

RADIO TEST REPORT FCC ID: 2AUR9-MYX215A

Product: Tablet
Trade Mark: MYXfitness
Model No.: MYX215A
Family Model: N/A
Report No.: S19110100301001
Issue Date: 04 Dec. 2019

Prepared for

Myx Fitness, LLC 19 W Elm Street, Greenwich, CT 06830 USA.

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

	ST RESULT CERTIFICATION	
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4 GE	NERAL DESCRIPTION OF EUT	6
5 DE	SCRIPTION OF TEST MODES	8
6 SE'	TUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 10 11
7 TE	ST REQUIREMENTS	13
	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL. HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	16 25 26 27 29 30 31 32 33 34
8 TE	ST RESULTS	
8.1 8.2 8.3 8.4 8.5 8.6 8.7	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL BAND EDGE CONDUCTED RF SPURIOUS EMISSION.	40 45 50 55 56

NTEK北测

1 TEST RESULT CERTIFICATION

ilac-

ACCREDI

Certificate #4298.01

TED

Applicant's name:					
Address:	19 W Elm Street, Greenwich, CT 06830 USA.				
Manufacturer's Name:	Shenzhen ELINK 1	echnology Co.,Ltd			
Address:		phongsheng creative industry park ,Yintian Road, Baoan district, Shenzhen, China.			
Product description					
Product name:	Tablet				
Model and/or type reference:	MYX215A				
Family Model:	N/A				
Measurement Procedure Used:					
	APPLICABLE	STANDARDS			
STANDARD/ TEST PRO	OCEDURE	TEST RESULT			
FCC 47 CFR Part 15, S ANSI C63.10-201	FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02				
results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.					
The test results of this report relate	-				
Date of Test	:0	5 Nov. 2019 ~ 03 Dec. 2019 Mary . Hu			
Testing Engineer	:	(Mary Hu)			
Technical Manager :		(Jason Chen)			
Authorized Signatory	:	(Sam Chen)			

NTEKJEW

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Remark						
15.207	Conducted Emission	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247(a)(1)	Hopping Channel Separation	PASS				
15.247(b)(1)	Peak Output Power	PASS				
15.247(a)(iii)	Number of Hopping Frequency	PASS				
15.247(a)(iii)	Dwell Time	PASS				
15.247(a)(1)	Bandwidth	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment Tablet				
Trade Mark MYXfitness				
FCC ID	2AUR9-MYX215A			
Model No.	MYX215A			
Family Model	N/A			
Model Difference	N/A			
Operating Frequency	2402MHz~2480MHz			
Modulation GFSK, π/4-DQPSK, 8-DPSK				
Bluetooth Version BT V4.0				
Number of Channels	79 Channels			
Antenna Type	Metal Antenna			
Antenna Gain	4.12dBi			
	DC supply: DC 12V from Adapter			
Power supply	Adapter supply: Model: J651-1205000DI Input: 100-240V~50/60Hz 2A Output: 12V5000mA			
HW Version	F215Q_V02			
SW Version	full_tb8176p1_64_bsp-userdebug 8.1.0 O11019 1575019701 release-keys			

ACC

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

Report No.	Version	Description	Issued Date		
S19110100301001	Rev.01	Initial issue of report	Dec 04, 2019		

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78(k is the Channel)

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission				
Final Test Mode Description				
Mode 1	normal link mode			
Note: AC newer line Conducted Emission was tested under maximum autput newer				

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases			
Final Test Mode	Description		
Mode 1	normal link mode		
Mode 2	CH00(2402MHz)		
Mode 3	CH39(2441MHz)		
Mode 4	CH78(2480MHz)		

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases					
Final Test Mode Description					
Mode 2	CH00(2402MHz)				
Mode 3	CH39(2441MHz)				
Mode 4	CH78(2480MHz)				
Mode 5	Hopping mode				
	Hopping mode				

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

SETUP OF EQUIPMENT UNDER TEST 6 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode AC PLUG EUT For Radiated Test Cases AC PLUG EUT For Conducted Test Cases AC PLUG C-3 Measurement EUT Instrument Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

ualatic		d lest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2019.05.13	2020.05.12	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2019.08.28	2020.08.27	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2019.08.28	2020.08.27	1 year
4	Test Receiver	R&S	ESPI7	101318	2019.05.13	2020.05.12	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2019.04.15	2020.04.14	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2018.05.19	2020.05.18	2 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2019.04.15	2020.04.14	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2018.12.11	2019.12.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2019.08.06	2020.08.05	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2018.12.11	2019.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2019.08.06	2020.08.05	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2017.04.21	2020.04.20	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2017.04.21	2020.04.20	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2017.04.21	2020.04.20	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2017.04.21	2020.04.20	3 year
16	Filter	TRILTHIC	2400MHz	29	2017.04.19	2020.04.18	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

ACC

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2019.05.13	2020.05.12	1 year
2	LISN	R&S	ENV216	101313	2019.04.15	2020.04.14	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2019.05.13	2020.05.12	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2018.05.19	2020.05.18	2 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2017.04.21	2020.04.20	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2017.04.21	2020.04.20	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2017.04.21	2020.04.20	3 year

ACCR

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEKJLIN CERTIFICATE #4298.01

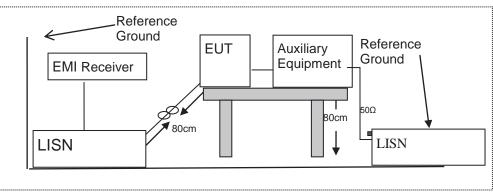
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

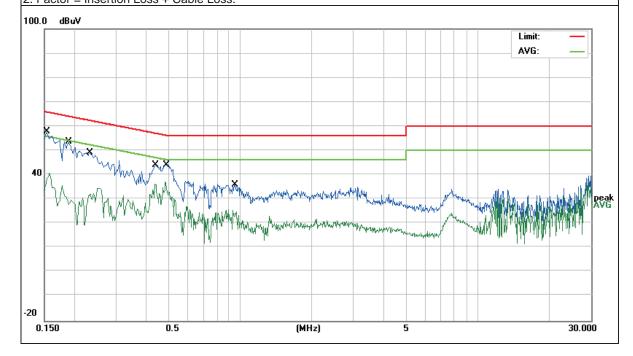
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos. Margin=Measure-ment-Limits, Measure-ment=Reading level+Correct Factor

7.1.5 Test Results

Pass

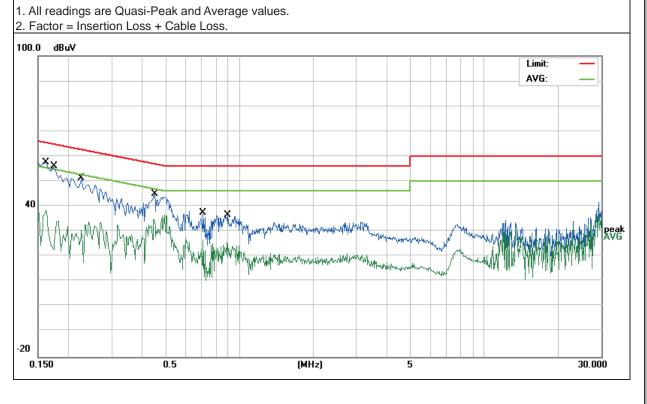

7.1.6 Test Results

EUT:	Tablet	Model Name :	MYX215A
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

r	1	1	I			1
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	48.05	9.75	57.80	65.78	-7.98	QP
0.1539	30.97	9.75	40.72	55.78	-15.06	AVG
0.1900	43.76	9.76	53.52	64.03	-10.51	QP
0.1900	21.48	9.76	31.24	54.03	-22.79	AVG
0.2340	39.43	9.76	49.19	62.30	-13.11	QP
0.2340	22.53	9.76	32.29	52.30	-20.01	AVG
0.4420	34.26	9.74	44.00	57.02	-13.02	QP
0.4420	26.45	9.74	36.19	47.02	-10.83	AVG
0.4900	34.44	9.74	44.18	56.17	-11.99	QP
0.4900	23.64	9.74	33.38	46.17	-12.79	AVG
0.9500	26.23	9.74	35.97	56.00	-20.03	QP
0.9500	15.68	9.74	25.42	46.00	-20.58	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


EUT:	Tablet	Model Name :	MYX215A
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

ACCRED

Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Roman
0.1620	47.74	9.73	57.47	65.36	-7.89	QP
0.1620	28.93	9.73	38.66	55.36	-16.70	AVG
0.1740	46.33	9.73	56.06	64.76	-8.70	QP
0.1740	24.43	9.73	34.16	54.76	-20.60	AVG
0.2260	41.53	9.73	51.26	62.59	-11.33	QP
0.2260	24.27	9.73	34.00	52.59	-18.59	AVG
0.4500	35.05	9.75	44.80	56.87	-12.07	QP
0.4500	26.47	9.75	36.22	46.87	-10.65	AVG
0.7100	27.68	9.75	37.43	56.00	-18.57	QP
0.7100	16.56	9.75	26.31	46.00	-19.69	AVG
0.8980	26.88	9.75	36.63	56.00	-19.37	QP
0.8980	16.14	9.75	25.89	46.00	-20.11	AVG

Remark:

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOC Fait 13.203, Restricted bands			
MHz	MHz	GHz	
16.42-16.423	399.9-410	4.5-5.15	
16.69475-16.69525	608-614	5.35-5.46	
16.80425-16.80475	960-1240	7.25-7.75	
25.5-25.67	1300-1427	8.025-8.5	
37.5-38.25	1435-1626.5	9.0-9.2	
73-74.6	1645.5-1646.5	9.3-9.5	
74.8-75.2	1660-1710	10.6-12.7	
123-138	2200-2300	14.47-14.5	
149.9-150.05	2310-2390	15.35-16.2	
156.52475-156.52525	2483.5-2500	17.7-21.4	
156.7-156.9	2690-2900	22.01-23.12	
162.0125-167.17	3260-3267	23.6-24.0	
167.72-173.2	3332-3339	31.2-31.8	
240-285	3345.8-3358	36.43-36.5	
322-335.4	3600-4400	(2)	
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358	

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Eroquopov/Mb	1-)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)		EAK	AVERAGE	
Above 1000		74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

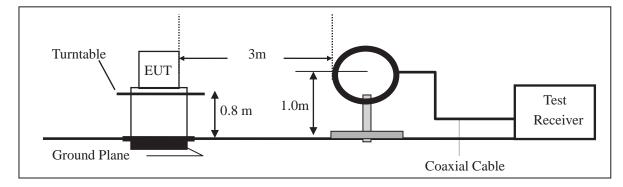
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

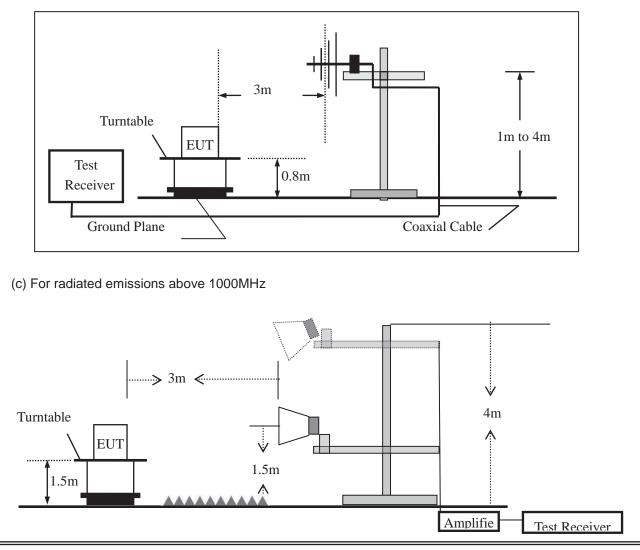
Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

ACC

Certificate #4298.01

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	ouring the radiated emission test, the Spectrum Analyzer was set with the following configurations:										
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth								
30 to 1000	QP	120 kHz	300 kHz								
Ab 200	Peak	1 MHz	1 MHz								
Above 1000	Average	1 MHz	10 Hz								

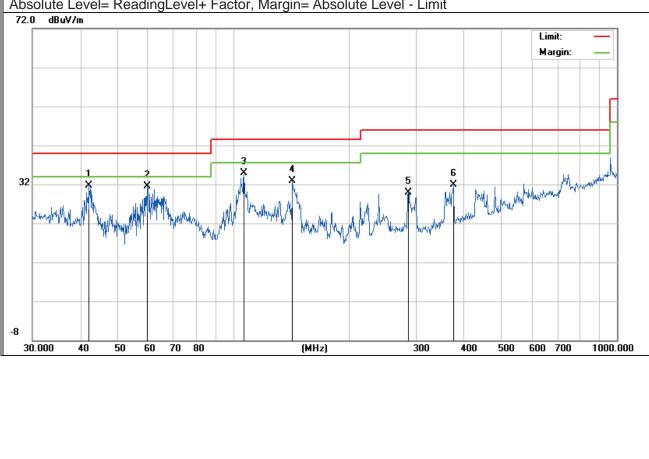
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	Tablet	Model No.:	MYX215A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Tablet	Model Name :	MYX215A
Temperature:	20 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 12V		

