframe AS

Address: Martin Linges vei 25 Fornebu 1364 Norway

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

FCC Registration /

Designation Number: 198487 / TW2021

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: RFBHKO-WTW-P21090237-4 Page No. 1 / 48 Report Format Version: 6.1.1

Table of Contents

Release Control Record4						
1	Certificate of Conformity	5				
2	Summary of Test Results	6				
2.1 2.2	Measurement Uncertainty					
3	General Information	7				
3.1 3.2 3.2.1 3.3 3.4 3.4.1 3.5	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Duty Cycle of Test Signal Description of Support Units Configuration of System under Test General Description of Applied Standards and References	8 9 10 .11 12 13				
4	Test Types and Results	14				
4.1 4.1.1 4.1.2 4.1.3	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures	14 15 16				
4.1.4 4.1.5 4.1.6	Deviation from Test Standard Test Setup EUT Operating Conditions	17				
4.1.7 4.2	Test Results	19 27				
4.2.1 4.2.2 4.2.3	Limits of Conducted Emission Measurement Test Instruments Test Procedures	27				
4.2.4 4.2.5	Deviation From Test Standard	28				
4.2.6 4.2.7 4.3	EUT Operating Condition Test Results Number of Hopping Frequency Used	29				
4.3.1 4.3.2 4.3.3	Limits of Hopping Frequency Used Measurement	31				
4.3.4 4.3.5	Test Procedure Deviation from Test Standard	31 31				
4.3.6 4.4 4.4.1 4.4.2	Test Results	33 33				
4.4.3 4.4.4	Test Setup Test Instruments Test Procedures	33 33				
4.4.5 4.4.6 4.5	Deviation from Test Standard	34 36				
4.5.1 4.5.2 4.5.3	Limits of Channel Bandwidth Measurement	36 36				
4.5.4 4.5.5 4.5.6	Test Procedure Deviation from Test Standard EUT Operating Condition	36 36				
4.5.7	Test Results	37				

4.6	Hopping Channel Separation	. 38				
4.6.1	Limits of Hopping Channel Separation Measurement	. 38				
4.6.2	Test Setup	. 38				
4.6.3	Test Instruments	. 38				
4.6.4	Test Procedure	. 38				
4.6.5	Deviation from Test Standard	. 38				
4.6.6	Test Results					
4.7	Maximum Output Power Measurement					
4.7.1	Limits of Maximum Output Power Measurement					
4.7.2	Test Setup					
4.7.3	Test Instruments					
4.7.4	Test Procedure					
4.7.5	Deviation from Test Standard					
4.7.6	EUT Operating Condition					
4.7.7	Test Results					
4.8	Conducted Out of Band Emission Measurement					
4.8.1	Limits of Conducted Out of Band Emission Measurement					
4.8.2	Test Instruments					
4.8.3	Test Procedure					
4.8.4	Deviation from Test Standard					
4.8.5	EUT Operating Condition					
4.8.6	Test Results	. 42				
5	Pictures of Test Arrangements	45				
Anne	x A - Bandedge Measurement	46				
Appe	Appendix – Information of the Testing Laboratories48					

Release Control Record

Issue No.	Description	Date Issued
RFBHKO-WTW-P21090237-4	Original release.	2021/11/15

1 Certificate of Conformity

Product: Neat Bar Pro

Brand: neat.

Test Model: NF-D1

Sample Status: Engineering sample

Applicant: Neatframe AS

Test Date: 2021/10/25 ~ 2021/11/1

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :	Hunie	Chang	, Date:	2021/11/15	
	Annia Chana / C	Coming Consciolint			

Annie Chang / Senior Specialist

Approved by: , Date: 2021/11/15

Jeremy Lin / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)							
FCC Clause	Test Item	Result	Remarks					
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -4.16dB at 0.46641MHz.					
15.247(a)(1) (iii)	I NUMBEL OF BODDING FREQUENCY USED		Meet the requirement of limit.					
15.247(a)(1) (iii)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.					
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	Pass	Meet the requirement of limit.					
15.247(b)	Maximum Peak Output Power	Pass	Meet the requirement of limit.					
15.205 & 209 & 15.247(d)	209 & Radiated Emissions & Band Edge Measurement		Meet the requirement of limit. Minimum passing margin is -1.32dB at 890.99MHz.					
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.					
15.203	Antenna Requirement	Pass	Antenna connector is ipex not a standard connector.					

NOTE:

- 1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 2. If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.
- 3. For 2.4GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	3.00 dB
Conducted Emissions	9kHz ~ 40GHz	2.63 dB
Padiated Emissions up to 1 CHz	9kHz ~ 30MHz	2.38 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.70 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.21 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Neat Bar Pro		
Brand	neat.		
Test Model	NF-D1		
Status of EUT	Engineering sample		
Power Supply Rating	AC I/P: 100-240V, 50/60Hz, 1.2A		
Modulation Type	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology	FHSS		
Transfer Rate	Up to 3Mbps		
Operating Frequency	2402MHz ~ 2480MHz		
Number of Channel	79		
Output Power	3.027mW		
Antenna Type	Refer to note as below		
Antenna Connector	Refer to note as below		
Accessory Device	Neat pad <brand: a1c="" model:="" neat.,=""></brand:>		
	Shielded HDMI cable (2.0m)		
Data Cable Supplied	Shielded LAN cable (3.0m)		
	Non-shielded AC 2-Pin cable (3.0m)		

Note:

