

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2100726

FCC REPORT (WIFI)

Applicant: Myx Fitness, LLC

Address of Applicant: 19 W Elm Street, Greenwich, CT 06830 USA.

Equipment Under Test (EUT)

Product Name: tablet

Model No.: MYX216A

Trade mark: MYX fitness

FCC ID: 2AUR9-MYX216A

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 27 Apr., 2021

Date of Test: 27 Apr., to 24 May, 2021

Date of report issued: 24 May, 2021

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	24 May, 2021	Original

Tested by:	Mikerou	Date:	24 May, 2021	
	Test Engineer			

Reviewed by:

Date: 24 May, 2021

Project Engineer

Contents

1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	2
	_
4 TEST SUMMARY	
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF E.U.T	_
5.3 TEST ENVIRONMENT AND MODE	
5.4 DESCRIPTION OF SUPPORT UNITS	
5.5 MEASUREMENT UNCERTAINTY	
5.6 LABORATORY FACILITY	
5.7 LABORATORY LOCATION	
5.8 TEST INSTRUMENTS LIST	
6 TEST RESULTS AND MEASUREMENT DATA	8
6.1 Antenna requirement	8
6.2 CONDUCTED EMISSION	
6.3 CONDUCTED OUTPUT POWER	12
6.4 OCCUPY BANDWIDTH	
6.5 POWER SPECTRAL DENSITY	
6.6 BAND EDGE	
6.6.1 Conducted Emission Method	
6.6.2 Radiated Emission Method	
6.7 Spurious Emission	
6.7.1 Conducted Emission Method	
7 TEST SETUP PHOTO	42
8 EUT CONSTRUCTIONAL DETAILS	43

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	5.247 (b) See Section 6.1	
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass
Conducted Peak Output Power	15.247 (b)(3) Appendix A – 2.4G Wi-Fi		Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2))(2) Appendix A – 2.4G Wi-Fi	
Power Spectral Density	15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass
Conducted Band Edge	45 247 (4)	Appendix A – 2.4G Wi-Fi	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	15 205 8 15 200	Appendix A – 2.4G Wi-Fi	Pass
Radiated Spurious Emission	15.205 & 15.209 See Section 6.7.		Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	Myx Fitness, LLC
Address:	19 W Elm Street, Greenwich, CT 06830 USA.
Manufacturer:	Shenzhen ELINK technology Co., LTD.
Address:	4/F, Building A, Qiaohongsheng Cultural and Creative Industry Park, Yintian Industrial Zone, xixiang street, Baoan District, Shenzhen, Guangdong, China.
Factory:	Shenzhen iNet Mobile Internet Technology Co., Ltd.
Address:	8F, Building C5, Hengfeng Industrial City, Hezhou street, Baoan District, Shenzhen

5.2 General Description of E.U.T.

Product Name:	tablet					
Model No.:	MYX216A					
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)					
	2422MHz~2452MHz: 802.11n(HT40)					
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)					
	7: 802.11n(HT40)					
Channel separation:	5MHz					
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)					
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)					
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps					
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps					
Data speed (IEEE 802.11n):	Up to 150Mbps					
Antenna Type:	Internal Antenna					
Antenna gain:	1.5dBi					
AC adapter:	Model: J651-1205000DI					
	Input: AC100-240V, 50/60Hz, 1.5A					
	Output: DC 12.0V, 5000mA					
Test Sample Condition:	The test samples were provided in good working order with no visible defects.					
Remark:	MYX216A has two kinds of cpus: MT6771V and MT8183V, these two					
	chips function the same, pin definition is also the same, there is no difference in radio frequency performance.					
	Select the EUT (MT8183V) for testing.					

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.					
Mode Data rate					
802.11b	1Mbps				
802.11g	6Mbps				
802.11n(HT20)	6.5Mbps				
802.11n(HT40)	13.5Mbps				

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	\	ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021
Cable	HP	10503A	N/A	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	Version: 6.110919b		

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A
PDU	MWRF-test	XY-G10	N/A	N/A	N/A
Test Software	MWRF-tes	MTS 8310	,	Version: 2.0.0.0	
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

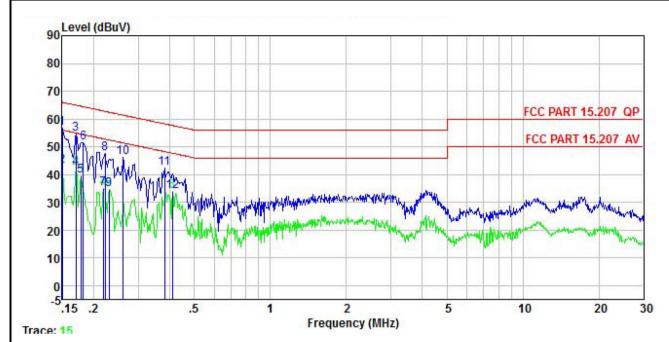
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.5 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