1								
Polar (H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	Hz) (dBuV) (dB) (dBuV/m		(dBuV/m)	(dBuV/m)	(dB)		
V	42.1542	19.16	12.54	31.70	40.00	-8.30	QP	
V	59.8588	25.49	6.00	31.49	40.00	-8.51	QP	
V	106.7587	23.48	11.43	34.91	43.50	-8.59	QP	
V	142.8243	20.75	12.25	33.00	43.50	-10.50	QP	
V V	285.9778	15.89	14.09	29.98	46.00	-16.02	QP	
V	374.6225	15.33	16.65	31.98	46.00	-14.02	QP	

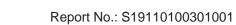
Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Report No.: S19110100301001

	(H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) H 56.3948 27.34 6.43 33.77 40.00 -6.23 H 149.4857 24.75 11.83 36.58 43.50 -6.92 H 213.7634 27.68 9.63 37.31 43.50 -6.19 H 239.9874 26.18 11.55 37.73 46.00 -8.27 H 429.5228 18.41 18.25 36.66 46.00 -9.34 H 750.1083 11.87 24.95 36.82 46.00 -9.18 Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit Imit: Margin: 72.0 dBuV/m Imit: Margin: Margin: 32 1 2 3 5 5 5	QP QP QP QP QP
H 149.4857 24.75 11.83 36.58 43.50 -6.92 QP H 213.7634 27.68 9.63 37.31 43.50 -6.19 QP H 239.9874 26.18 11.55 37.73 46.00 -8.27 QP H 429.5228 18.41 18.25 36.66 46.00 -9.34 QP H 750.1083 11.87 24.95 36.82 46.00 -9.18 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit -9.18 QP 72.0 dBuV/m	H 149.4857 24.75 11.83 36.58 43.50 -6.92 H 213.7634 27.68 9.63 37.31 43.50 -6.19 H 239.9874 26.18 11.55 37.73 46.00 -8.27 H 429.5228 18.41 18.25 36.66 46.00 -9.34 H 750.1083 11.87 24.95 36.82 46.00 -9.18 Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit Imit: Margin: 72.0 dBuV/m 2 34 5 5 5 32 1 2 34 5 5 5 32 1 2 34 5 5 5	QP QP QP QP
H 149.4857 24.75 11.83 36.58 43.50 -6.92 QP H 213.7634 27.68 9.63 37.31 43.50 -6.19 QP H 239.9874 26.18 11.55 37.73 46.00 -8.27 QP H 429.5228 18.41 18.25 36.66 46.00 -9.34 QP H 750.1083 11.87 24.95 36.82 46.00 -9.18 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit -9.18 QP 72.0 dBuV/m	H 149.4857 24.75 11.83 36.58 43.50 -6.92 H 213.7634 27.68 9.63 37.31 43.50 -6.19 H 239.9874 26.18 11.55 37.73 46.00 -8.27 H 429.5228 18.41 18.25 36.66 46.00 -9.34 H 750.1083 11.87 24.95 36.82 46.00 -9.18 Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit Imit: Margin: 72.0 dBuV/m 2 34 5 5 5 32 1 2 34 5 5 5 32 1 2 34 5 5 5	QP QP QP QP
H 213.7634 27.68 9.63 37.31 43.50 -6.19 QP H 239.9874 26.18 11.55 37.73 46.00 -8.27 QP H 429.5228 18.41 18.25 36.66 46.00 -9.34 QP H 750.1083 11.87 24.95 36.82 46.00 -9.18 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m Imit: I	H 213.7634 27.68 9.63 37.31 43.50 -6.19 H 239.9874 26.18 11.55 37.73 46.00 -8.27 H 429.5228 18.41 18.25 36.66 46.00 -9.34 H 750.1083 11.87 24.95 36.82 46.00 -9.18 Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit Imit: Margin: 72.0 dBuV/m dBuV/m Imit: Margin: 32 1 2 3 4 5 6	QP QP QP
H 239.9874 26.18 11.55 37.73 46.00 -8.27 QP H 429.5228 18.41 18.25 36.66 46.00 -9.34 QP H 750.1083 11.87 24.95 36.82 46.00 -9.18 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit Imit:	H 239.9874 26.18 11.55 37.73 46.00 -8.27 H 429.5228 18.41 18.25 36.66 46.00 -9.34 H 750.1083 11.87 24.95 36.82 46.00 -9.18 Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m Imit: Margin: 32 1 2 3 4 5 6 32 1 2 3 4 5 6 5	QP QP
H 429.5228 18.41 18.25 36.66 46.00 -9.34 QP H 750.1083 11.87 24.95 36.82 46.00 -9.18 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m 72.0 dBuV/m dBuV/m data data 5 6 5 6 4	H 429.5228 18.41 18.25 36.66 46.00 -9.34 H 750.1083 11.87 24.95 36.82 46.00 -9.18 Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit -9.18 -9.18 72.0 dBuV/m Imit: Margin: -9.18 -9.18 32 1 2 3 4 -5 5 32 1 2 3 4 -5 5	QP
H 750.1083 11.87 24.95 36.82 46.00 -9.18 QP Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m Image: Comparison of the second sec	H 750.1083 11.87 24.95 36.82 46.00 -9.18 Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m Imit: Margin: Imit: Marg	
Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m	Remark: Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit 72.0 dBuV/m	
The second se	"" "Martan Kulos" (1910)	der hai ha

Spurious	Emission	Above 10	GHz (1GHz	to 25GHz))				
EUT:		Tablet		Model N	No.:	MYX2	15A		
Temperature:		20 °C		Relative	e Humidity:	48%	48%		
Test Mode:		Mode2/Mo	ode3/Mode4	1 Test By	:	Mary H	Чu		
All the modula	tion mod	les have b	een tested,	and the w	orst result	was report	as below:		
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
		L	ow Channel	(2402 MH	z)(8-DPSK))Above 10	G		
4804.16	63.79	5.21	35.59	44.30	60.29	74.00	-13.71	Pk	Vertical
4804.16	43.33	5.21	35.59	44.30	39.83	54.00	-14.17	AV	Vertical
7206.92	64.51	6.48	36.27	44.60	62.66	74.00	-11.34	Pk	Vertical
7206.92	43.52	6.48	36.27	44.60	41.67	54.00	-12.33	AV	Vertical
4804.25	64.84	5.21	35.55	44.30	61.30	61.30 74.00		Pk	Horizontal
4804.25	43.62	5.21	35.55	44.30	40.08	54.00	-13.92	AV	Horizontal
7206.80	60.25	6.48	36.27	44.52	58.48	74.00	-15.52	Pk	Horizontal
7206.80	43.08	6.48	36.27	44.52	41.31	54.00	-12.69	AV	Horizontal
Mid Channel (2441 MHz)(8-DPSK)Above 1G									
4882.18	64.38	5.21	35.66	44.20	61.05	74.00	-12.95	Pk	Vertical
4882.18	43.20	5.21	35.66	44.20	39.87	54.00	-14.13	AV	Vertical
7323.75	64.99	7.10	36.50	44.43	64.16	74.00	-9.84	Pk	Vertical
7323.75	42.53	7.10	36.50	44.43	41.70	54.00	-12.30	AV	Vertical
4882.48	61.49	5.21	35.66	44.20	58.16	74.00	-15.84	Pk	Horizontal
4882.48	40.51	5.21	35.66	44.20	37.18	54.00	-16.82	AV	Horizontal
7324.41	60.54	7.10	36.50	44.43	59.71	74.00	-14.29	Pk	Horizontal
7324.41	41.46	7.10	36.50	44.43	40.63	54.00	-13.37	AV	Horizontal
		Hi	gh Channel	(2480 MH	z)(8-DPSK)) Above 1	G		
4960.02	66.36	5.21	35.52	44.21	62.88	74.00	-11.12	Pk	Vertical
4960.02	43.54	5.21	35.52	44.21	40.06	54.00	-13.94	AV	Vertical
7439.74	63.38	7.10	36.53	44.60	62.41	74.00	-11.59	Pk	Vertical
7439.74	42.80	7.10	36.53	44.60	41.83	54.00	-12.17	AV	Vertical
4960.43	62.32	5.21	35.52	44.21	58.84	74.00	-15.16	Pk	Horizontal
4960.43	41.01	5.21	35.52	44.21	37.53	54.00	-16.47	AV	Horizontal
7440.29	62.63	7.10	36.53	44.60	61.66	74.00	-12.34	Pk	Horizontal
7440.29	42.19	7.10	36.53	44.60	41.22	54.00	-12.784	AV	Horizontal


ACCI

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

EUT:	ous Emissio	Tablet		1	/odel		2-100.	Ť.	215A		
		-									
Temperatu	ure:	20 ℃			,			48%			
Test Mode	Test Mode: Mode2/ Mode4				Test By: Mary Hu						
All the modulation modes have been tested, an				ed, ar	and the worst result was report as below:						
Frequenc	Meter	Cable	Antenna	Prea	amp	Emission	Lin	nite	Margin	Detector	
У	Reading	Loss	Factor	Fac		Level			-		Comment
(MHz)	(dBµV)	(dB)	dB/m	(d	/	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
				1		SK)-hoppir	_				1
2310.00	55.50	2.97	27.80	43.		42.47	7		-31.53	Pk	Horizontal
2310.00	44.34	2.97	27.80	43.		31.31	5		-22.69	AV	Horizontal
2310.00	53.77	2.97	27.80	43.		40.74	7		-33.26	Pk	Vertical
2310.00	41.37	2.97	27.80	43.		28.34	5		-25.66	AV	Vertical
2390.00	50.69	3.14	27.21	43.		37.24	7		-36.76	Pk	Vertical
2390.00	43.10	3.14	27.21	43.	.80	29.65	5	4	-24.35	AV	Vertical
2390.00	51.93	3.14	27.21	43.		38.48	7		-35.52	Pk	Horizontal
2390.00	41.87	3.14	27.21	43.		28.42	5		-25.58	AV	Horizontal
2483.50	54.34	3.58	27.70	44.		41.62	7		-32.38	Pk	Vertical
2483.50	40.53	3.58	27.70	44.		27.81	5	4	-26.19	AV	Vertical
2483.50	52.09	3.58	27.70	44.		39.37	7		-34.63	Pk	Horizontal
2483.50	40.74	3.58	27.70	44.		28.02	5	4	-25.98	AV	Horizontal
			1	ps(8-I			ping				
2310.00	54.71	2.97	27.80	43.	.80	41.68	7	4	-32.32	Pk	Horizontal
2310.00	43.41	2.97	27.80	43.	.80	30.38	5		-23.62	AV	Horizontal
2310.00	50.93	2.97	27.80	43.	.80	37.90	7	4	-36.10	Pk	Vertical
2310.00	44.73	2.97	27.80	43.	.80	31.70	5	4	-22.30	AV	Vertical
2390.00	51.04	3.14	27.21	43.		37.59	7		-36.41	Pk	Vertical
2390.00	42.88	3.14	27.21	43.	.80	29.43	5	4	-24.57	AV	Vertical
2390.00	52.55	3.14	27.21	43.	.80	39.10	7		-34.90	Pk	Horizontal
2390.00	42.09	3.14	27.21	43.		28.64	5	4	-25.36	AV	Horizontal
2483.50	51.43	3.58	27.70	44.	.00	38.71	7		-35.29	Pk	Vertical
2483.50	42.69	3.58	27.70	44.	.00	29.97	5	4	-24.03	AV	Vertical
2483.50	51.20	3.58	27.70	44.	.00	38.48	7	4	-35.52	Pk	Horizontal
2483.50	40.13	3.58	27.70	44.	.00	27.41	5	4	-26.59	AV	Horizontal

ACCRED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

JT:	T: Tablet				Model N	Model No.:			MYX215A			
Гетр	erature:	20 °	С		Relative	Relative Humidity:			48%			
Fest N	Node:	Mod	de2/ Mod	e4	Test By	Test By:			' Hu			
All th	e modulatic	on modes	have be	en tested	, and the v	worst result	t was	rep	ort as b	elow:		
	Frequenc y	Readin g Level	Cable Loss	Antenn a	Preamp Factor	Emission Level	Lim	its	Margin	Detecto r	Commont	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dB V/n		(dB)	Туре	Comment	
	3260	61.95	4.04	29.57	44.70	50.86	74	ł	-23.14	Pk	Vertical	
	3260	45.68	4.04	29.57	44.70	34.59	54	t I	-19.41	AV	Vertical	
	3260	53.63	4.04	29.57	44.70	42.54	74	ł	-31.46	Pk	Horizontal	
	3260	45.22	4.04	29.57	44.70	34.13	54	ł	-19.87	AV	Horizontal	
	3332	61.12	4.26	29.87	44.40	50.85	74	ł	-23.15	Pk	Vertical	
	3332	44.50	4.26	29.87	44.40	34.23	54	ł	-19.77	AV	Vertical	
	3332	61.81	4.26	29.87	44.40	51.54	74	ļ	-22.46	Pk	Horizontal	
	3332	46.06	4.26	29.87	44.40	35.79	54	ł	-18.21	AV	Horizontal	
	17797	51.36	10.99	43.95	43.50	62.80	74	ļ	-11.20	Pk	Vertical	
	17797	35.45	10.99	43.95	43.50	46.89	54	1	-7.11	AV	Vertical	
	17788	53.44	11.81	43.69	44.60	64.34	74	ļ	-9.66	Pk	Horizontal	
	17788	35.52	11.81	43.69	44.60	46.42	54	t I	-7.58	AV	Horizontal	

ACCRED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Tablet	Model No.:	MYX215A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Tablet	Model No.:	MYX215A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Tablet	Model No.:	MYX215A
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Tablet	Model No.:	MYX215A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.7.6 Test Results

EUT:	Tablet	Model No.:	MYX215A
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Tablet	Model No.:	MYX215A
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

The worst mode is GFSK mode, and the report only show the worst mode data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached Metal Antenna (Gain: 4.12dBi). It comply with the standard requirement.