1. WLAN 2.4GHz & WLAN 5GHz & Bluetooth & mmWave technologies cannot transmit at same time.

2. The following antennas were provided to the EUT.

Ant. 1 Gain (dBi)	Ant. 2 Gain (dBi)	Antenna Type	Antenna Connector	Remark
3.64	3.01	PCB	ipex	Ant. 1 and Ant. 2 diversity

- 3. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.
- 4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

79 channels are provided for BT-EDR mode:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applica	able To		Description
Mode	RE≥1G	RE<1G	PLC	APCM	Description
-	V	V	V	V	-

Where **RE≥1G:** Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

	EUT Configure Mode	Available Channel		Tested Channel Modulation Technology		Packet Type
Ī	-	0 to 78	0	FHSS	GFSK	DH5

Power Line Conducted Emission Test:

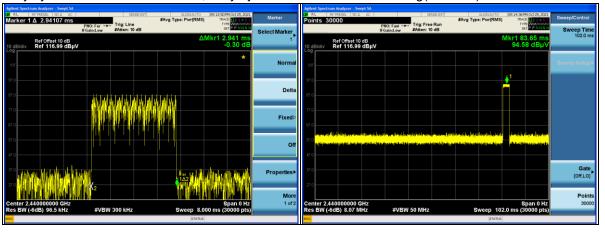
Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel Modulation Technolog		Modulation Type	Packet Type
-	0 to 78	0	FHSS	GFSK	DH5

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.


EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

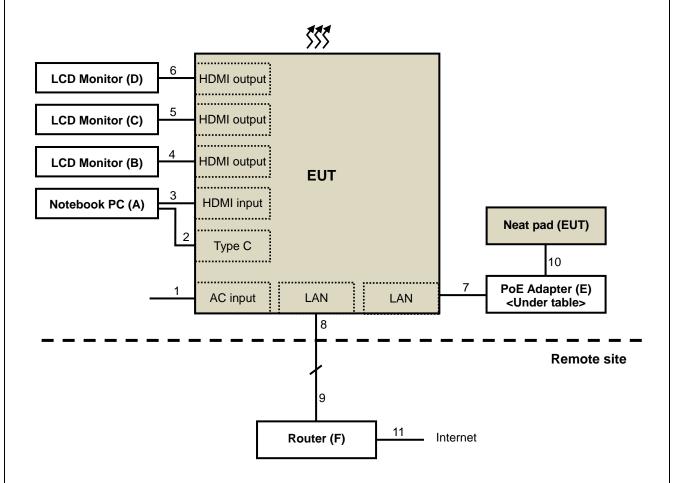
Test Condition:

Applicable To Environmental Conditions		Input Power	Tested By	
RE≥1G	22deg. C, 58%RH	120Vac, 60Hz	Jed Wu	
RE<1G	25deg. C, 72%RH	120Vac, 60Hz	Ian Chang	
PLC	25deg. C, 75%RH	120Vac, 60Hz	lan Chang	
APCM	25deg. C, 76%RH	120Vac, 60Hz	Pirar Hsieh	

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is < 98%, Duty cycle correction factor shall be considered. Duty cycle = 2.941/100 = 0.02941, Duty cycle correction factor = $20*\log(0.02941) = -30.6$

3.4 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks	
A.	Notebook PC	DELL	Latitude 5401	Latitude 5401 7FJL3X2 N/A		Provided by Lab	
B.	LCD Monitor	ASUS	VG289	VG289 N/A N/A		Supplied by applicant	
C.	LCD Monitor	ASUS	VG289	N/A	N/A	Supplied by applicant	
D.	LCD Monitor	ASUS	VG289	N/A	'A N/A Supplie		
E.	POE Adapter	PHIHONG	POE16R-1AFG	N/A	N/A	Supplied by applicant	
F.	Router	TOTO Link	N300RB	N/A	N/A	Supplied by applicant	

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/ No)	Cores (Qty.)	Remarks
1.	AC cable	1	3	N	0	Supplied by applicant
2.	USB Type C cable	1	1.7	Υ	0	Supplied by applicant
3.	HDMI cable	1	2	Υ	0	Supplied by applicant
4.	HDMI cable	1	1.5	Υ	0	Supplied by applicant
5.	HDMI cable	1	1.5	Υ	0	Supplied by applicant
6.	HDMI cable	1	1.5	Υ	0	Supplied by applicant
7.	LAN cable	1	3	Υ	0	Supplied by applicant
8.	LAN cable	1	3	Υ	0	Supplied by applicant
9.	LAN cable	1	10	Υ	0	Provided by Lab (RJ45, Cat.5e)
10.	LAN cable	1	1	N	0	Provided by Lab (RJ45, Cat.5e)
11.	LAN cable	1	1	N	0	Provided by Lab (RJ45, Cat.5e)