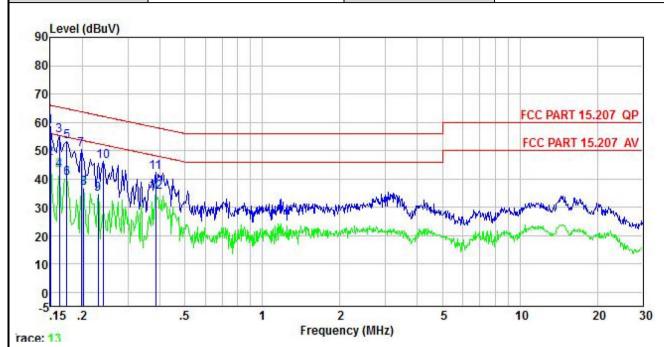
6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.2	207					
Test Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Class / Severity:	Class B						
Receiver setup:	RBW=9 kHz, VBW=30 kHz						
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarit	hm of the frequency.					
Test procedure	line impedance stabiliz 50ohm/50uH coupling 2. The peripheral devices LISN that provides a 50 termination. (Please re photographs). 3. Both sides of A.C. line interference. In order to positions of equipment	LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).					
Test setup:	LISN	st	er — AC power				
Test Instruments:	Refer to section 5.8 for deta	ails					
Test mode:	Refer to section 5.3 for deta	ails					
Test results:	Passed						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data:

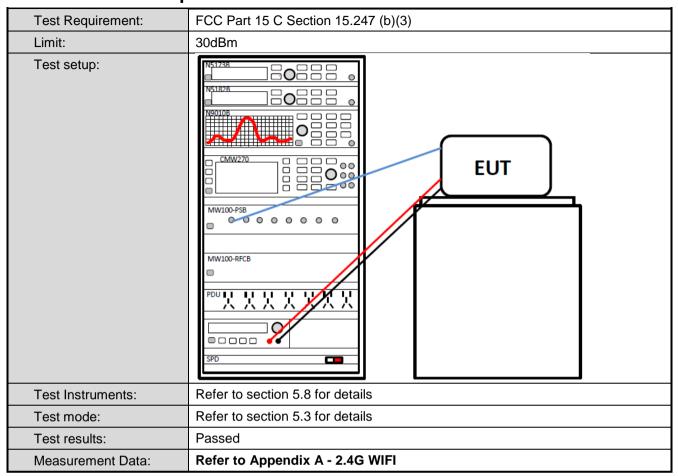
Product name:	tablet	Product model:	MYX216A
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%



	Freq	Read Level	LISN Factor			Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>ab</u>	<u>d</u> B	<u>ap</u>	dBu₹	dBu∀	<u>ab</u>	
1	0.150	46.76	10.12	-0.05	0.01	56.84		-9.16	
2	0.150	32.85	10.12	-0.05	0.01	42.93	56.00	-13.07	Average
3	0.170	44.72	10.13	-0.10	0.01	54.76	64.94	-10.18	QP
4	0.170	32.14	10.13	-0.10	0.01	42.18	54.94	-12.76	Average
5	0.178	29.40	10.13	-0.12	0.01	39.42	54.59	-15.17	Average
6	0.182	41.56	10.13	-0.12	0.01	51.58	64.42	-12.84	QP
7	0.219	24.81	10.16	-0.18	0.03	34.82	52.88	-18.06	Average
1 2 3 4 5 6 7 8 9	0.222	37.59	10.16	-0.19	0.03	47.59		-15.15	
9	0.230	24.48	10.17	-0.20	0.02	34.47	52.44	-17.97	Average
10	0.262	36.24	10.19	-0.23	0.01	46.21		-15.17	
11	0.381	31.82	10.27	5 TO TO THE	0.03	42.43	1000000	-15.82	000707000
12	0.410	23.42	10.29	0.33	0.04	34.08			Average

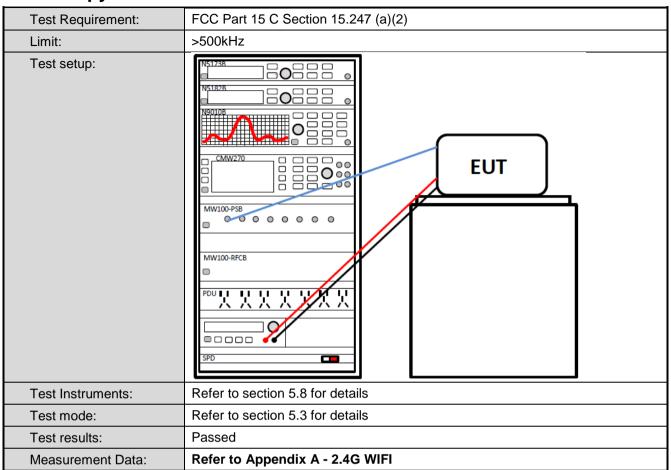
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	tablet	Product model:	MYX216A
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