ACCRE

NTEK北测

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298.01

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

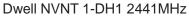
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

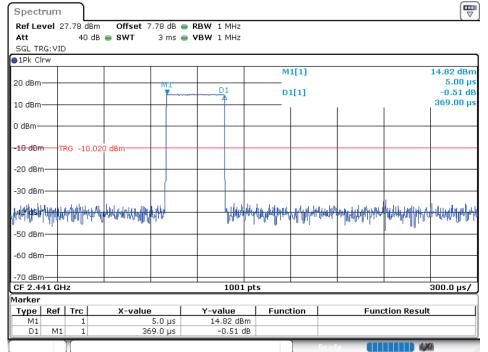
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

NTEKJL测

8 TEST RESULTS

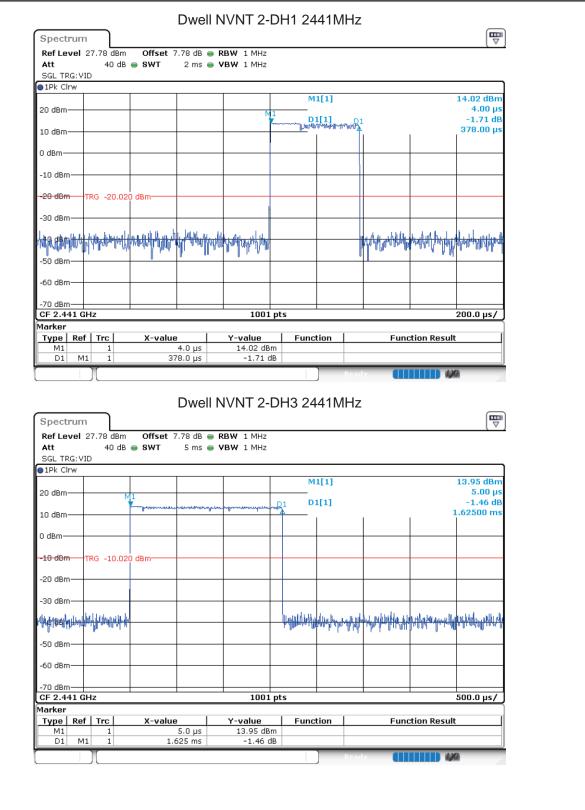

8.1 DWELL TIME


U.I DIVLLL							
Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.369	118.080	31600	400	Pass
NVNT	1-DH3	2441	1.625	260.000	31600	400	Pass
NVNT	1-DH5	2441	2.872	306.356	31600	400	Pass
NVNT	2-DH1	2441	0.378	120.960	31600	400	Pass
NVNT	2-DH3	2441	1.625	260.000	31600	400	Pass
NVNT	2-DH5	2441	2.864	305.503	31600	400	Pass
NVNT	3-DH1	2441	0.378	120.960	31600	400	Pass
NVNT	3-DH3	2441	1.625	260.000	31600	400	Pass
NVNT	3-DH5	2441	2.864	305.503	31600	400	Pass
					* *		

ACCREDITED

Certificate #4298.01

ilac-M



SGL TRG: VID 1Pk Clrw						
20 dBm			M1[1]			14.74 dBm 5.00 μs
	M1		D1 D1[1]			-0.62 dB
10 dBm						1.62500 ms
0 dBm						
-10 dBm TRG -10.0	20 dBm					
-20 dBm						
-30 dBm						
htter and a superior and a	4		Hartson Hartan Hartan	Herd Hall the Hille Aller A	64. Aller Aller	h-hore-weightelperlaghtel
-50 dBm						
-60 dBm	<u> </u>	_				
-70 dBm	ļ					
CF 2.441 GHz Marker		1001	pts	•	•	500.0 μs/
Marker Type Ref Trc	X-value	Y-value	Function	Fu	Inction Resu	ılt
M1 1 D1 M1 1	5.0 µs 1.625 ms	14.74 dBm -0.62 dB				
M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm	1.625 ms Dwe 0 Offset 7.78 dB	-0.62 de	B	Ready (//Hz		
M1 1 D1 M1 1 Spectrum Image: Comparison of the second se	1.625 ms Dwe 0 Offset 7.78 dB	-0.62 de	B	Ready (
M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 de SGL TRG: VID IPk Clrw	1.625 ms Dwe 0 Offset 7.78 dB	-0.62 de	B	Ready //Hz		5.00 dBm
M1 1 D1 M1 1 Spectrum Image: Comparison of the second se	1.625 ms Dwe 0 Offset 7.78 dB	-0.62 de	DH5 2441N	Ready AHz		5.00 dBm 8.00 µs 0.62 dB
M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 de SGL TRG: VID IPk Clrw	1.625 ms Dwe 0 Offset 7.78 dB	-0.62 de	в DH5 2441N м1[1]	Ready AHz		5.00 dBm 8.00 μs
M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 de SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	1.625 ms Dwe 0 Offset 7.78 dB	-0.62 de	в DH5 2441N м1[1]	Ready AHz		5.00 dBm 8.00 µs 0.62 dB
M1 1 D1 M1 1 Spectrum Image: Comparison of the second se	1.625 ms	-0.62 de	в DH5 2441N м1[1]	Ready AHz		5.00 dBm 8.00 µs 0.62 dB
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG:VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 10 dBm	1.625 ms	-0.62 de	в DH5 2441N м1[1]	Ready AHz		5.00 dBm 8.00 µs 0.62 dB
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 10 dBm 10 dBm M1 -10 dBm TRG -10.0	1.625 ms	-0.62 de	DH5 2441N			5.00 dBm 8.00 µs 0.62 dB 2.87200 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG:VID 1Pk Clrw 20 dBm 0 dBm 10 dBm M1 0 dBm M1 -10 dBm TRG -20 dBm -10.0	1.625 ms	-0.62 de	в DH5 2441N м1[1]			5.00 dBm 8.00 µs 0.62 dB 2.87200 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG:VID 1Pk Clrw 20 dBm 0 dBm 10 dBm M1 0 dBm M1 -10 dBm TRG -20 dBm -10.0	1.625 ms	-0.62 de	DH5 2441N			5.00 dBm 8.00 µs 0.62 dB 2.87200 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 101 -20 dBm -10.0 -20 dBm -50 dBm	1.625 ms	-0.62 de	DH5 2441N			5.00 dBm 8.00 µs 0.62 dB 2.87200 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 10 dBm 10 dBm M1 0 dBm M1 -10 dBm TRG -20 dBm -30 dBm -50 dBm -60 dBm	1.625 ms	-0.62 de	DH5 2441N			5.00 dBm 8.00 µs 0.62 dB 2.87200 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm 40 dE SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm M1 0 10 dBm M1 0 -10 dBm M1 0 -20 dBm -10.0 -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm	1.625 ms	-0.62 de	в DH5 2441N 			5.00 dBm 8.00 µs 0.62 dB 2.87200 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm Att 40 dE SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 101 -20 dBm -10 dBm -30 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm	1.625 ms	-0.62 de	в DH5 2441N 	ւրովիսով զիկիչում (իսև		5.00 dBm 8.00 µs 0.62 dB 2.87200 ms
M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dBm 40 dE SGL TRG: VID 10 HC Irw 20 dBm 10 dBm M1 0 10 dBm M1 0 -10 dBm M1 -10.0 -20 dBm -10.0 -20 dBm -30 dBm -50 dBm -10.0 -50 dBm -60 dBm -60 dBm -70 dBm CF 2.441 GHz -20 dBm	1.625 ms	-0.62 de	DH5 2441N	ւրովիսով զիկիչում (իսև	Inction Resu	5.00 dBm 8.00 µs 0.62 dB 2.87200 ms

Att		18 👄 SV	νT	8 ms (● VBW	1 MHz					
SGL TRG: VID 1Pk Clrw)										
THK CILM							M	1[1]			5.00 dBm
20 dBm		_					<u> </u>	-1-1			16.00 µs
							D	1[1]			1.20 dB
10 dBm	₩ <u>1</u> ▼ ///m//~	h. Ml. Mlanha	Abriana	Menning	hall and the second second	All Maria		I	1	1	2.86400 ms
D dBm			1 o L alhaun .	ւ վ վետ	a aliante a c						
-10 dBm					_						
20 dBm TF	RG -20.	020 dBm-									
-30 dBm											
ulenter and a state of the second		_				ht	. Mildellandly	hair-perlipe gabelie de	halishahilana	henrishigh	ahaddid cyrleil dau
50 dBm		_			_						
60 dBm		_			_						
-70 dBm											
CF 2.441 GH	z					1001	pts				800.0 µs/
larker							1 -		_]
Type Ref M1	Trc 1	X-	value	5.0 μs		alue 5.00 de	Func	tion	Fund	tion Result	
D1 M1	1			54 ms		1.20 (
								-			
							DH1 24) Pear 41MHz	ly (11		
Ref Level 2 Att	40 0	m Ofi dB 🕳 SV	fset 7.	78 dB (I NVN RBW VBW	1 MHz	DH1 24] Read	ly ())		
Ref Level 2 Att SGL TRG: VID	40 0		fset 7.	78 dB (RBW	1 MHz	DH1 24] Read			
Ref Level 2 Att SGL TRG: VID	40 0		fset 7.	78 dB (RBW	1 MHz					
Ref Level 2 Att SGL TRG: VID 1Pk Clrw	40 0		fset 7.	78 dB (3 ms (RBW	1 MHz) Read	iv (11		₩ ₩ 14.02 dBm 5.00 µs
Ref Level 2 Att SGL TRG:VID)1Pk Clrw 20 dBm	40 0		fset 7.	78 dB (RBW	1 MHz 1 MHz	M		IV (11		14.02 dBm 5.00 μs -1.79 dB
Ref Level 2 Att SGL TRG:VID)1Pk Clrw 20 dBm	40 0		fset 7.	78 dB (3 ms (■ RBW ■ VBW	1 MHz 1 MHz	M	1[1]	IV (11)		14.02 dBm 5.00 µs
Ref Level 2' Att SGL TRG:VID 1Pk Clrw 20 dBm .0 dBm	40 0		fset 7.	78 dB (3 ms (■ RBW ■ VBW	1 MHz 1 MHz	M	1[1]			14.02 dBm 5.00 μs -1.79 dB
Ref Level 2' Att '' SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm	40 0		fset 7.	78 dB (3 ms (■ RBW ■ VBW	1 MHz 1 MHz	M	1[1]			14.02 dBm 5.00 μs -1.79 dB
Ref Level 2 Att SGL TRG: VID) IPk Clrw 20 dBm 10 dBm 	40 (fset 7.	78 dB (3 ms (■ RBW ■ VBW	1 MHz 1 MHz	M	1[1]			14.02 dBm 5.00 μs -1.79 dB
Ref Level 2' Att SGL TRG: VID 91Pk Clrw 20 dBm 10 dBm 10 dBm -10 dBm 10 dBm	40 (38 • SW	fset 7.	78 dB (3 ms (■ RBW ■ VBW	1 MHz 1 MHz	M	1[1]			14.02 dBm 5.00 μs -1.79 dB
Ref Level 2 Att SGL TRG: VID PIPk Cirw 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm	40 (38 • SW	fset 7.	78 dB (3 ms (■ RBW ■ VBW	1 MHz 1 MHz	M	1[1]		Hyhlidgentho-ulfibly	14.02 dBm 5.00 μs -1.79 dB
Ref Level 2 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm	40 (38 • SW	fset 7.	78 dB (3 ms (■ RBW ■ VBW	1 MHz 1 MHz	M	1[1]		Hybrogenite-alleby	14.02 dBm 5.00 μs -1.79 dB
Ref Level 2 Att SGL TRG: VID 9 IPk Clrw 20 dBm 10 dBm 10 dBm 10 dBm 30 dBm 50 dBm 50 dBm	40 (38 • SW	fset 7.	78 dB (3 ms (■ RBW ■ VBW	1 MHz 1 MHz	M	1[1]			14.02 dBm 5.00 μs -1.79 dB
Ref Level 2 Att SGL TRG: VID PIPk Cirw 20 dBm 10 dBm 10 dBm 30 dBm 10 dBm 60 dBm 60 dBm	40 c	38 • SW	fset 7.	78 dB (3 ms (■ RBW ■ VBW	1 MHz 1 MHz	M	1[1]			14.02 dBm 5.00 μs -1.79 dB
Ref Level 2 Att SGL TRG: VID 1PR CIrw 20 dBm 10 dBm 50 dBm 50 dBm 60 dBm 70 dBm 70 dBm 70 dBm 71 dBm	40 c	38 • SW	fset 7.	78 dB (3 ms (■ RBW ■ VBW	1 MHz 1 MHz	D:	1[1]			14.02 dBm 5.00 μs -1.79 dB
Ref Level 2 Att SGL TRG: VID PIPk CIrw 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 50 dBm 50 dBm 60 dBm 70 dBm 70 dBm 70 dBm 70 dBm 70 dBm	40 c	020 dBm 	fset 7. vr	78 dB (3 ms (RBW VBW	1 MHz 1 MHz 0 0 1 0 0 1	M D: 				14.02 dBm 5.00 µs -1.79 dB 378.00 µs
Spectrum Ref Level 2 Att SGL TRG: VID IPk Clrw 20 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 50 dBm 60 dBm 70 d	40 c	020 dBm 	fset 7.	78 dB (3 ms (RBW VBW	1 MHz 1 MHz	m D D D D			tion Result	14.02 dBm 5.00 µs -1.79 dB 378.00 µs