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

Report No.: RFBHKO-WTW-P21090237-4 Page No. 13 / 48 Report Format Version: 6.1.1

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer Model no.		Serial No.	Calibrated Date	Calibrated Until
Test Receiver Agilent	N9038A	MY51210129	2021/3/12	2022/3/11
Software BVADT	ADT_Radiated_V8.7.08	NA	NA	NA
Software BVADT	ADT_RF Test Software V6.6.5.4	NA	NA	NA
Auto Control System(Antenna				
Tower, Table, Controller) ADT	SC100+AT100+TT100	0306	NA	NA
Pre_Amplifier EMCI	EMC001340	980269	2021/6/29	2022/6/28
LOOP ANTENNA EMCI	LPA600	270	2021/9/2	2023/9/1
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2021/7/13	2022/7/12
Pre_Amplifier HP	8447D	2432A03504	2021/2/18	2022/2/17
Bi-log Broadband Antenna Schwarzbeck	VULB9168	139	2020/11/6	2021/11/5
Attenuator Mini-Circuits	UNAT-5+	PAD-CH6-01	2021/7/13	2022/7/12
RF Coaxial Cable Pacific	8D-FB	Cable-CH6-02	2021/7/13	2022/7/12
Antenna(Horn) EMCO	3115	00028257	2020/11/22	2021/11/21
Test Receiver Agilent	N9038A	MY51210129	2021/3/12	2022/3/11
Pre-amplifier HP	8449B	3008A01201	2021/2/19	2022/2/18
RF Coaxial Cable NEAT BAR PROER SUHNER	SF-102	Cable-CH6-01	2021/7/8	2022/7/7
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	2021/5/28	2022/5/27
Fix tool for Boresight	BAF-01	5	NA	NA
Pre_Amplifier MITEQ	AMF-6F-260400-33-8P	892164	2021/2/19	2022/2/18
Antenna(Horn) Schwarzbeck	BBHA-9170	BBHA9170190	2020/11/22	2021/11/21
Spectrum Analyzer R&S	FSV40	101544	2021/5/24	2022/5/23
RF Coaxial Cable WOKEN	WC01		2021/7/8	2022/7/7
RF Coaxial Cable Rosnol	K1K50-UP0279-K1K50- 3000	Cable-CH10(3m)-04	2021/7/8	2022/7/7
Highpass filter SUHNER	11SH10-7000/T18000- O/OP	SN 4	2021/5/28	2022/5/27

- **NOTE:** 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
 - 3. The test was performed in LK 966 chamber 1.
 - 4. Tested Date: 2021/10/25 ~ 2021/11/1

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode

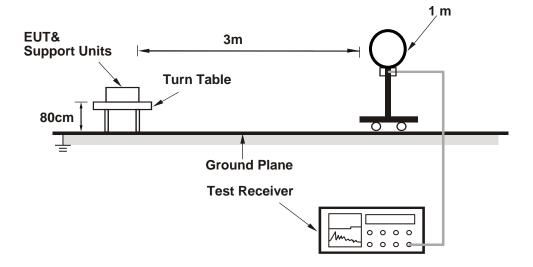
Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

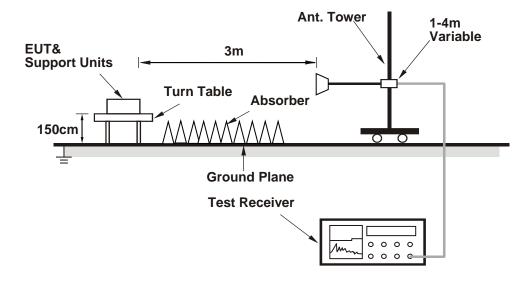
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection at frequency above 1GHz. For fundamental and harmonic signal measurement, according to ANSI C63.10 section 7.5, the average value = peak value + duty cycle correction factor. The duty cycle correction factor refer to Chapter 3.3 of this report.
- 3. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4	Deviation	from	Test	Standard

No deviation.

4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Video camera of EUT captured video image, then sent messages to ext. monitors.
- c. Notebook sent messages to EUT.
- d. Neat pad sent messages to EUT.
- e. EUT sent messages to ext. monitors.
- f. The necessary accessories enable the system in full functions.

4.1.7 Test Results

ABOVE 1GHz DATA

RF Mode	TX BT_GFSK	Channel	CH 0: 2402 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	51.61 PK	74.00	-22.39	2.45 H	87	53.89	-2.28	
2	2390.00	40.30 AV	54.00	-13.70	2.45 H	87	42.58	-2.28	
3	*2402.00	97.76 PK			2.45 H	87	99.98	-2.22	
4	*2402.00	67.16 AV			2.45 H	87	69.38	-2.22	
5	4804.00	44.71 PK	74.00	-29.29	1.38 H	291	39.05	5.66	
6	4804.00	14.11 AV	54.00	-39.89	1.38 H	291	8.45	5.66	
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	52.27 PK	74.00	-21.73	1.34 V	176	54.55	-2.28	
2	0000 00								
	2390.00	40.41 AV	54.00	-13.59	1.34 V	176	42.69	-2.28	
3	*2402.00	40.41 AV 97.96 PK	54.00	-13.59	1.34 V 1.34 V	176 176	42.69 100.18	-2.28 -2.22	
3			54.00	-13.59					
<u> </u>	*2402.00	97.96 PK	74.00	-13.59 -28.36	1.34 V	176	100.18	-2.22	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(2.941 ms / 100 ms) = -30.6 dB

 Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_GFSK	Channel	CH 39: 2441 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
requeitcy ivalige	10112 ~ 230112	Detector i unction	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2441.00	98.13 PK			2.40 H	86	100.27	-2.14	
2	*2441.00	67.53 AV			2.40 H	86	69.67	-2.14	
3	4882.00	46.36 PK	74.00	-27.64	1.42 H	288	40.67	5.69	
4	4882.00	15.76 AV	54.00	-38.24	1.42 H	288	10.07	5.69	
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m			
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2441.00	98.26 PK			1.32 V	178	100.40	-2.14	
2	*2441.00	67.66 AV			1.32 V	178	69.80	-2.14	

4882.00

4882.00

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-26.96

-37.56

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.96 V

1.96 V

273

273

41.35

10.75

5.69

5.69

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

74.00

54.00

5. " * ": Fundamental frequency.