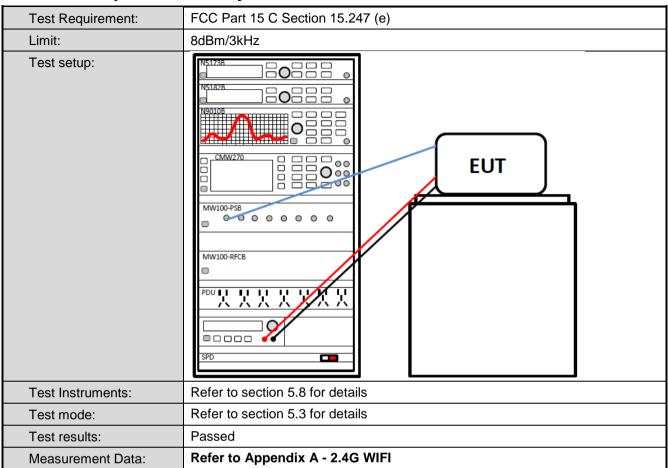

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	<u>ab</u>	<u>ab</u>	dBu₹	—dBu⊽	dB	
1	0.150 0.150	48.45 37.47	9.89 9.89	0.01 0.01	0.01 0.01	58.36 47.38	66.00 56.00	-7.64	100
3	0.162	45.46	9.90	0.01	0.01	55.38	65.34	-0.02 -9.96	Average QP
4	0.162 0.174	32.94 43.43	9.90 9.91	0.01 0.00	0.01 0.01	42.86 53.35		-12.48 -11.42	Average
6	0.174	30.36	9.91	0.00	0.01	40.28	54.77	-14.49	Äverage
1 2 3 4 5 6 7 8 9	0.198 0.202	40.43	9.92 9.92	0.00	0.04 0.04	50.39 36.67		-13.32 -16.87	QP Average
	0.230	24.74	9.95	0.00	0.02	34.71	52.44	-17.73	Average
10 11	0.242 0.385	36.18 32.39	9.96 10.10	0.00 -0.05	0.01 0.03	46.15 42.47	100000000000000000000000000000000000000	-15.89 -15.70	35.070.770.00
12	0.385	25.34	10.10	-0.05	0.03	35.42			Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power



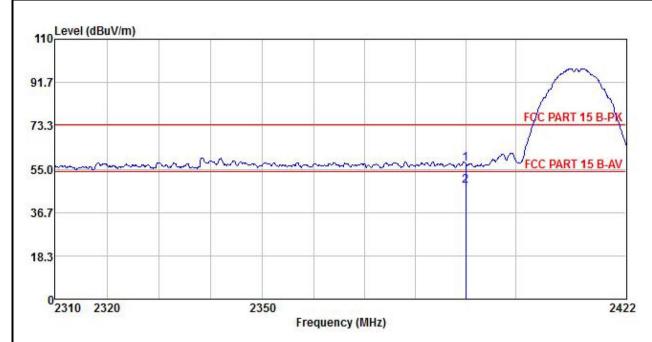
6.4 Occupy Bandwidth

6.5 Power Spectral Density

6.6 Band Edge

6.6.1 Conducted Emission Method

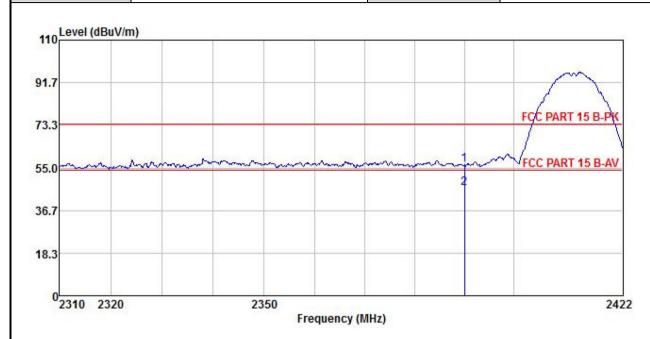
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	N\$1738 N\$18278 N\$100-PS8 NW100-PS8 NW100-PS8 NW100-PFCB					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					