ACCREDITED

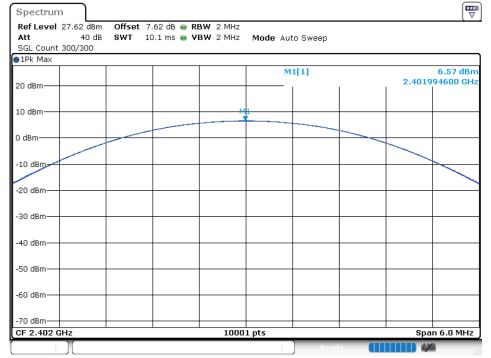
Certificate #4298.01

-50 dBm -60 dBm -70 dBm -70 dBm CF 2.441 GHz Type Ref Trc X-value Y-value Function Result Marker Type Ref Trc X-value Y-value Function Result M1 1 5.0 μs 13.93 dBm D1 M1 1 1.625 ms -1.33 dB	μs/
CF 2.441 GHz 1001 pts 500.0 µ Narker Type Ref Trc X-value Y-value Function Function Result M1 1 5.0 µs 13.93 dBm 5.0 µs 13.93 dBm	μs/
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.0 µs 13.93 dBm	<u>µs/</u>
M1 1 5.0 µs 13.93 dBm	1
Ready (
SGL TRG:VID PIPk Cirw	
	i dBm 00 μs 95 dB
10 dBm M1 2.86400)0 ms
0 dBm	
-10 dBm	
-20 dBm TRG -20.020 dBm	
-20 dBm TRG -20.020 dBm	
-30 dBm	
-30 dBm	
-30 dBm	tellefold in
-30 dBm	hillefoddyr
-30 dBm	hiki ludiy
-30 dBm	hibiludig
-30 dBm	
-30 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz 1001 pts 800.0 µ	
-30 dBm	

NTEK北测

Report No.: S19110100301001

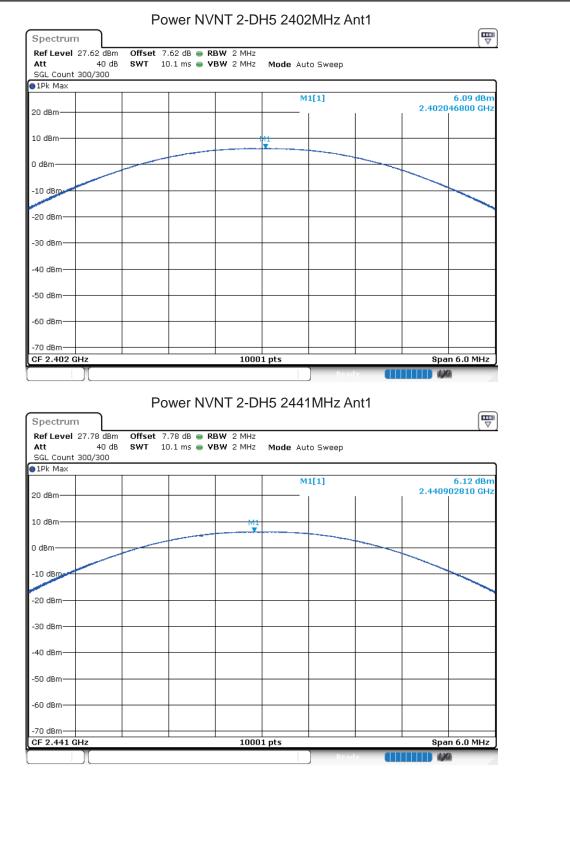
8.2 MAXIMUM CONDUCTED OUTPUT POWER

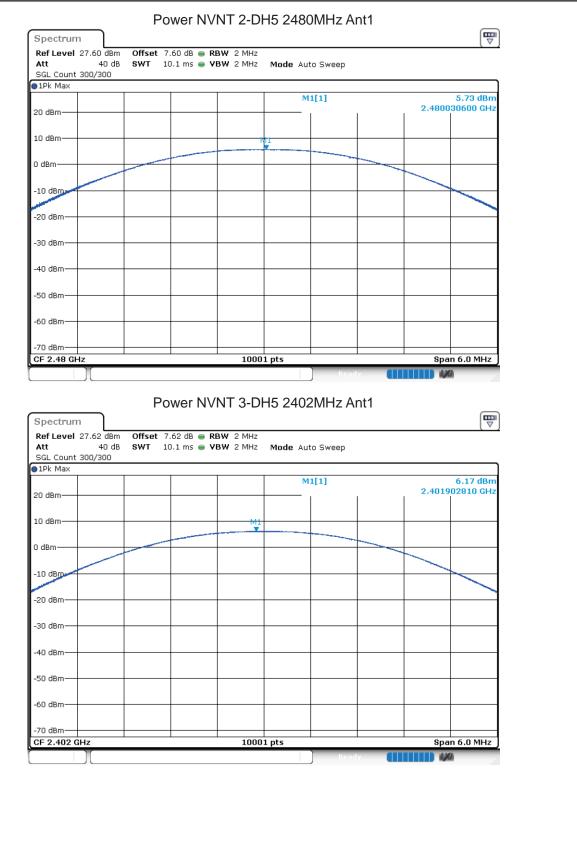

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	6.568	30	Pass
NVNT	1-DH5	2441	Ant 1	6.545	30	Pass
NVNT	1-DH5	2480	Ant 1	6.116	30	Pass
NVNT	2-DH5	2402	Ant 1	6.09	20.97	Pass
NVNT	2-DH5	2441	Ant 1	6.117	20.97	Pass
NVNT	2-DH5	2480	Ant 1	5.735	20.97	Pass
NVNT	3-DH5	2402	Ant 1	6.168	20.97	Pass
NVNT	3-DH5	2441	Ant 1	6.174	20.97	Pass
NVNT	3-DH5	2480	Ant 1	5.756	20.97	Pass