47.04 PK

16.44 AV

6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(2.941 ms / 100 ms) = -30.6 dB

Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_GFSK	Channel	CH 78: 2480 MHz
Fraguency Bongo	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Range	1GHZ ~ 25GHZ	Detector Function	Average (AV)

		Anter	na Polarity	& Test Dist	ance : Horiz	zontal at 3 n	n	
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	98.49 PK			1.08 H	113	100.45	-1.96
2	*2480.00	67.89 AV			1.08 H	113	69.85	-1.96
3	2483.50	50.86 PK	74.00	-23.14	1.08 H	113	52.80	-1.94
4	2483.50	20.26 AV	54.00	-33.74	1.08 H	113	22.20	-1.94
5	4960.00	46.62 PK	74.00	-27.38	1.45 H	286	40.76	5.86
6	4960.00	16.02 AV	54.00	-37.98	1.45 H	286	10.16	5.86
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	99.25 PK			2.34 V	68	101.21	-1.96
2								
_	*2480.00	68.65 AV			2.34 V	68	70.61	-1.96
3	*2480.00 2483.50	68.65 AV 51.58 PK	74.00	-22.42	2.34 V 2.34 V	68 68	70.61 53.52	-1.96 -1.94
			74.00 54.00	-22.42 -33.02				-
3	2483.50	51.58 PK			2.34 V	68	53.52	-1.94

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(2.941 ms / 100 ms) = -30.6 dB

 Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_8DPSK	Channel	CH 0: 2402 MHz
Fraguency Bongs	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Range	1GHZ ~ 25GHZ	Detector Function	Average (AV)

		Anter	na Polarity	& Test Dist	ance : Horiz	zontal at 3 n	n	
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	51.16 PK	74.00	-22.84	2.45 H	85	53.44	-2.28
2	2390.00	40.10 AV	54.00	-13.90	2.45 H	85	42.38	-2.28
3	*2402.00	95.76 PK			2.45 H	85	97.98	-2.22
4	*2402.00	65.16 AV			2.45 H	85	67.38	-2.22
5	4804.00	46.22 PK	74.00	-27.78	1.36 H	289	40.56	5.66
6	4804.00	15.62 AV	54.00	-38.38	1.36 H	289	9.96	5.66
		Ante	enna Polarit	y & Test Dis	stance : Ver	tical at 3 m		
	Frequency	Emission	Limit	Morain	Antenna	Table	Raw	Correction
No	(MHz)	Level (dBuV/m)	(dBuV/m)	Margin (dB)	Height (m)	Angle (Degree)	Value (dBuV)	Factor (dB/m)
1		Levei		_		_		
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	(MHz) 2390.00	(dBuV/m) 52.27 PK	(dBuV/m) 74.00	(dB) -21.73	(m) 1.35 V	(Degree) 176	(dBuV) 54.55	(dB/m) -2.28
1 2	(MHz) 2390.00 2390.00	(dBuV/m) 52.27 PK 41.11 AV	(dBuV/m) 74.00	(dB) -21.73	(m) 1.35 V 1.35 V	(Degree) 176 176	(dBuV) 54.55 43.39	(dB/m) -2.28 -2.28
1 2 3	(MHz) 2390.00 2390.00 *2402.00	(dBuV/m) 52.27 PK 41.11 AV 97.04 PK	(dBuV/m) 74.00	(dB) -21.73	(m) 1.35 V 1.35 V 1.35 V	(Degree) 176 176 176	(dBuV) 54.55 43.39 99.26	(dB/m) -2.28 -2.28 -2.22

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(2.941 ms / 100 ms) = -30.6 dB

 Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_8DPSK	Channel	CH 39: 2441 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK)
requeitcy ivalige	10112 ~ 230112	Detector i unction	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2441.00	96.05 PK			2.39 H	86	98.19	-2.14		
2	*2441.00	65.45 AV			2.39 H	86	67.59	-2.14		
3	4882.00	46.27 PK	74.00	-27.73	1.37 H	287	40.58	5.69		
4	4882.00	15.67 AV	54.00	-38.33	1.37 H	287	9.98	5.69		
		Ante	enna Polarit	y & Test Di	stance : Ver	tical at 3 m				
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2441.00	97.38 PK			1.32 V	179	99.52	-2.14		

*2441.00

4882.00

4882.00

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-27.03

-37.63

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.32 V

2.08 V

2.08 V

179

269

269

68.92

41.28

10.68

-2.14

5.69

5.69

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.

74.00

54.00

5. " * ": Fundamental frequency.