6.6.2 Radiated Emission Method

Test Requirement: Test Frequency Range: 2310 MHz to 2390 MHz and 2483.5 MHz to 2500 MHz Test Distance: Receiver setup: Frequency Above 1GHz RMS 1MHz 3MHz Average Value Limit: Frequency Above 1GHz Above 1GHz Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was turned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Test setup: Refer to section 5.8 for details Test mode: Refer to section 5.3 for details	Took Description		ation 15 200	and 15 205						
Test Distance: Receiver setup: Frequency Detector RBW VBW Remark	Test Requirement:									
Receiver setup: Frequency) MHz and 24	483.5 MHz to 2	500 MI	ΗZ				
Above 1GHz RMS 1MHz 3MHz Peak Value RMS 1MHz Average Value Frequency Limit (dBuV/m @3m) Remark Above 1GHz 54.00 Average Value 74.00 Peak Value	Test Distance:									
Limit: Frequency Limit (BuV/m @3m) Remark Above 1GHz 74.00 Average Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and then the antenna was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Test Instruments: Refer to section 5.8 for details Refer to section 5.3 for details	Receiver setup:	Frequency								
Limit: Frequency		Above 1GHz								
Above 1GHz 74.00 Average Value 74.00 Test Value 74.00 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details	l imit:	Frequency				11 12	•			
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Test setup: Refer to section 5.8 for details Refer to section 5.3 for details	Ziiiii.			,	,	A۱				
the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.8 for details Refer to section 5.3 for details										
Test Instruments: Refer to section 5.8 for details Test mode: Refer to section 5.3 for details		the ground at determine the 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measurement 4. For each sus and then the and the rota to maximum reasonable of the emission limit specified the EUT wou 10dB margin.	t a 3 meter can be position of the position of the position of the position of the position and the position of the position o	amber. The take the highest radices away from the steed on the top died from one maximum value arizations of the stuned to heigh ned from 0 deg was set to Peak Maximum Hold a EUT in peak rig could be stop d. Otherwise the tested one by contact and the steed one by contact and	e interfector a value eter to of the e anter eter to of the e anter eter to control eter to control eter to eter to mode where eter to	erence- riable-h four mo- field strana are anged to 1 metro 360 do et Funci- vas 10d d the posions to ng pea	receiving height antenna eters above the rength. Both set to make the o its worst case er to 4 meters egrees to find the tion and B lower than the eak values of hat did not have k, quasi-peak or			
Test mode: Refer to section 5.3 for details		- 150cm	(Turntable)	Ground Raference Plane						
	Test Instruments:	Refer to section 5	.8 for details		-					
Test results: Passed	Test mode:	Refer to section 5	.3 for details							
	Test results:	Passed								

802.11b mode:

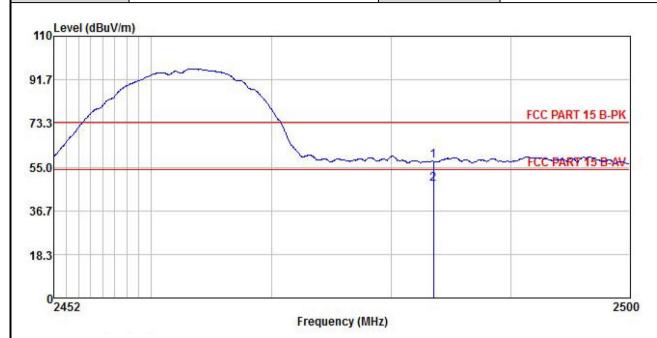
Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


Freq		Antenna Factor						Remark
MHz	dBu∀	<u>dB</u> /m	<u>d</u> B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

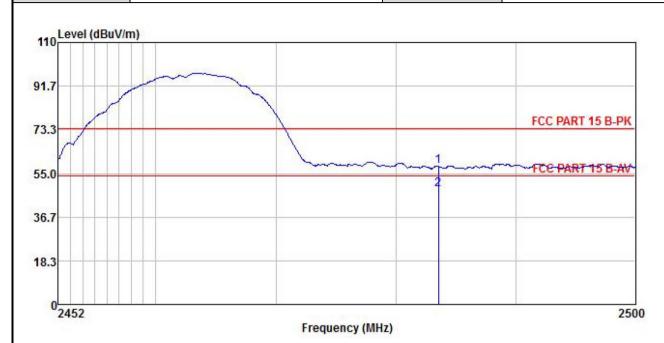
Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


	Freq		Antenna Factor					
	MHz	dBu∇		 <u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1 2	2390.000 2390.000							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 43

Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

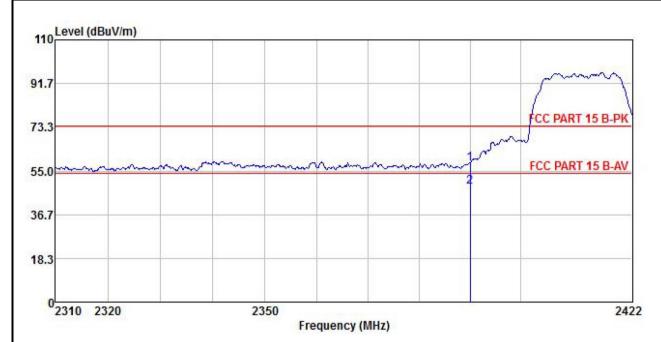

			Antenna Factor					
		dBu∇		 <u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

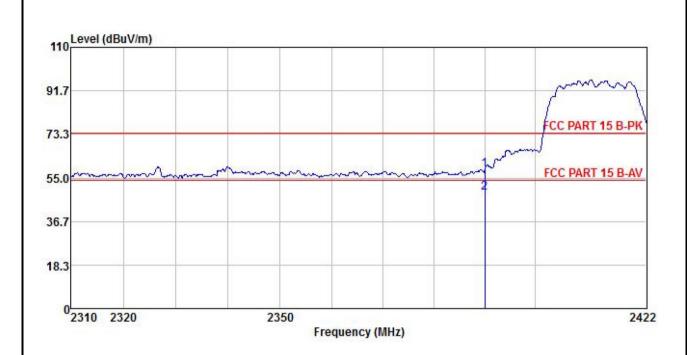
	Freq		Antenna Factor						
	MHz	₫BuV	_dB/m	<u>d</u> B	dB	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 20 of 43