ACCREDITED


Certificate #4298.01

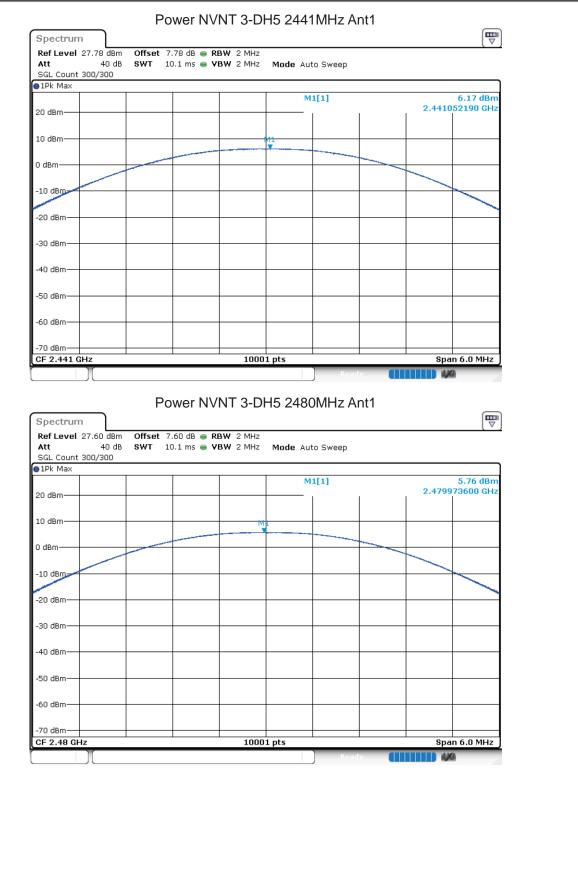
ilac-M


Power NVNT 1-DH5 2402MHz Ant1



ACCREDITED

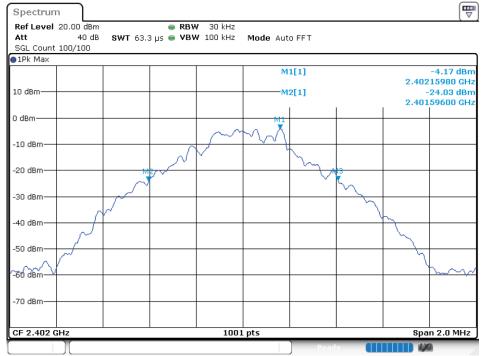
Certificate #4298.01



ACCREDITED

Certificate #4298.01

ACCREDITED

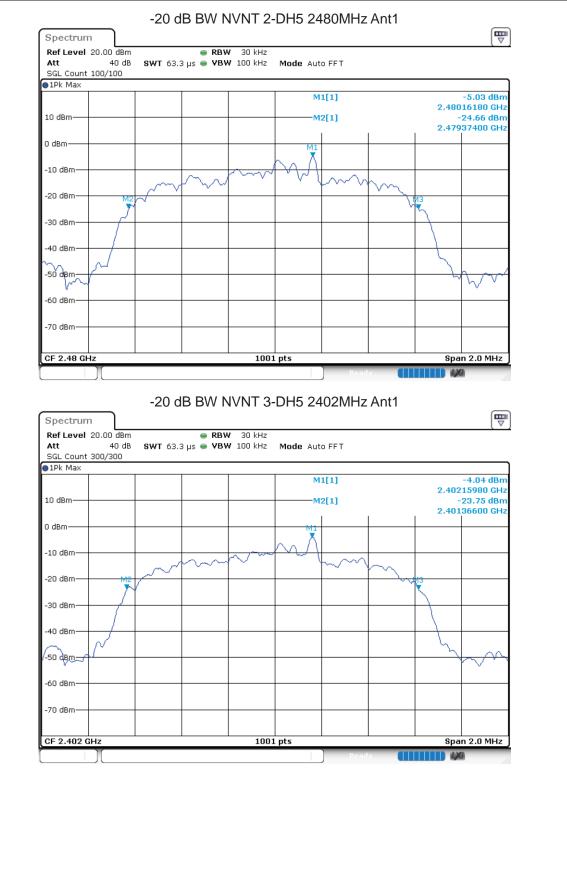

NTEKJLI

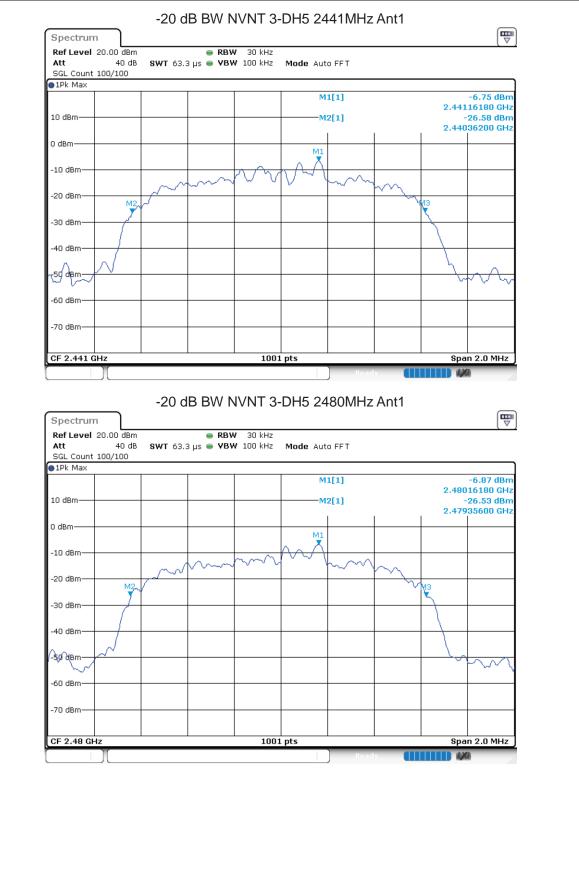
Report No.: S19110100301001

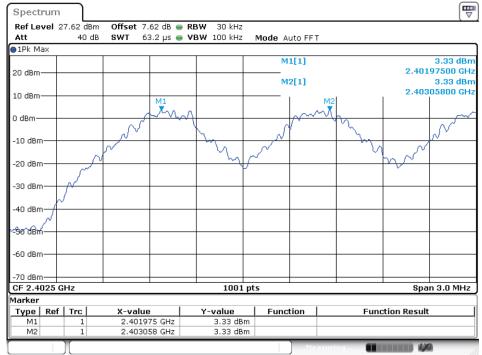
8.3 OCCUPIED CHANNEL BANDWIDTH

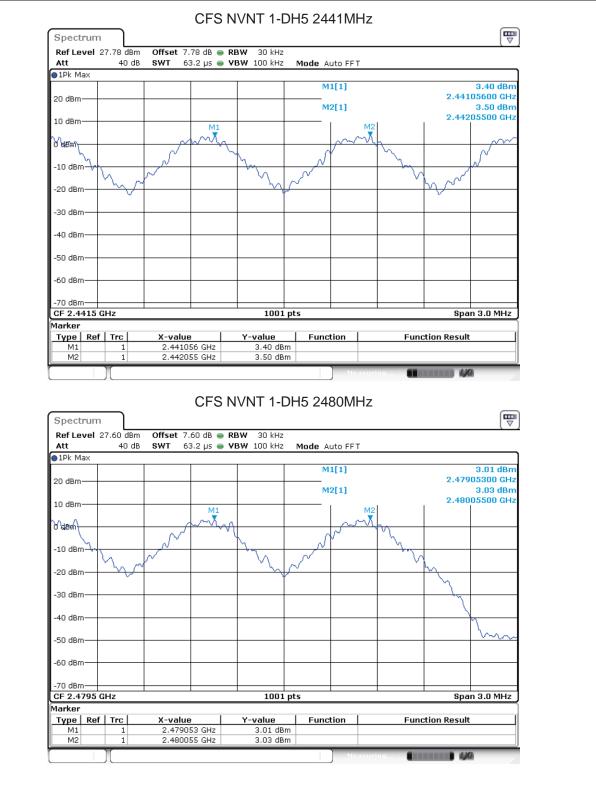
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant 1	0.812	Pass
NVNT	1-DH5	2441	Ant 1	0.848	Pass
NVNT	1-DH5	2480	Ant 1	0.854	Pass
NVNT	2-DH5	2402	Ant 1	1.27	Pass
NVNT	2-DH5	2441	Ant 1	1.286	Pass
NVNT	2-DH5	2480	Ant 1	1.24	Pass
NVNT	3-DH5	2402	Ant 1	1.248	Pass
NVNT	3-DH5	2441	Ant 1	1.256	Pass
NVNT	3-DH5	2480	Ant 1	1.266	Pass
	NVNT NVNT NVNT NVNT NVNT NVNT NVNT	NVNT 1-DH5 NVNT 1-DH5 NVNT 1-DH5 NVNT 2-DH5 NVNT 2-DH5 NVNT 2-DH5 NVNT 2-DH5 NVNT 3-DH5 NVNT 3-DH5	NVNT 1-DH5 2402 NVNT 1-DH5 2441 NVNT 1-DH5 2480 NVNT 2-DH5 2402 NVNT 2-DH5 2441 NVNT 2-DH5 2402 NVNT 2-DH5 2441 NVNT 2-DH5 2480 NVNT 3-DH5 2402 NVNT 3-DH5 2441	NVNT 1-DH5 2402 Ant 1 NVNT 1-DH5 2441 Ant 1 NVNT 1-DH5 2480 Ant 1 NVNT 1-DH5 2480 Ant 1 NVNT 2-DH5 2402 Ant 1 NVNT 2-DH5 2402 Ant 1 NVNT 2-DH5 2441 Ant 1 NVNT 2-DH5 2480 Ant 1 NVNT 3-DH5 2402 Ant 1 NVNT 3-DH5 2441 Ant 1	NVNT 1-DH5 2402 Ant 1 0.812 NVNT 1-DH5 2441 Ant 1 0.848 NVNT 1-DH5 2480 Ant 1 0.854 NVNT 1-DH5 2402 Ant 1 1.27 NVNT 2-DH5 2441 Ant 1 1.286 NVNT 2-DH5 2480 Ant 1 1.24 NVNT 2-DH5 2402 Ant 1 1.248 NVNT 3-DH5 2441 Ant 1 1.248 NVNT 3-DH5 2441 Ant 1 1.256

-20 dB BW NVNT 1-DH5 2402MHz Ant1

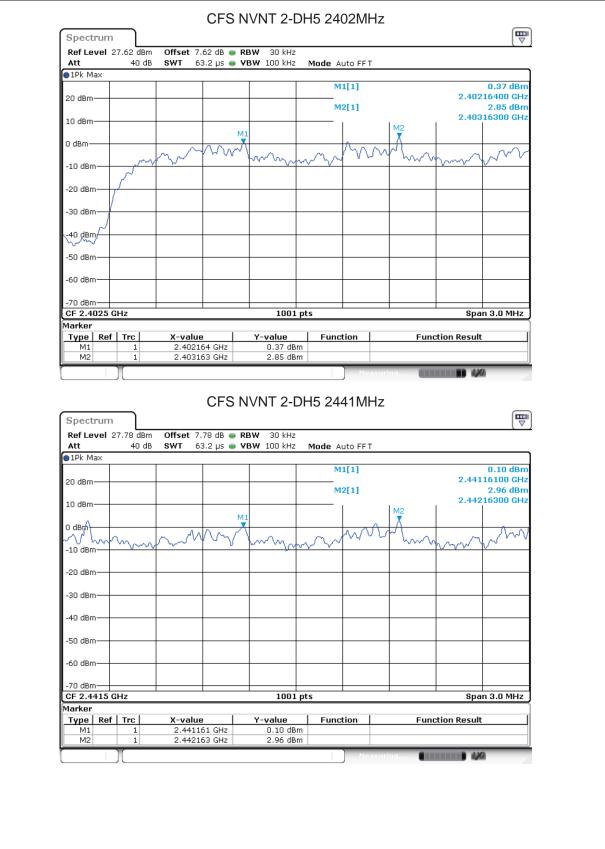


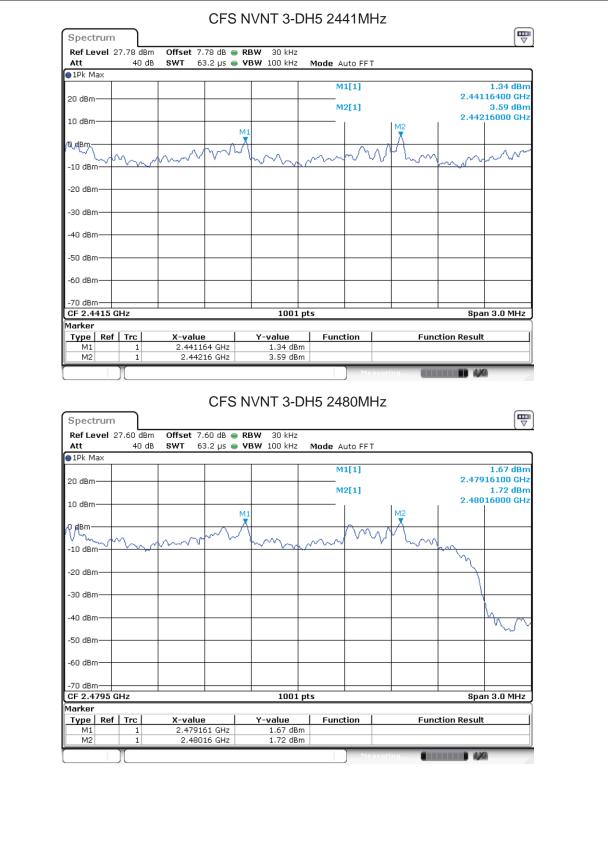





8.4 CARRIER FREQUENCIES SEPARATION

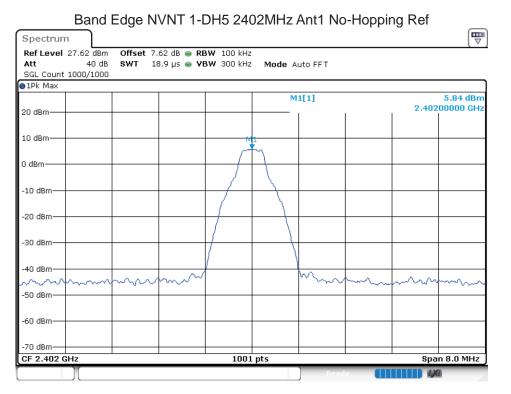
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402.161	2403.163	1.083	0.812	Pass
NVNT	1-DH5	2441.161	2442.163	0.999	0.848	Pass
NVNT	1-DH5	2479.161	2480.163	1.002	0.854	Pass
NVNT	2-DH5	2402.164	2403.163	0.999	0.847	Pass
NVNT	2-DH5	2441.164	2442.163	1.002	0.857	Pass
NVNT	2-DH5	2479.164	2480.163	1.011	0.827	Pass
NVNT	3-DH5	2402.161	2403.163	1.002	0.832	Pass
NVNT	3-DH5	2441.161	2442.163	0.996	0.837	Pass
NVNT	3-DH5	2479.161	2480.163	0.999	0.844	Pass


CFS NVNT 1-DH5 2402MHz



8.5 NUMBER OF HOPPING CHANNEL

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	15	Pass


Att SGL Co	vel 27									
SGL Co		7.62 dBm 40 dB		_	RBW 100 kHz VBW 300 kHz	Mode	Auto Sw	een		
	unt 20	0000/200				mouo	inato on	000		
●1Pk M	ах									
00 40							M1[1]		2 40	5.94 2004
20 dBm							M2[1]		2,40	5.55
101 dBm	\rightarrow								2.48	0243
ได้กับได้	пллке	160000	ותתההמממממת	18868	000000000000000000000000000000000000000	A A A A A A A	ANDAR	A D A D A D A D A D A D A D A D A D A D	n <mark>haan aaaaa</mark> a	68007
O dBmH	***	UNUU	WANNIN ALA	KIIII			1111111	<u> </u>	<u>HAAA IDAA</u>	HAA
-10 dBn		VIVIVI	YUYIYIYIYIY	79999	4403040404	WARR	NUMA	WANDADAYA	MINNANANA NA	WWW
-19 640		101010	40.0184 081	1 . 0 .	11.10.0.01	0 1 0 1 0 1	0,01010		101010101	0101
-20 dBn	ι <u> </u>				_					
-80 dBn	1									
-40 dBn	ı——									
ar)										
-50 dBn	ו									
-60 dBn	_									
-60 aBh	1									
-70 dBn	ı—									
Start 2	.4 GHz	z			1001	pts			Stop 2	.4835
Marker	1	- 1								
Type M1	Ref	Trc 1	X-value 2.402004	GH7	<u>Y-value</u> 5.94 dB		nction	Fur	nction Result	
M2		1	2.4802435		5.55 dB					

ACCREDI

8.6 BAND EDGE

0.0 DANDL							
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-47.71	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-46.27	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-49.28	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-48.11	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-47.79	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-46.19	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-48.61	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-46.59	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-46.31	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-45.43	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-46.17	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-48.45	-20	Pass

Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Emission

rt Nio · \$10110100301001

Spectrur Ref Level Att	m I 27.62 dBm 40 dB			RBW 100 kH: VBW 300 kH:		Auto FFT			
SGL Count	t 100/100								
●1Pk Max	1				м	1[1]			5.63 dBm
20 dBm						1[1]		2.402	205000 GHz
10 40					м	2[1]			-45.00 dBm
10 dBm						I	I	2.400	00000 ¹ &Hz
0 dBm									
-10 dBm									
	D1 -14.159	dBm							
-20 dBm—									
-30 dBm—									
-40 dBm—			M4						MO
Manua	un war war	manupulp	mongonalization	withyme	MARNALANN	Whitedaugerig	bull the way you be	M3	here have
-50 dBm-					•				• 1
-60 dBm—									
-70 dBm—									
Start 2.30)6 GHz			1001	pts			Stop	2.406 GHz
Marker									
	ef Trc	X-value		Y-value 5.63 dB	Func	tion	Func	tion Result	t]
M1 M2	1		.4 GHz	-45.00 dB					
MЗ	1	2.3	39 GHz	-47.22 dB	m				
M4	1	2.342	21 GHz	-41.88 dB	m				
Spectrur	m				H5 240) Read	Ant1 Hop	oping R	ef
Spectrur Ref Level Att	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	VNT 1-D BW 100 kHz BW 300 kHz			Ant1 Hop	oping R	
Spectrur Ref Level Att	m I 27.62 dBm	Offset 7.	62 dB 🔵 R	BW 100 kHz			Ant1 Hop	oping R	
Spectrur Ref Level Att SGL Count	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A		Ant1 Hop		€.02 dBm
Spectrur Ref Level Att SGL Count	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrur Ref Level Att SGL Count 1Pk Max	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		€.02 dBm
Spectrur Ref Level Att SGL Count 1Pk Max	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		€.02 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop		€.02 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 0 dBm- -10 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 0 dBm- -10 dBm- -20 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 0 dBm- -10 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 0 dBm- -10 dBm- -20 dBm-	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count SGL Count 10 dBm	m I 27.62 dBm 40 dB	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	€.02 dBm
Spectrur Ref Level Att SGL Count SGL Count 10 dBm	m	Offset 7.	62 dB 🔵 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hop	2.402	6.02 dBm 299900 GHz
Spectrur Ref Level Att SGL Count SGL Count 10 dBm	m	Offset 7.	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Hop	2.402	6.02 dBm 299900 GHz

Ref Level 27.62 dBn Att 40 d£ SGL Count 1000/1000)1Pk Max	B SWT 227.	2 dB 👄 RBW 5 µs 👄 VBW		Mode /	Auto FFT			
				M	1[1]			6.03 dBm
20 dBm				M	2[1]			15000 GHz 44.75 dBm
10 dBm					-[-]			00000 G <mark>4</mark> z
) dBm								
10 dBm								/\//\\
D1 -13.98	3 dBm							
30 dBm								
40 dBm		M4						
monorthannon	monorphilipping	with warden me	which are	perman	manun	www.	M3 Munan	www.
-50 dBm								
-60 dBm								
-70 dBm								
Start 2.306 GHz 1arker			1001 pt	s			Stop	2.406 GHz
M2 1 M3 1			4.75 dBm 5.81 dBm					
	2.4 2.39 2.3412	GHz -4	4.75 dBm 5.81 dBm 0.26 dBm) Read	× (11		
M3 1 M4 1 Band Spectrum Ref Level 27.60 dBm Att 40 df SGL Count 1000/1000	2.39 2.3412 I Edge NV	GHz -4 GHz -4	5.81 dBm 0.26 dBm 5 2480	MHZ /		-Hoppir	ng Ref	
M3 1 M4 1 Band Spectrum Ref Level 27.60 dBn	2.39 2.3412 I Edge NV	GHz -4 GHz -4 NT 1-DH	5.81 dBm 0.26 dBm 5 2480	Mode A	uto FFT	-Hoppir	ng Ref	
M3 1 M4 1 Band Spectrum Ref Level 27.60 dBn Att 40 df SGL Count 1000/1000 p1Pk Max 1	2.39 2.3412 I Edge NV	GHz -4 GHz -4 NT 1-DH	5.81 dBm 0.26 dBm 5 2480	Mode A		-Hoppir		5.58 dBm p15980 GHz
M3 1 M4 1 Band Spectrum Ref Level 27.60 dBm Att 40 df SGL Count 1000/1000	2.39 2.3412 I Edge NV	GHz -4 GHz -4 NT 1-DH	5.81 dBm 0.26 dBm 5 2480	Mode A	uto FFT	-Hoppir		5.58 dBm
M3 1 M4 1 Band Spectrum Band Ref Level 27.60 dBn Att 40 db SGL Count 1000/1000 D1Pk Max 20 dBm D10 dBm L0 dBm D10 dBm D10 dBm D10 dBm	2.39 2.3412 I Edge NV	GHz -4 GHz -4 NT 1-DH	5.81 dBm 0.26 dBm 5 2480	Mode A	uto FFT	p-Hoppir		5.58 dBm
M3 1 M4 1 Band Spectrum Band Ref Level 27.60 dBn 40 d8 SGL Count 1000/1000 1000/1000 D1Pk Max 20 dBm 10 dBm 10 dBm	2.39 2.3412 I Edge NV	GHz -4 GHz -4 NT 1-DH	5.81 dBm 0.26 dBm 5 2480	Mode A	uto FFT	p-Hoppir		5.58 dBm
M3 1 M4 1 M4 1 Band Spectrum Band SGL Count 1000/100/ SGL Count 1000/100/ SGL Count 1000/100/ M3 10 dBm 10 dBm 20 dBm 20 dBm	2.39 2.3412 I Edge NV	GHz -4 GHz -4 NT 1-DH	5.81 dBm 0.26 dBm 5 2480	Mode A	uto FFT	p-Hoppir		5.58 dBm
M3 1 M4 1 Band Spectrum Band Ref Level 27.60 dBn Att 40 dB SpE Count 1000/1000 D1Pk Max 20 dBm	2.39 2.3412 I Edge NV	GHz -4 GHz -4 NT 1-DH	5.81 dBm 0.26 dBm 5 2480	Mode A	uto FFT	p-Hoppir		5.58 dBm