66.78 AV

46.97 PK

16.37 AV

6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(2.941 ms / 100 ms) = -30.6 dB

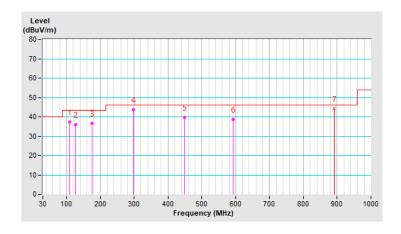
Please refer to the plotted duty (see section 3.3)

RF Mode	TX BT_8DPSK	Channel	CH 78: 2480 MHz
Fraguency Bongs	1GHz ~ 25GHz	Detector Function	Peak (PK)
Frequency Range	1GHZ ~ 25GHZ	Detector Function	Average (AV)

		Anter	na Polarity	& Test Dist	ance : Horiz	zontal at 3 n	n	
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	95.85 PK			1.08 H	111	97.81	-1.96
2	*2480.00	65.25 AV			1.08 H	111	67.21	-1.96
3	2483.50	51.33 PK	74.00	-22.67	1.08 H	111	53.27	-1.94
4	2483.50	20.73 AV	54.00	-33.27	1.08 H	111	22.67	-1.94
5	4960.00	46.53 PK	74.00	-27.47	1.45 H	296	40.67	5.86
6	4960.00	15.93 AV	54.00	-38.07	1.45 H	296	10.07	5.86
		Ante	enna Polarit	y & Test Dis	stance : Ver	tical at 3 m		
No	Frequency (MHz)	Emission Level	Limit	Margin	Antenna	Table	Raw	Correction
	(IVIITIZ)	(dBuV/m)	(dBuV/m)	(dB)	Height (m)	Angle (Degree)	Value (dBuV)	Factor (dB/m)
1	*2480.00		(dBuV/m)	(dB)		_		
1 2	` '	(dBuV/m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)
_	*2480.00	(dBuV/m) 96.31 PK	74.00	(dB) -21.81	(m) 2.36 V	(Degree)	(dBuV) 98.27	(dB/m) -1.96
2	*2480.00 *2480.00	(dBuV/m) 96.31 PK 65.71 AV	, ,	. ,	(m) 2.36 V 2.36 V	(Degree) 65 65	(dBuV) 98.27 67.68	(dB/m) -1.96 -1.96
3	*2480.00 *2480.00 2483.50	(dBuV/m) 96.31 PK 65.71 AV 52.19 PK	74.00	-21.81	(m) 2.36 V 2.36 V 2.36 V	(Degree) 65 65 65	(dBuV) 98.27 67.68 54.13	(dB/m) -1.96 -1.96 -1.94

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average value = Peak value + 20 log(Duty cycle) Where the Duty cycle correction factor is calculated from following formula: 20 log(Duty cycle) = 20 log(2.941 ms / 100 ms) = -30.6 dB

 Please refer to the plotted duty (see section 3.3)

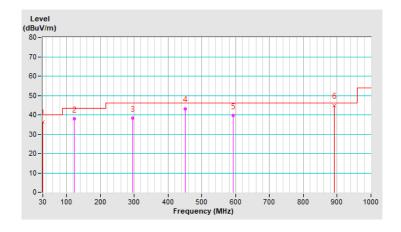


BELOW 1GHz WORST-CASE DATA

RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Horizontal at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	110.17	37.34 QP	43.50	-6.16	2.55 H	192	47.09	-9.75		
2	127.73	35.93 QP	43.50	-7.57	3.16 H	243	43.90	-7.97		
3	175.06	36.73 QP	43.50	-6.77	2.28 H	332	43.51	-6.78		
4	296.99	43.74 QP	46.00	-2.26	1.46 H	154	48.01	-4.27		
5	448.46	39.59 QP	46.00	-6.41	2.43 H	222	40.46	-0.87		
6	592.55	38.78 QP	46.00	-7.22	1.75 H	144	36.65	2.13		
7	890.99	44.31 QP	46.00	-1.69	2.38 H	144	36.72	7.59		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

	Antenna Polarity & Test Distance : Vertical at 3 m									
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	30.63	36.24 QP	40.00	-3.76	1.24 V	142	45.07	-8.83		
2	123.07	37.81 QP	43.50	-5.69	1.33 V	360	46.28	-8.47		
3	296.26	38.20 QP	46.00	-7.80	1.87 V	198	42.49	-4.29		
4	451.17	43.08 QP	46.00	-2.92	2.26 V	149	43.89	-0.81		
5	592.60	39.51 QP	46.00	-6.49	2.41 V	190	37.38	2.13		
6	890.99	44.68 QP	46.00	-1.32	1.08 V	186	37.09	7.59		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguency (MHz)	Conducted Limit (dBuV)			
Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 - 56	56 - 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

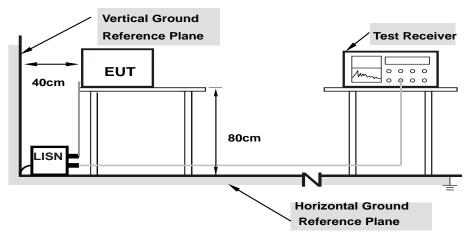
4.2.2 Test Instruments

Description & Manufacturer	Model no.	Serial No.	Calibrated Date	Calibrated Until
Test Receiver ESR3 R&S	ESR3	102412	2021/1/29	2022/1/28
LISN SCHWARZBECK	NSLK 8128	8128-244	2020/11/19	2021/11/18
LISN SCHWARZBECK	NNLK8129	8129229	2021/5/20	2022/5/19
DC LISN SCHWARZBECK	NNLK 8121	8121-808	2021/4/18	2022/4/17
LISN SCHWARZBECK	NNLK 8121	8121-731	2021/4/28	2022/4/27
LISN R&S	ENV216	101196	2021/4/26	2022/4/25
LISN R&S	ESH3-Z5	100220	2020/12/1	2021/11/30
LISN R&S	ESH3-Z6	844950/018	2021/7/25	2022/7/24
DC LISN R&S	ESH3-Z6	100219	2021/7/25	2022/7/24
High Voltage Probe Schwarzbeck	TK9420	00982	2021/1/8	2022/1/7
RF Coaxial Cable Commate	5D-FB	Cable-CO5-01	2021/1/29	2022/1/28
Attenuator STI	STI02-2200-10	NO.4	2021/9/3	2022/9/2
50 Ohms Terminator LYNICS	0900510	E1-01-305	2021/2/17	2022/2/16
Isolation Transformer Erika Fiedler	D-65396	017	2021/9/9	2022/9/8
Software BVADT	Cond_V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in Linkou Conduction05
- 3. The VCCI Site Registration No. C-11093.
- 4. Tested Date: 2021/10/27