802.11g mode:

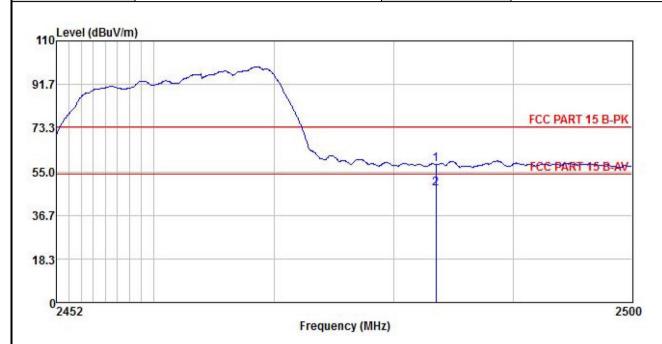
Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor						
	MHz	dBu∇			<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	2390.000								
2	2390.000	12.43	27.03	8.73	0.00	48.19	54.00	-5.81	Average

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

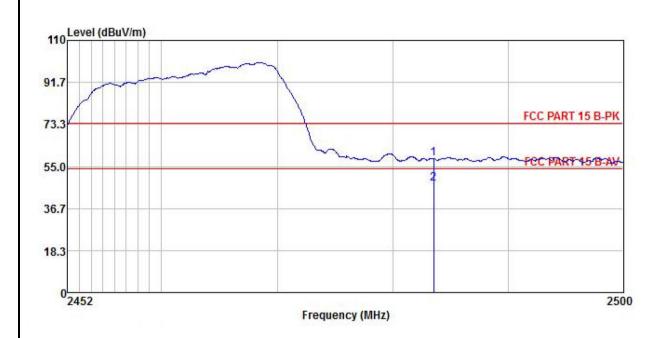

	Freq		Antenna Factor						Remark
	MHz	dBu₹	<u>dB</u> /m	<u>ab</u>	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 22 of 43

Product Name:	tablet	Product Model:	MYX216A			
Test By:	Mike	Test mode:	802.11g Tx mode			
Test Channel:	Highest channel	Polarization:	Vertical			
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%			

			Antenna Factor					Over Limit	
		dBu∇	<u>dB</u> /m	<u>ab</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483,500 2483,500								


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

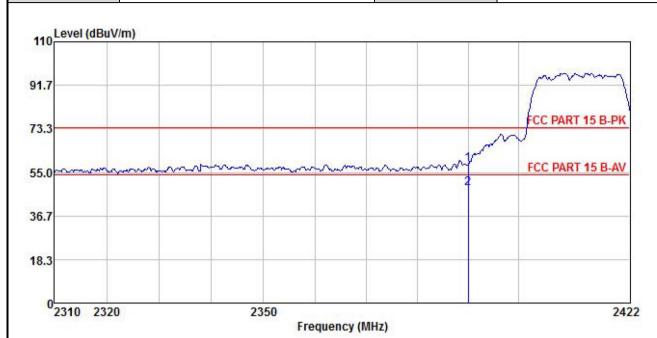
Page 23 of 43

Project No.: JYTSZE2104104

Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

			Antenna Factor							
		dBu∇	<u>dB</u> /m <u>dB</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>			
	2483.500 2483.500									

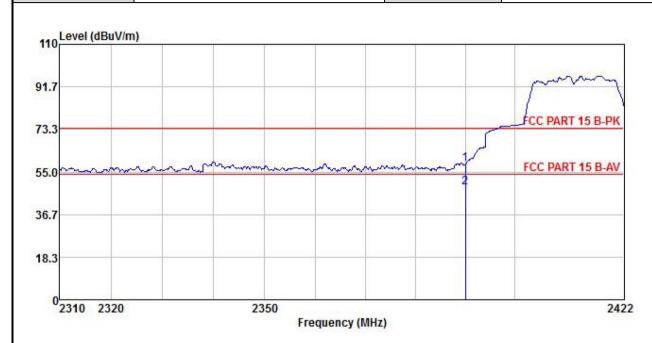
Remark:


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 24 of 43

802.11n(HT20):

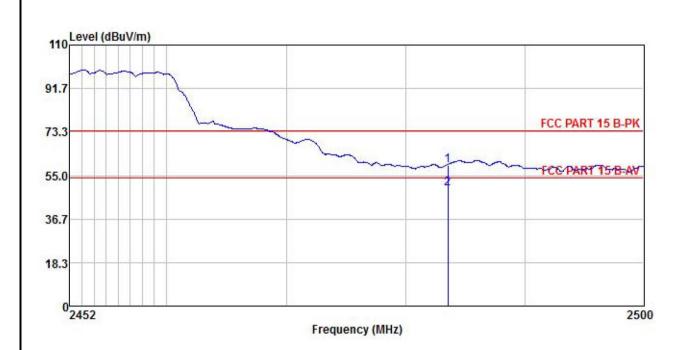
Product Name:	tablet	Product Model:	MYX216A						
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode						
Test Channel:	Lowest channel	Polarization:	Vertical						
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%						