Band Edge NVNT 1-DH5 2480MHz Ant1 No-Hopping Emission

1001 pts

-60 dBm--70 dBm-

CF 2.48 GHz

Span 8.0 MHz

LXI

Report No · \$19110100301001

Att 40 dB SWT 227.5 µS ¥ VBW 300 kH2 Mode Auto FFT Sci. Count 100/100 M1[1] 5.34 dBm -46.63 dBm 20 dBm M2[1] 2.4803000 GH2 -46.63 dBm 10 dBm 01 -14.419 dBm 0.480 -40.63 dBm 30 dBm 01 -14.419 dBm 0.480 -46.63 dBm 30 dBm 01 -14.419 dBm 0.480 -46.63 dBm 30 dBm 01 -14.419 dBm 0.490 -46.63 dBm 30 dBm 01 -14.419 dBm 0.490 -46.63 dBm 30 dBm 01 -14.419 dBm 0.490 -46.63 dBm 30 dBm 02 -480 GH2 -53.4 dBm -46.93 dBm 30 dBm 12 -2.490 GH2 -53.4 dBm -46.93 dBm 70 dBm 12 -2.493 GH2 -46.93 dBm -46.93 dBm M3 1 2 .5 GH2 -46.93 dBm -46.93 dBm -46.93 dBm M4 1 2 .4976 GH2 -43.70 dBm -46.93 dBm -46.93 dBm M3 1 2 .2.5 GH2 -47.07 dBm -46.93 dBm <t< th=""><th>Spectrum Ref Level 27.60 dB</th><th>3m Offset</th><th>7.60 dB 👄</th><th>RBW 100 kH</th><th>Iz</th><th></th><th></th><th></th><th></th></t<>	Spectrum Ref Level 27.60 dB	3m Offset	7.60 dB 👄	RBW 100 kH	Iz				
Birk Max MI[1] 2.3.4 dbm 20 dbm MI[1] 2.40030000 cHz 10 dbm M2[1] 2.40350000 cHz 10 dbm 1.4.4.19 dbm 2.40350000 cHz 30 dbm 1.4.4.19 dbm 1.4.4.19 dbm 40 dbm 1.4.4.19 dbm 1.4.4.19 dbm 50 dbm 1.4.4.19 dbm 1.4.4.19 dbm 60 dbm 1.4.4.19 dbm 1.4.4.19 dbm 70 dbm 1.4.4.19 dbm 1.4.4.19 dbm 81 tor 2.4.76 CHz 1.001 pts Stop 2.5.76 CHz 10 dbm 1.2.4.4925 GHz -4.4.3.2 dbm Mil 1 2.4.4976 GHz 5.3.4 dbm Spectrum I.4.4.4925 GHz -4.4.3.70 dbm Mil 1 2.4.4976 GHz Mode Autor FFT <th></th> <th></th> <th></th> <th></th> <th></th> <th>Auto FFT</th> <th></th> <th></th> <th></th>						Auto FFT			
20 dBm M1[1] 2.34 dBm 10 dBm M2[1] 2.49005000 GHz 10 dBm 2.49350000 GHz -46.83 dBm 20 dBm 2.49350000 GHz -46.83 dBm 20 dBm 2.49350000 GHz -46.83 dBm 20 dBm -46.83 dBm -46.83 dBm 30 dBm -46.83 dBm -46.83 dBm 40 dBm_ -46.83 dBm -46.83 dBm 40 dBm_ -46.83 dBm -46.83 dBm 40 dBm_ -46.83 dBm -46.83 dBm 41 dBm -46.83 dBm -46.83 dBm 42 dBm -46.83 dBm -46.83 dBm M1 1 2.4905 GHz -46.83 dBm M3 1 2.5 GHz -46.83 dBm M4 1 2.4975 GHz -46.83 dBm M3 1 2.5 GHz -47.07 dBm M4 1 2.4975 GHz -47.07 dBm M4 1 2.4976 GHz -47.07 dBm M4 1 2.4976 GHz -47.07 dBm M20 dBm M1[1]	SGL Count 100/100								
20 dBm	1Pk Max							-	5.04.45
10 dBm M2[1] 2.49350000 GHz 10 dBm 2.49350000 GHz 2.49350000 GHz 10 dBm 2.49350000 GHz 2.49350000 GHz 30 dBm 30 dBm 30 dBm 30 dBm 40 dBm 2.4905 GHz 5.34 dBm Function 70 dBm 1 2.4905 GHz 5.34 dBm 100 tPts 8tat 2.476 GHz 100 tPts 31 dEz 5.34 dBm 100 tPts M1 1 2.4905 GHz -47.07 dBm 10 dBm M3 1 2.5 GHz -47.07 dBm 10 dBm M4 1 2.4926 GHz -49.07 dBm 10 dBm M2 1 2.4926 GHz 10 dBm 10 dBm M2 1 2.4926 GHz 10 dBm 10 dBm 10 dBm 0 dBm 0 dBm 0 dBm 10 dBm					M	1[1]		2 400	
1016bm 2.49350000 GHz 1018m 2.49350000 GHz 1018m 2016m 1018m 2016m 2016m 11.4.419.00m 3016m 11.4.419.00m 4016m 11.4.419.00m 5016m 11.4.419.00m 5016m 11.4.419.00m 5016m 11.4.419.00m 50170 11.4.419.00m 5018m 11.2.4005.0Hz 5018m 11.4.400.0Hz	20 0011				м	2[1]			
10 dm 01 -14.419 dbm 01 -14.419 dbm 01 -14.419 dbm 01 -14.419 dbm 30 dm 100 dm 100 pts Stop 2.576 GHz 50 dbm 100 pts Stop 2.576 GHz 60 dbm 100 pts Stop 2.576 GHz Mil 1 2.4800 GHz 5.34 dbm M2 1 2.4825 GHz -46.82 dbm M3 1 2.5 GHz -46.82 dbm M4 1 2.4825 GHz -46.92 dbm M4 1 2.4825 GHz -46.92 dbm M3 1 2.4825 GHz -46.92 dbm M4 1 2.4825 GHz -46.92 dbm M4 1 2.4825 GHz -46.92 dbm M4 1 2.4825 GHz -46.92 dbm M3 1 2.4876 GHz Stop 2.576 GHz Stop	10 ldBm								
10 dm 01 -14.419 dbm 01 -14.419 dbm 01 -14.419 dbm 01 -14.419 dbm 30 dm 100 dm 100 pts Stop 2.576 GHz 50 dbm 100 pts Stop 2.576 GHz 60 dbm 100 pts Stop 2.576 GHz Mil 1 2.4800 GHz 5.34 dbm M2 1 2.4825 GHz -46.82 dbm M3 1 2.5 GHz -46.82 dbm M4 1 2.4825 GHz -46.92 dbm M4 1 2.4825 GHz -46.92 dbm M3 1 2.4825 GHz -46.92 dbm M4 1 2.4825 GHz -46.92 dbm M4 1 2.4825 GHz -46.92 dbm M4 1 2.4825 GHz -46.92 dbm M3 1 2.4876 GHz Stop 2.576 GHz Stop									
20 Bm 01 -14.419 Bm 30 Bm 030 Bm 04 14 2.4805 GH SH SH 14 2.4805 GH SH 14 14 2.4805 GH GH <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
20 dBm	-10 Bm	_	-	_					
30 dBm 40 dBm 50 dBm 70 dB		19 dBm							
40 40 <t< td=""><td>-20 dBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-20 dBm								
Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Stat S.30 dBm Ref Level 27.60 dBm Offset 7.60 dB • RBW 100 kHz Number of the second dB in the second	-30 dBm								
Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Stat S.30 dBm Ref Level 27.60 dBm Offset 7.60 dB • RBW 100 kHz Number of the second dB in the second	10 JD M4								
50 dBm 60 dBm Function Function Result 60 dBm 60		M3	almh when the	Anthonistation	Mapping at 1	and the second state of the	Matter to de	Maplimhun	Works when which
70 dBm Stort 2.476 GHz Storp 2.576 GHz Iarker Function Result Function Result M1 1 2.48005 GHz 5.34 dBm M2 1 2.48005 GHz 5.34 dBm M3 1 2.46.93 dBm 1 M4 1 2.4876 GHz -46.63 dBm M4 1 2.4876 GHz -43.70 dBm Market Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB @ RBW 100 kHz Att 40 dB SWT 18.9 µs @ VBW 300 kHz Mode Auto FFT Sol Count 2000/2000 Dirk Max M1[1] 2.47703500 GHz 0 dBm	-50 dBm	- And a sail and a	- and -	and in surface (1)	A MALA AMAL . Do PLA	an finan tadar mala	ALL ALL ALL BURGH		1 . March March . 1
70 dBm Stort 2.476 GHz Storp 2.576 GHz Iarker Function Result Function Result M1 1 2.48005 GHz 5.34 dBm M2 1 2.48005 GHz 5.34 dBm M3 1 2.46.93 dBm 1 M4 1 2.4876 GHz -46.63 dBm M4 1 2.4876 GHz -43.70 dBm Market Hopping Ref Spectrum Ref Level 27.60 dBm Offset 7.60 dB @ RBW 100 kHz Att 40 dB SWT 18.9 µs @ VBW 300 kHz Mode Auto FFT Sol Count 2000/2000 Dirk Max M1[1] 2.47703500 GHz 0 dBm	60 d0m								
Start 2.476 GHz 1001 pts Stop 2.576 GHz Type Ref Trc X-value Y-value Function Function Result M1 1 2.4805 GHz 5.34 dBm 46.83 dBm 46	-00 dBm								
tarker Type Ref Trc X-value Y-value Function Function Result M1 1 2.48005 GHz 5.34 dBm	-70 dBm								<u> </u>
Type Ref Trc X-value Y-value Function Function Result M1 1 2.48005 GHz 5.34 dBm				1001	l pts			Stop 2	2.576 GHz
M1 1 2.48005 GHz 5.34 dBm M2 1 2.4835 GHz 46.83 dBm M3 1 2.5 GHz 47.07 dBm M4 1 2.4876 GHz 43.70 dBm M4 1 2.4876 GHz 43.70 dBm M4 1 2.4876 GHz 43.70 dBm Ref Level 27.60 dB Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 µS YBW 300 kHz SGL Count 2000/2000 0 M1[1] 5.30 dBm 10 dBm M1 0 0 0 10 dBm M1 0 0 0 20 dBm 0 0 0 0 0 10 dBm 0 0 0 0 0 0 30 dBm 0 0 0 0 0 0 0 50 dBm 0 0 0 0 0 0 0 0		V uslu	- I	V uslue	L Euro	tion	Fund	tion Docult	
M2 1 2.4835 GHz -46.83 dBm M3 1 2.5 GHz -47.07 dBm M4 1 2.4876 GHz -43.70 dBm Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Image: Comparison of the second seco							Func	alon Kesul	<u> </u>
M4 1 2.4876 GHz -43.70 dBm Red Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspan="2" Image: Colspa="2" Image: Colspa="2				-46.83 dB	Зm				
Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Image: Construct of the state of									
Spectrum Image: Construct of the second	M4 I	2.48	76 GHZ	-43.70 de	sm				
SGL Count 2000/2000 10 dBm M1[1] 0 dBm 10 dBm		dge(Hop	ping) N	VNT 1-D)H5 248	BOMHz A	Ant1 Hop	oping R	
20 dBm M1[1] 5.30 dBm 20 dBm 2.47703500 GHz 10 dBm M1 0 dBm 0 10 dBm 0 20 dBm 0 30 dBm 0 40 dBm 0	Spectrum Ref Level 27.60 de	3m Offset 7	.60 dB 🖷 F	RBW 100 kHz	2		Ant1 Hop	oping R	
20 dBm 2.47703500 GHz 10 dBm M1 0 dBm 40 10 dBm 40	Spectrum Ref Level 27.60 dB Att 40 d	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	2		Ant1 Hop	oping R	
10 dBm M1 10 dBm M1 10 dBm 0 10 dBm 0 20 dBm 0 20 dBm 0 20 dBm 0 30 dBm 0 40 dBm 0 50 dBm 0 10 d	Spectrum Ref Level 27.60 dB Att 40 d	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	2		Ant1 Hop	oping R	
0 dBm	Spectrum Ref Level 27.60 dB Att 40 d SGL Count 2000/20	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
0 dBm	Spectrum Ref Level 27.60 dB Att 40 d SGL Count 2000/20	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
10 dBm 20 dBm 30 dBm 40 dBm 50 dBm	Spectrum Ref Level 27.60 dB Att 40 o SGL Count 2000/20 01Pk Max	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
10 dBm 20 dBm 30 dBm 40 dBm 50 dBm	Spectrum Ref Level 27.60 dB Att 40 d SGL Count 2000/20 IPk Max 20 dBm 10 dBm	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
-20 dBm	Spectrum Ref Level 27.60 dB Att 40 (SGL Count 2000/20 91Pk Max 20 dBm 10 dBm M1	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
-20 dBm	Spectrum Ref Level 27.60 dB Att 40 (SGL Count 2000/20 91Pk Max 20 dBm 10 dBm M1	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
30 dBm	Spectrum Ref Level 27.60 dB Att 40 (SGL Count 2000/20 01Pk Max 20 dBm 10 dBm M1 0 dBm	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
-30 dBm	Spectrum Ref Level 27.60 dB Att 40 (SGL Count 2000/20 91Pk Max 20 dBm 10 dBm M1 0 dBm	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
40 dBm	Spectrum Ref Level 27.60 dB Att 40 (SGL Count 2000/20 PIPK Max 20 dBm 10 dBm -10 dBm	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
40 dBm	Spectrum Ref Level 27.60 dB Att 40 (SGL Count 2000/20 PIPK Max 20 dBm 10 dBm -10 dBm	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
50 dBm	Spectrum Ref Level 27.60 dB Att 40 (SGL Count 2000/20 91Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
50 dBm	Spectrum Ref Level 27.60 dB Att 40 (SGL Count 2000/20 91Pk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT			₩ ▼ 5.30 dBm
	Spectrum Ref Level 27.60 db Att 40 of SGL Count 2000/20 PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT			₩ ▼ 5.30 dBm
	Spectrum Ref Level 27.60 dB Att 40 d SGL Count 2000/20 IPk Max 20 dBm 10 dBm	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT			₩ ▼ 5.30 dBm
-60 dBm	Spectrum Ref Level 27.60 dB Att 40 d SGL Count 2000/20 IPk Max 20 dBm 10 dBm 10 dBm M1	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT	Ant1 Hop		₩ ▼ 5.30 dBm
-6U dBm	Spectrum Ref Level 27.60 dB Att 40 d SGL Count 2000/20 IPk Max 20 dBm 10 dBm 10 dBm M1	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT			₩ ▼ 5.30 dBm
	Spectrum Ref Level 27.60 dB Att 40 d SGL Count 2000/20 IPk Max 20 dBm 10 dBm 10 dBm M1	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT			₩ ▼ 5.30 dBm
70 dBm	Spectrum Ref Level 27.60 dB SGL Count 2000/20 PIPk Max 20 dBm M1 0 dBm M1 10 dBm M1 20 dBm M1 30 dBm M1 40 dBm M1 50 dBm S0 dBm	3m Offset 7 dB SWT 1	.60 dB 🖷 F	RBW 100 kHz	: Mode A	uto FFT			₩ ▼ 5.30 dBm

Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Emission

Span 8.0 MHz

1.0

dBm M2[1] -44.38 dl dBm 2.48350000 dl m 1 1 dBm 1 1
dBm D1 -14.697 dBm
D1 -14.697 dBm dBm cBm dBm dBm dBm dBm dBm dBm dBm dBm
CBm- CBm- CBm- Manon Marine Marin Ale Marine
dBm dBm
dBm
dBm Image: Constraint of the second sec
rker 19e Ref Trc X-value Y-value Function Function Result
M1 1 2.47805 GHz 5.34 dBm
M2 1 2.4835 GHz -44.38 dBm M3 1 2.5 GHz -44.80 dBm
M4 1 2.4973 GHz -42.82 dBm
M4 1 2.4973 GHZ -42.82 UBM
M4 1 2.4973 G12 -42.52 UBIN Ready
Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Ref
Ready (

10 dBm								
			NTI N	\sim				
0 dBm				1				
-10 dBm								
-20 dBm				$\left \right $				
-30 dBm								
		m			hm			
-40 dBm	mm	7				hum	$\sim \sim \sim$	mm
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.402 GHz			1001	l pts	,		Spa	n 8.0 MHz
					Read	y U		

Band Edge NVNT 2-DH5 2402MHz Ant1 No-Hopping Emission

●1Pk Max					M	1[1]			1.86 dBm
20 dBm						2[1]			195000 GHz -45.47 dBm
10 dBm							I		000000 GHz
0 dBm									ΤĂ
-10 dBm	1 -14.221	dBm							
-20 dBm	1 -14.221	ubin							
-30 dBm									
-40 dBm			1.4.1	M4				M3	M2
-50 dBm	ruhan	Muthally aller allered	where where	May Willing the	en much have been and the	handbodowskym	nthemphonic	where where the	waya bu
-60 dBm									
-70 dBm									
Start 2.306	GHz			1001	l pts			Stop	2.406 GHz
Marker Type Ref		X-value		Y-value	Func	tion	Fu	nction Resul	t l
M1 M2	1	2.4019	95 GHz .4 GHz	1.86 dP -45.47 dP					
M3 M4	1		39 GHz 31 GHz	-45.57 dB -42.01 dB					
	7))	adv 🚺		
Spectrum Ref Level 2 Att SGL Count 3	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	VNT 2-D BW 100 kHz BW 300 kHz	: Mode A	uto FFT	Ant1 Ho	opping R	
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A		Ant1 Ho		5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho		
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho		5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 1Pk Max 20 dBm	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm -10 dBm	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm 0 dBm	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm -10 dBm	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm - 10 dBm - 20 dBm - 20 dBm - 30 dBm	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	7.62 dBm 40 dB	Offset 7.6	62 dB 🔵 R	BW 100 kHz	: Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 ● 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	7.62 dBm 40 dB 000/3000	Offset 7.6	62 dB 🔵 R	BW 100 kHz	Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm
Spectrum Ref Level 2 Att SGL Count 3 • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	7.62 dBm 40 dB 000/3000	Offset 7.6	62 dB 🔵 R	BW 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Ho	2.40	5.29 dBm 484520 GHz
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.402 GH	7.62 dBm 40 dB 000/3000	Offset 7.6 SWT 18	62 dB • R 3.9 μs • V	BW 100 kHz BW 300 kHz	Mode A	uto FFT 1[1]	ady	2.40	5.29 dBm 484520 GHz
Spectrum Ref Level 2 Att SGL Count 3 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.402 GH	7.62 dBm 40 dB 000/3000	Offset 7.6 SWT 18	62 dB • R 3.9 μs • V	BW 100 kHz BW 300 kHz	Mode A	uto FFT 1[1]	Ant1 Hopp	2.40	5.29 dBm 484520 GHz