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation From Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

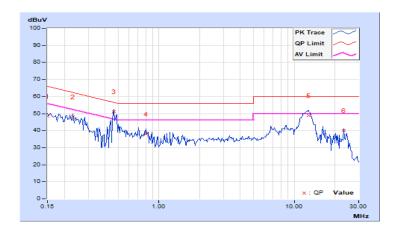
Same as Item 4.1.6.

4.2.7 Test Results

RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

	Phase Of Power : Line (L)									
No	. ,				nit uV)	Maı (d	gin B)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.18125	9.88	38.04	30.11	47.92	39.99	64.43	54.43	-16.51	-14.44
2	0.25938	9.89	37.20	28.42	47.09	38.31	61.45	51.45	-14.36	-13.14
3	0.46641	9.91	41.81	32.51	51.72	42.42	56.58	46.58	-4.86	-4.16
4	1.20703	9.96	28.27	21.57	38.23	31.53	56.00	46.00	-17.77	-14.47
5	12.65234	10.28	38.42	30.99	48.70	41.27	60.00	50.00	-11.30	-8.73
6	23.12891	10.48	32.33	30.99	42.81	41.47	60.00	50.00	-17.19	-8.53

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	1150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor	Reading Value (dBuV)				Emission Level (dBuV)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	9.89	38.45	32.26	48.34	42.15	66.00	56.00	-17.66	-13.85
2	0.23203	9.89	38.18	30.55	48.07	40.44	62.38	52.38	-14.31	-11.94
3	0.46250	9.92	41.34	32.50	51.26	42.42	56.65	46.65	-5.39	-4.23
4	0.80625	9.94	28.10	22.90	38.04	32.84	56.00	46.00	-17.96	-13.16
5	12.77344	10.31	38.42	31.07	48.73	41.38	60.00	50.00	-11.27	-8.62
6	23.12891	10.50	29.42	28.41	39.92	38.91	60.00	50.00	-20.08	-11.09

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

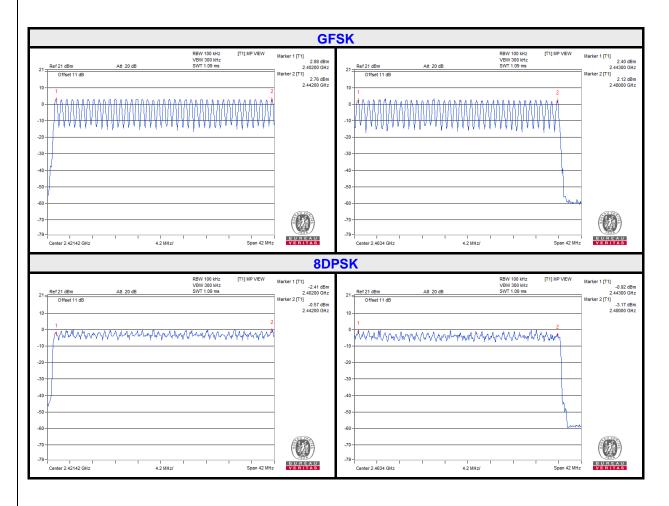
Description & Manufacturer	Model no.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer R&S	FSV40	101042	2021/9/9	2022/9/8

NOTE: 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in LK Oven
- 3. Tested Date: 2021/10/28

4.3.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.


4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

4.4.3 Test Instruments

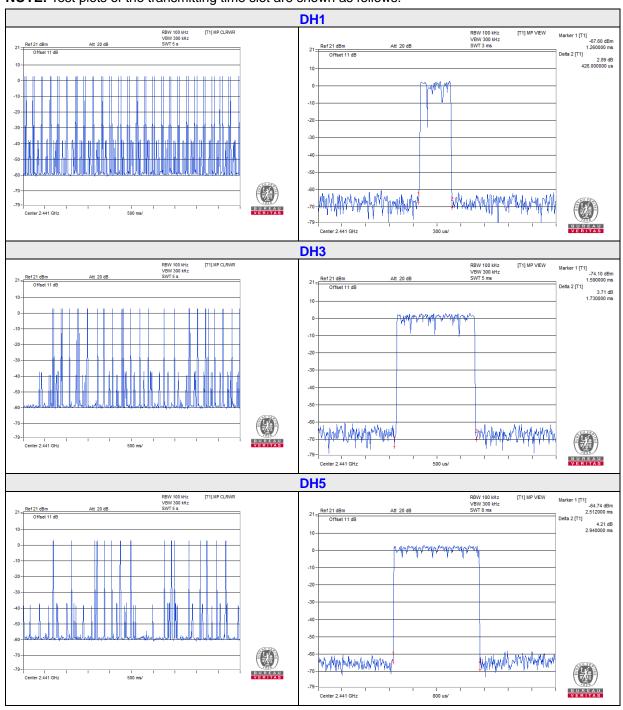
Refer to section 4.3.3 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

No deviation.