	Freq		Intenna Factor					Remark
	MHz	dBu∇	<u>dB</u> /m	 <u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	Name of the second of
1 2	2390.000 2390.000							

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

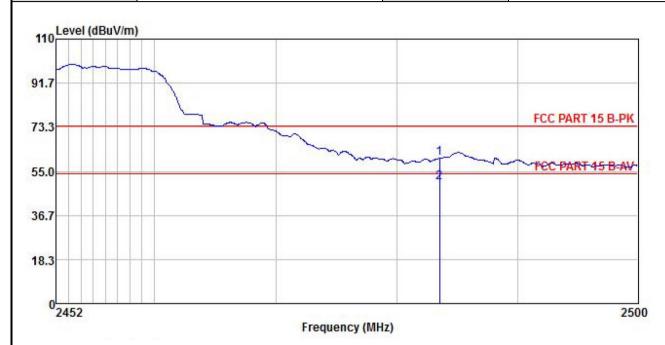
Product Name:	tablet	Product Model:	MYX216A		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Lowest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		


	Freq		Antenna Factor				Limit Line		
	MHz	dBu₹	₫B/m	₫B	₫B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	tablet	Product Model:	MYX216A		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

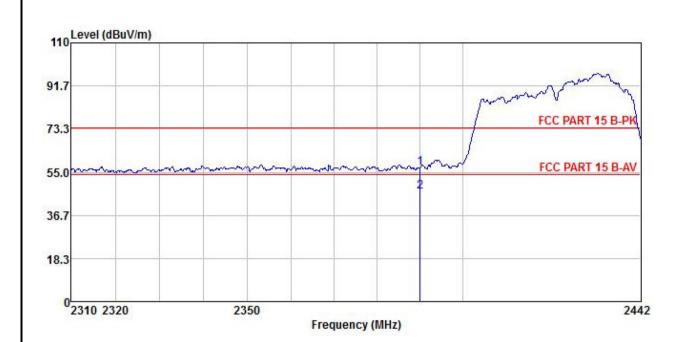

	Freq		Antenna Factor						
	MHz	dBu₹	—dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	 _
1 2	2483,500 2483,500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 27 of 43

Product Name:	tablet	Product Model:	MYX216A		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%		

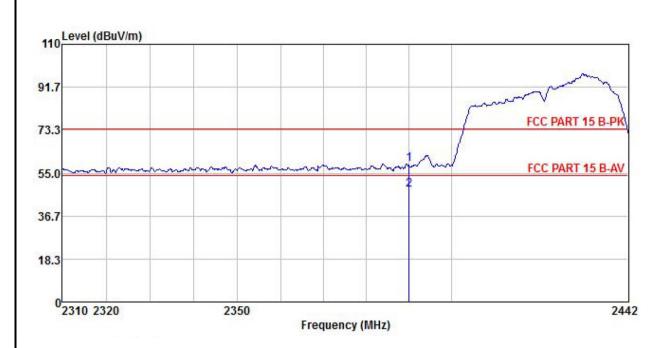
	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∇	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 28 of 43

802.11n(HT40):

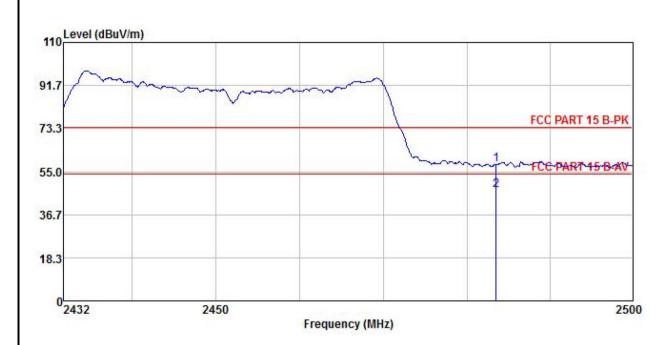
Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


			Antenna Factor						
		dBu∀	_dB/m	₫B	₫B	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2390.000 2390.000								

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

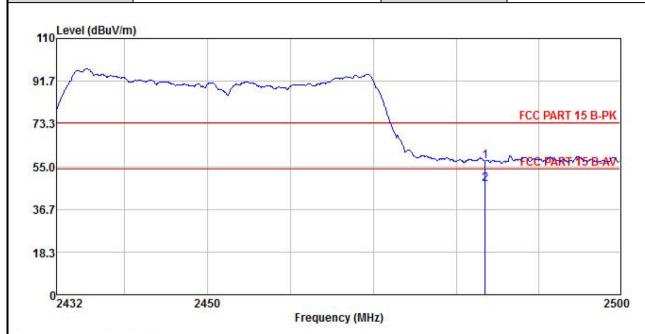
Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



Freq		Antenna Factor						Remark
MHz	dBu₹	dB/m	₫₿	₫B	dBuV/m	dBuV/m	₫B	
2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	tablet	Product Model:	MYX216A	
Test By:	Mike	Test mode: 802.11n(HT40) Tx		
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	