4.4.6 Test Results

GFSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	50 (times / 5 sec) * 6.32 = 316 times	0.426	134.62	400
DH3	26 (times / 5 sec) * 6.32 = 165 times	1.730	285.45	400
DH5	16 (times / 5 sec) * 6.32 = 102 times	2.940	299.88	400

NOTE: Test plots of the transmitting time slot are shown as follows.

Report No.: RFBHKO-WTW-P21090237-4

Page No. 34 / 48

8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
3DH1	50 (times / 5 sec) * 6.32 = 316 times	0.456	144.10	400
3DH3	25 (times / 5 sec) * 6.32 = 158 times	1.770	279.66	400
3DH5	18 (times / 5 sec) * 6.32 = 114 times	2.941	335.27	400

NOTE: Test plots of the transmitting time slot are shown as follows.

4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

The 20 dB bandwidth test value is the reference value for the measurement of the frequency hopping channel interval.

4.5.2 Test Setup

4.5.3 Test Instruments

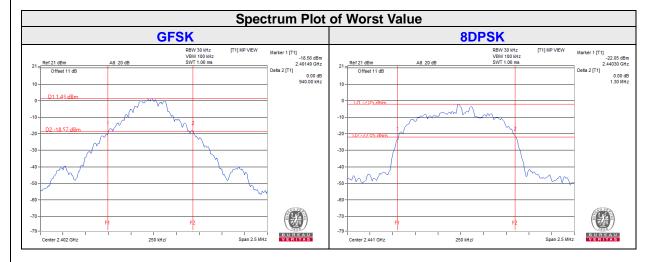
Refer to section 4.3.3 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)			
	requeries (miriz)	GFSK	8DPSK		
0	2402	0.94	1.29		
39	2441	0.94	1.30		
78	2480	0.94	1.30		

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

4.6.3 Test Instruments

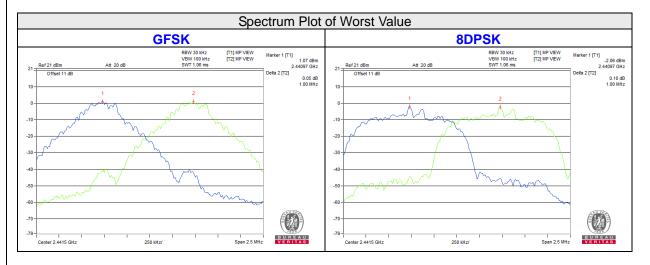
Refer to section 4.3.3 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

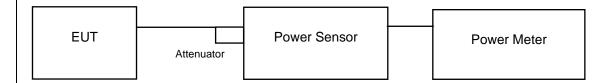
4.6.5 Deviation from Test Standard


No deviation.

4.6.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)		20dB Bandwidth (MHz)		Minimum Limit (MHz)		Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	0.94	1.29	0.63	0.86	Pass
39	2441	1.00	1.00	0.94	1.30	0.63	0.87	Pass
78	2480	1.00	1.00	0.94	1.30	0.63	0.87	Pass

NOTE: The minimum limit is two-third 20dB bandwidth.



4.7 Maximum Output Power Measurement

4.7.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125mW.

4.7.2 Test Setup

4.7.3 Test Instruments

Description & Manufacturer	Model no.	Serial No.	Calibrated Date	Calibrated Until
Pulse Power Sensor Anritsu	MA2411B	0738404	2021/4/15	2022/4/14
Peak Power meter Anritsu	ML2495A	0842014	2021/4/15	2022/4/14

- **NOTE:** 1. The calibration interval of the above test instruments is 12 months. And the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The test was performed in LK Oven
 - 3. Tested Date: 2021/10/28

4.7.4 Test Procedure

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHZ)	Output Power (mW)		Output Power (dBm)		Power Limit (mW)	Pass / Fail
	. ,	GFSK	8DPSK	GFSK	8DPSK	, ,	
0	2402	3.027	1.510	4.81	1.79	125	Pass
39	2441	2.871	1.476	4.58	1.69	125	Pass
78	2480	2.523	1.291	4.02	1.11	125	Pass

FOR AVERAGE POWER

Channel	Frequency (MHZ)	-	Power W)	Output Power (dBm)		
		GFSK	8DPSK	GFSK	8DPSK	
0	2402	2.742	1.279	4.38	1.07	
39	2441	2.624	1.250	4.19	0.97	
78	2480	2.275	1.084	3.57	0.35	