	Freq		Antenna Factor				Over Limit	
	MHz	dBu∀	<u>dB</u> /m	 dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

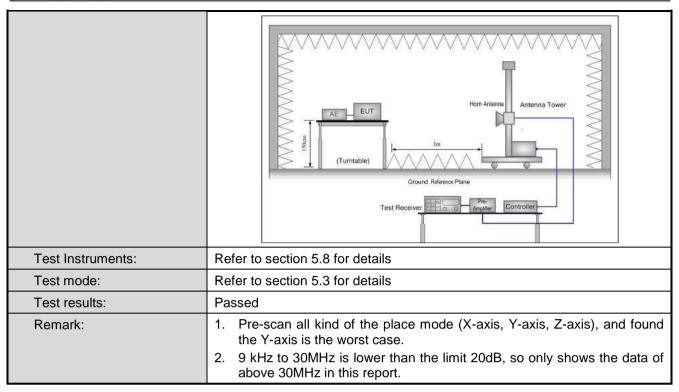
	Freq		Antenna Factor					
	MHz	₫₿uѶ		 ₫₿	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 32 of 43

6.7 Spurious Emission

6.7.1 Conducted Emission Method


Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS1173R					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					

6.7.2 Radiated Emission Method

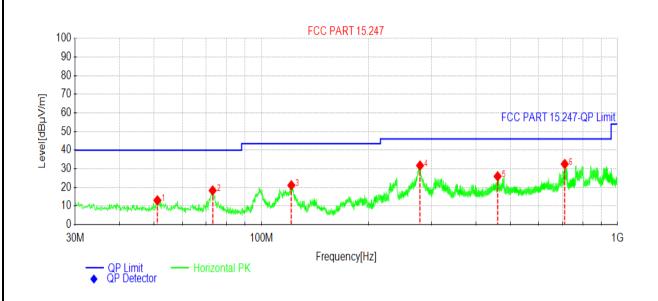
Test Requirement:	FCC Part 15 C Se	ction 15.2	209 an	d 15.205				
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detec	tor	RBW	V	BW	BW Remark	
·	30MHz-1GHz Quasi-		oeak	120KHz	300	KHz	Quasi-peak Value	
	Above 1GHz	Pea	k	1MHz	31	ИHz	Peak Value	
		RMS		1MHz		ИНZ	Average Value	
Limit:	Frequency		Limit	t (dBuV/m @3i	m)		Remark	
	30MHz-88MH			40.0			uasi-peak Value	
	88MHz-216MH			43.5			uasi-peak Value	
	216MHz-960M			46.0			uasi-peak Value	
	960MHz-1GH	Z		54.0			uasi-peak Value	
	Above 1GHz	<u>.</u>		54.0 74.0		,	Average Value Peak Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 							
Test setup:	Below 1GHz EUT Turn Table Ground I	0.8m	4m			s		

Measurement Data (worst case):

Below 1GHz:

Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspe	Suspected Data Liste										
NO.₽	Freq.⊌	Reading⊎	Level⊬	Factor⊍	Limit⊬	Margin⊎	T	Delevitor			
	[MHz]∂	[dBµV/m]∂	[dBµV/m]∂	[dB]₽	[dBµV/m]∂	[dB]₽	Trace₽	Polarity₽			
1₽	31.2611₽	50.23₽	32.06₽	-18.17₽	40.00₽	7.94₽	PK₽	Vertical₽			
2↔	72.6843₽	48.55₽	29.42₽	-19.13₽	40.00₽	10.58₽	PK₽	Vertical₽			
3↩	122.159	45.75₽	27.33₽	-18.42₽	43.50₽	16.17₽	PK₽	Vertical₽			
4₽	308.417	35.34₽	21.33₽	-14.01₽	46.00₽	24.67₽	PK₽	Vertical₽			
5↔	478.378	33.63₽	23.35₽	-10.28₽	46.00₽	22.65₽	PK₽	Vertical₽			
6₽	916.280	38.00₽	34.18₽	-3.82₽	46.00₽	11.82₽	PK₽	Vertical₽			


Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 36 of 43

Product Name:	tablet	Product Model:	MYX216A
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspe	Suspected Data List										
NO.₽	Freq.⊌	Reading⊎	Level⊬	Factor⊎	Limit⊬	Margin⊎	T	Deledino			
	[MHz]∂	[dBµV/m]∂	[dBµV/m]∂	[dB]₽	[dBµV/m]∂	[dB]∂	Trace₽	Polarity₽			
1₽	51.0511₽	30.10₽	13.01₽	-17.09₽	40.00₽	26.99₽	PK₽	Horizontal₽			
2↔	72.9753₽	37.43₽	18.29₽	-19.14₽	40.00₽	21.71₽	PK₽	Horizontal₽			
3↩	121.383	39.42₽	21.10₽	-18.32₽	43.50₽	22.40₽	PK₽	Horizontal₽			
4 42	279.023	46.32₽	31.71₽	-14.61₽	46.00₽	14.29₽	PK₽	Horizontal₽			
5⇔	460.820	36.66₽	25.92₽	-10.74₽	46.00₽	20.08₽	PK₽	Horizontal₽			
64□	711.202	39.45₽	32.51₽	-6.94₽	46.00₽	13.49₽	PK₽	Horizontal₽			

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Above 1GHz

802.11b							
Test channel: Lowest channel							
		De	tector: Peak Valu	ıe			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	60.57	-10.33	50.24	74.00	23.76	Vertical	
4824.00	57.57	-10.33	47.24	74.00	26.76	Horizontal	
		Dete	ctor: Average Va	alue			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4824.00	57.85	-10.33	47.52	54.00	6.48	Vertical	
4824.00	53.26	-10.33	42.93	54.00	11.07	Horizontal	
Test channel: Middle channel							
		Det	tector: Peak Valu	IΩ			

Test channel: Middle channel									
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	60.58	-10.17	50.41	74.00	23.59	Vertical			
4874.00	57.50	-10.17	47.33	74.00	26.67	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency Read Level Factor(dB) Level Limit Line Over Limit Polarizatio									
4874.00 58.12 -10.17 47.95 54.00 6.05 Vertical									
4874.00	52.84	-10.17	42.67	54.00	11.33	Horizontal			

Test channel: Highest channel								
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	60.66	-10.02	50.64	74.00	23.36	Vertical		
4924.00	57.59	-10.02	47.57	74.00	26.43	Horizontal		
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	57.99	-10.02	47.97	54.00	6.03	Vertical		
4924.00	52.83	-10.02	42.81	54.00	11.19	Horizontal		
Domorla	•	•	•					

Remark

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11g									
	Test channel: Lowest channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	60.93	-10.33	50.60	74.00	23.40	Vertical			
4824.00	57.10	-10.33	46.77	74.00	27.23	Horizontal			
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	58.24	-10.33	47.91	54.00	6.09	Vertical			
4824.00	52.55	-10.33	42.22	54.00	11.78	Horizontal			
			annel: Middle ch						
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	60.61	-10.17	50.44	74.00	23.56	Vertical			
4874.00	56.67	-10.17	46.50	74.00	27.50	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	58.51	-10.17	48.34	54.00	5.66	Vertical			
4874.00	52.34	-10.17	42.17	54.00	11.83	Horizontal			
	Test channel: Highest channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	60.78	-10.02	50.76	74.00	23.24	Vertical			
4924.00	57.15	-10.02	47.13	74.00	26.87	Horizontal			
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	58.79	-10.02	48.77	54.00	5.23	Vertical			
4924.00	52.69	-10.02	42.67	54.00	11.33	Horizontal			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT20)									
	Test channel: Lowest channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	60.81	-10.33	50.48	74.00	23.52	Vertical			
4824.00	56.67	-10.33	46.34	74.00	27.66	Horizontal			
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4824.00	58.51	-10.33	48.18	54.00	5.82	Vertical			
4824.00	53.03	-10.33	42.70	54.00	11.30	Horizontal			
			nannel: Middle ch						
		De	tector: Peak Valu	ıe					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	60.80	-10.17	50.63	74.00	23.37	Vertical			
4874.00	56.22	-10.17	46.05	74.00	27.95	Horizontal			
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4874.00	58.78	-10.17	48.61	54.00	5.39	Vertical			
4874.00	52.71	-10.17	42.54	54.00	11.46	Horizontal			
	Test channel: Highest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	60.45	-10.02	50.43	74.00	23.57	Vertical			
4924.00	56.13	-10.02	46.11	74.00	27.89	Horizontal			
	Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4924.00	58.82	-10.02	48.80	54.00	5.20	Vertical			
4924.00	52.49	-10.02	42.47	54.00	11.53	Horizontal			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Final Level = Receiver Read level + Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT40)							
Test channel: Lowest channel							
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4844.00	60.49	-10.33	50.16	74.00	23.84	Vertical	
4844.00	56.34	-10.33	46.01	74.00	27.99	Horizontal	
		Dete	ctor: Average Va				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4844.00	58.94	-10.33	48.61	54.00	5.39	Vertical	
4844.00	52.09	-10.33	41.76	54.00	12.24	Horizontal	
			nannel: Middle ch				
	T	De	tector: Peak Valu		T		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	60.40	-10.17	50.23	74.00	23.77	Vertical	
4874.00	56.80	-10.17	46.63	74.00	27.37	Horizontal	
		Dete	ctor: Average Va	alue	1		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4874.00	59.04	-10.17	48.87	54.00	5.13	Vertical	
4874.00	52.02	-10.17	41.85	54.00	12.15	Horizontal	
			annel: Highest c				
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4904.00	59.91	-10.02	49.89	74.00	24.11	Vertical	
4904.00	56.58	-10.02	46.56	74.00	27.44	Horizontal	
Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4904.00	58.68	-10.02	48.66	54.00	5.34	Vertical	
4904.00	51.75	-10.02	41.73	54.00	12.27	Horizontal	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.