Report Format Version: 6.1.1

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.8.2 Test Instruments

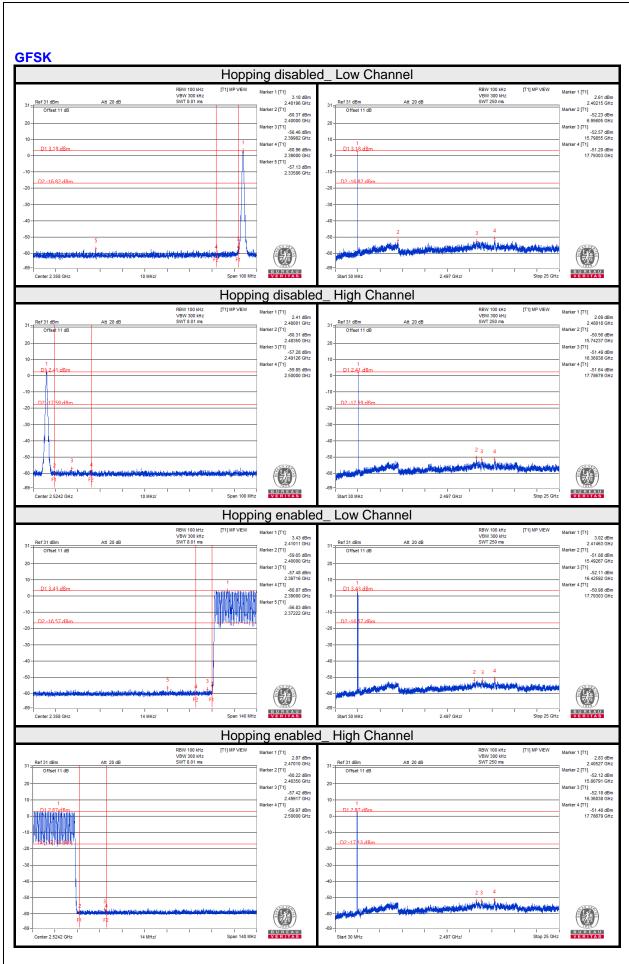
Refer to section 4.3.3 to get information of above instrument.

4.8.3 Test Procedure

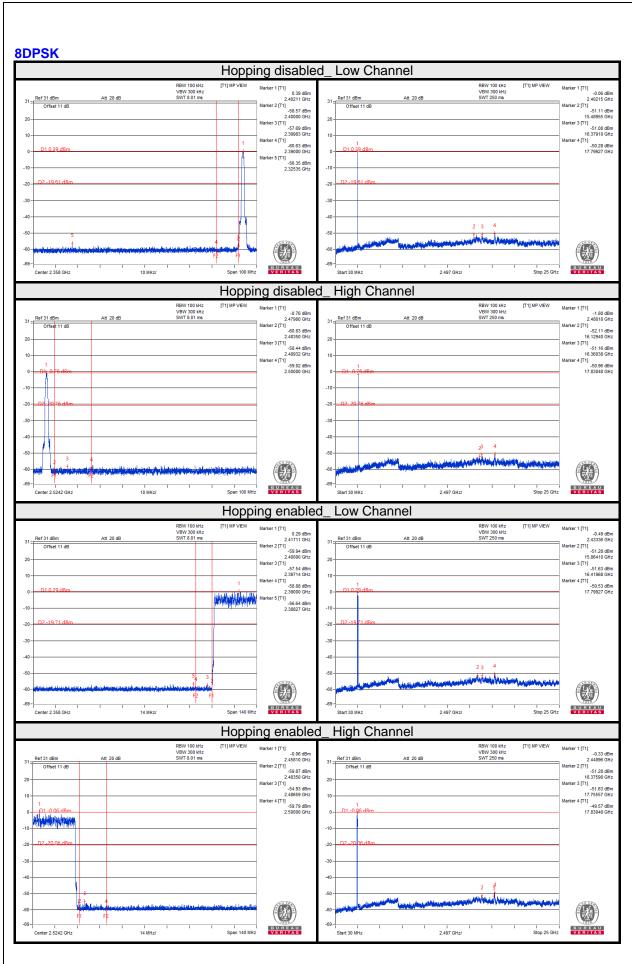
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

No deviation.


4.8.5 EUT Operating Condition

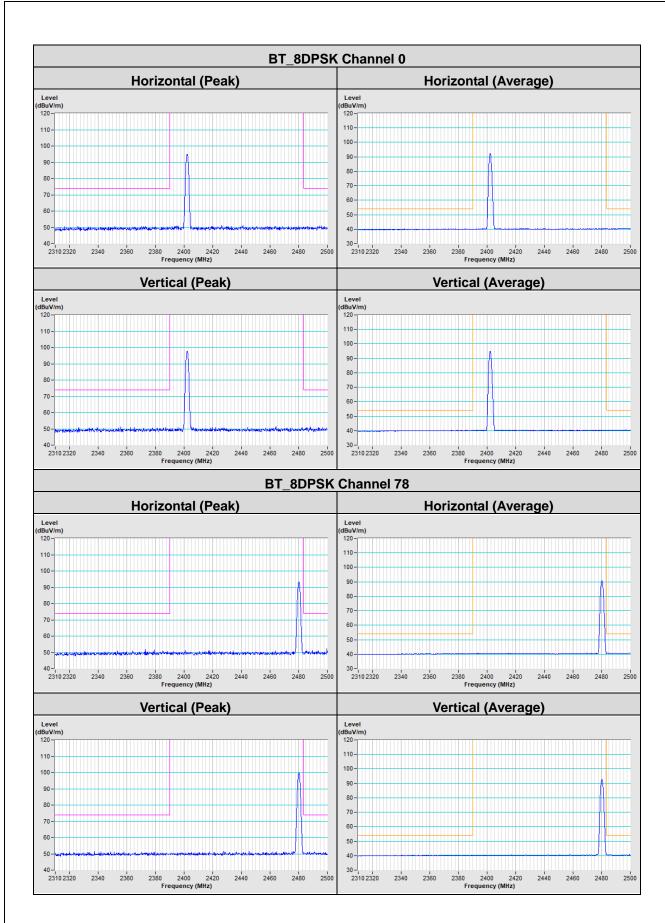
The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.



5 Pictures of Test Arrangements						
Please refer to the attached file (Test Setup Photo).						


Report No.: RFBHKO-WTW-P21090237-4

Annex A - Bandedge Measurement

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---