.... 10)1

Spectrum								
Ref Level 27.62	dBm Offset I dB SWT	7.62 dB 🔵						[♥]
SGL Count 500/50		227.5 µs 😑	▼⊡™ 300 KH	< 19100e /	AULO FF I			
1Pk Max								
20 dBm-				м	1[1]		0.453	5.46 dBm
20 dBm				м	2[1]			95000 GHz 44.89 dBm
10 dBm								00000 ¹ GHz
0 dBm								
-10 dBm								NW
D1 -14	.709 dBm							
-20 dBm								
-30 dBm								
-40 dBm		M4					мэ	ма
-50 dBm	monthemations	reporter manual	when	a washing	www.whiphy	www.when.	phore that have	algalo P
-60 dBm			+					
-70 dBm								
Start 2.306 GHz			1001	pts			Stop 2	2.406 GHz
Marker				1 -]
Type Ref Trc M1 1		lue 0195 GHz	<u>Y-value</u> 5.46 dB	Func	tion	Fund	tion Result	
M2 1		2.4 GHz	-44.89 dB	m				
M3 1		2.39 GHz	-44.77 dB	m				
M4 1 Bai	^{2.} nd Edge	3397 GHz	-40.90 dB	m) Read	b-Hoppin	ng Ref	
		3397 GHz	-40.90 dB	m) Pow Ant1 No	b-Hoppin	ng Ref	
Bai Spectrum Ref Level 27.60	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	m BOMHz /		o-Hoppin	ng Ref	
Bar Spectrum Ref Level 27.60 Att 40	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de	m BOMHz /		b-Hoppin	ng Ref	
Bai Spectrum Ref Level 27.60 (Att 40 SGL Count 1000/1	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	m BOMHz /		b-Hoppin	ng Ref	
Bar Spectrum Ref Level 27.60 Att 40	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	m 30MHz / Mode A		l∞ 【】	ng Ref	.17 dBm
Bai Spectrum Ref Level 27.60 (Att 40 SGL Count 1000/1	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	m 30MHz / Mode A	uto FFT	p-Hoppin		
Bai Spectrum Ref Level 27.60 (Att 40 SGL Count 1000/1) IPk Max	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	m 30MHz / Mode A	uto FFT	p-Hoppin		5.17 dBm
Bai Spectrum Ref Level 27.60 (Att 40 SGL Count 1000/1) IPk Max	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	m 30MHz / Mode A	uto FFT	p-Hoppin		5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 IPk Max 20 dBm 10 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	m 30MHz / Mode A	uto FFT	p-Hoppin		5.17 dBm
Bai Spectrum Ref Level 27.60 (Att 40 SGL Count 1000/1) IPk Max 20 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT	p-Hoppin		5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 1Pk Max 20 dBm 10 dBm 0 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT	D-Hoppin		5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 IPk Max 20 dBm 10 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT	p-Hoppin		5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 1Pk Max 20 dBm 10 dBm 0 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT	p-Hoppin		5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT	p-Hoppin		5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT	p-Hoppin		5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 PIPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT	p-Hoppin		5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT			5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 PIPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT			5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 PIPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT			5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 PIPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT			5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 PIPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT			5.17 dBm
Bai Spectrum Ref Level 27.60 Att 40 SGL Count 1000/1 PIPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	nd Edge	3397 GHz NVNT 2- 7.60 dB • F	-40.90 de •DH5 248 •BW 100 kHz	Mode A	uto FFT		2.480	5.17 dBm

Band Edge NVNT 2-DH5 2480MHz Ant1 No-Hopping Emission

Ref Level 27.60 dB			BW 100 kH					
Att 40 (SGL Count 100/100		7.5 µs 🖷 V	' BW 300 kH	z Mode	Auto FFT			
1Pk Max								
				M	1[1]			4.10 dBm
20 dBm					0141			95000 GHz
10rd8m				M	2[1]			46.44 dBm 50000 GHz
Ť								
-10 dBm	_							
D1 -14.8	334 dBm							
-20 dBm								
-30 dBm	_							
-40 dBr 14	MB							
and Unternetworking	monula	www.	all pharterial	dependent with the set	hpunnun	Understock	monterious	Marchalhur
-50 dBm		1.1			100	· · · · · ·		0.00.
-60 dBm								
-70 dBm Start 2.476 GHz			1001	nte			Ptor	2.576 GHz
Marker			1001	. prs			atop .	2.370 GHZ
Type Ref Trc	X-value		Y-value	Func	tion	Fund	tion Result	
M1 1	2.4799		4.10 dB					
M2 1 M3 1		5 GHz 5 GHz	-46.44 dB -44.22 dB					
M4 1		7 GHz	-43.44 dB					
M4 1					Read	y m		1
M4 1					Read	v (]]		1
	2.483	7 GHz	-43.44 dB	m) Read	v 🔳	oping R	ef
Band E		7 GHz	-43.44 dB	m) Poor 80MHz A	Ant1 Ho	oping R	
Band E	2.483 dge(Hopp	^{i7 GHz} Ping) N∖	-43.44 dB /NT 2-D	m 0H5 248) Poor 80MHz A	nt1 Ho	oping R	ef
Band E Spectrum Ref Level 27.60 dB	2.483 dge(Hopp 3m Offset 7.6	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	m 0H5 248		Ant1 Ho	oping R	
Band E	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D	m 0H5 248		Ant1 Ho	oping R	
Band E Spectrum Ref Level 27.60 db	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	m 0H5 248		xnt1 Hoj	oping R	
Band E Spectrum Ref Level 27.60 dB Att 40 0 SGL Count 2000/20	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	m 0H5 248 Mode A		ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 de Att 40 (SGL Count 2000/20 IPk Max	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Ho		
Band E Spectrum Ref Level 27.60 db Att 40 f SGL Count 2000/20 1Pk Max 20 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dB Att 40 0 SGL Count 2000/20	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	m 0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dE Att 40 i SGL Count 2000/20 IPk Max 20 dBm 10 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dE Att 40 i SGL Count 2000/20 IPk Max 20 dBm 10 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dE Att 40 r SGL Count 2000/20 1Pk Max 20 dBm 10 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dE Att 40 i SGL Count 2000/20 IPk Max 20 dBm 10 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dB Att 40 (SGL Count 2000/20 IPk Max 20 dBm 10 dBm -10 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dE Att 40 r SGL Count 2000/20 1Pk Max 20 dBm 10 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dB Att 40 SGL Count 2000/20 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GH2 9 MN() N\ 50 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dB Att 40 (SGL Count 2000/20 1Pk Max 20 dBm 10 dBm -10 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GHZ 9 9 10 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dB Att 40 r SGL Count 2000/20 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GHZ 9 9 10 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dE Att 40 r SGL Count 2000/20 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GHZ 9 9 10 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dB Att 40 d SGL Count 2000/20 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GHZ 9 9 10 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT			₩ ▼ 4.93 dBm
Band E Spectrum Ref Level 27.60 dB Att 40 r SGL Count 2000/20 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	2.483 dge(Hopp 3m Offset 7.6 dB SwT 18	7 GHZ 9 9 10 dB ● RE	-43.44 dB /NT 2-D 3W 100 kHz	Mode A	uto FFT			₩ ▼ 4.93 dBm

Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Emission

1001 pts

-60 dBm--70 dBm-

CF 2.48 GHz

Span 8.0 MHz

LXI

. . 10)1

Spectr	rum	1	٦										
Ref Lev			D dBm	Off	set i	7.60 dB	e R	BW 100 kH	łz				(•)
Att			40 dB	SW	T 2	27.5 µs	Θ ۷	'BW 300 kH	z Mode	Auto FFT			
SGL Co		500/	500										
∎1Pk Ma	ax T			_					M	11[1]			2.50 dBm
20 dBm-										11[1]		2.476	95000 GHz
									M	12[1]			45.01 dBm
10 dBm-										1	1	2.483	50000 GHz
R dem-													
-10 dBm													
-10 0500		D1 -	15.07	1 dBm-									
-20 dBm													
-30 dBm													
		М4											
-40 dBm	ا2 آررکا		week and	1013	Allen	Man Mr	Mushdaw	- Juliu Lucher	ununna.	mohanemeter	manutive	mon hundress	nte almatinati
-50 dBm					4	, v		A A 0 0	Alley and a set (1994	a state for		-	
60 Jp.													
-60 dBm	-												
-70 dBm													
Start 2.	.476	5 GH	z					100	1 pts			Stop	2.576 GHz
Marker Type	Rof	F т.	r I	y.	value		1	Y-value	Fund	tion	Euro	tion Result	1
M1	Kel		1	A		95 GHz		2.50 di			Full	aion Kesuli	·
M2			1		2.48	35 GHz		-45.01 di					
M3 M4		-	1			2.5 GHz 91 GHz		-45.50 di -41.67 di					
		10	-				-			· ·			
Spectr	rum		and	Edg	e N	VNT	3-[DH5 24	02MHz	Ant1 N	o-Hoppir	ng Ref	
Ref Lev		ı	2 dBm	Off	set 7	.62 dB (e Re	3W 100 kH:	2		o-Hoppir	ng Ref	
-	vel	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re		2		o-Hoppir	ng Ref	
Ref Lev Att	vel unt	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2		o-Hoppir	ng Ref	
Ref Lev Att SGL Co	vel unt	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 2 Mode A		o-Hoppir		5.30 dBm
Ref Lev Att SGL Co	vel unt	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 2 Mode A	auto FFT	o-Hoppir		
Ref Lev Att SGL Co 1Pk Ma 20 dBm-	unt ax	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 2 Mode A	auto FFT	o-Hoppir		5.30 dBm
Ref Lev Att SGL Co	unt ax	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 2 Mode A	auto FFT	o-Hoppir		5.30 dBm
Ref Lev Att SGL Co 1Pk Ma 20 dBm- 10 dBm-	unt ax	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT	o-Hoppir		5.30 dBm
Ref Lev Att SGL Co 1Pk Ma 20 dBm-	unt ax	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co 1Pk Ma 20 dBm- 10 dBm-	vel unt ax	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co 1Pk Ma 20 dBm- 10 dBm- 0 dBm-	vel unt ax	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co 1Pk Ma 20 dBm- 10 dBm- 0 dBm-	vel unt ax	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co 1Pk Ma 20 dBm- 10 dBm- -10 dBm	vel unt ax	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co 1Pk Ma 20 dBm- 10 dBm- -10 dBm	unt ax	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co 1Pk Ma 20 dBm- 10 dBm- -10 dBm- -20 dBm	unt ax	1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co 1Pk Ma 20 dBm- 10 dBm- -10 dBm- -20 dBm		1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co IPk Ma 20 dBm- 10 dBm- -10 dBm -20 dBm -30 dBm		1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT	o-Hoppir		5.30 dBm
Ref Lev Att SGL Co 1Pk Ma 20 dBm- 10 dBm- -10 dBm -20 dBm -30 dBm		1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co IPk Ma 20 dBm- 10 dBm- -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm		1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co IPk Ma 20 dBm- 10 dBm- -10 dBm -20 dBm -30 dBm		1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co 10 dBm- 10 dBm- -10 dBm- -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm		1 27.6	2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH:	2 Mode A	auto FFT			5.30 dBm
Ref Lev Att SGL Co IC dBm- 10 dBm- 10 dBm- -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm			2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH; 3W 300 kH;	2 Mode A	auto FFT		2.402	5.30 dBm
Ref Lev Att SGL Co 10 dBm- 10 dBm- -10 dBm- -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm			2 dBm 40 dB	Off	set 7	.62 dB (e Re	3W 100 kH; 3W 300 kH;	2 Mode A	auto FFT	o-Hoppir	2.402	5.30 dBm 15180 GHz

SGL Count 100/10 1Pk Max	00								
				M1[1	1			5.87 d	
20 dBm				M2[1	1			15000 (46.20 d	
10 dBm		-						00000	
0 dBm								4	
-10 dBm									
D1 -14	4.700 dBm								
-20 dBm									
-30 dBm		-							
-40 dBm		M4					МЗ	M®	4
-50 dBm	handburg	HUNDER	Monorphanopharty	dorthumph hard	whenan	www.hunner	uhunun	MUN	5
-60 dBm									
-70 dBm									
Start 2.306 GHz			1001 (pts			Stop 2	2.406 G	Hz
Marker Type Ref Trc	: X-valu	- I	Y-value	Functio	. 1	Fund	tion Result		-
		215 GHz	5.87 dBm			Fund	aton Kesuli		
		2.4 GHz	-46.20 dBm						
M2 1									
		.39 GHz	-46.69 dBm	1					
M3 :	1 2	.39 GHz 14 GHz	-46.69 dBm -41.01 dBm		Rear			4	
M3 : M4 :	1 2	114 GHz	-41.01 dBm		Rear MHz A	Ant1 Hoj	oping R		
M3 M4 Band Spectrum Ref Level 27.62 Att 4 SGL Count 2000/3	1 2 1 2.34 Edge(Hop dBm Offset 7 H0 dB SWT 1	ping) N	-41.01 dBm			Ant1 Hop	oping R		
M3 M4 Band Spectrum Ref Level 27.62 Att 4	1 2 1 2.34 Edge(Hop dBm Offset 7 H0 dB SWT 1	ping) N	-41.01 dBm	H5 24021 Mode Auto	FFT	Ant1 Ho	oping R	(
M3 M4 Band Spectrum Ref Level 27.62 Att 4 SGL Count 2000/7 • 1Pk Max	1 2 1 2.34 Edge(Hop dBm Offset 7 H0 dB SWT 1	ping) N	-41.01 dBm	H5 24021	FFT	Ant1 Ho			Bm
M3 M4 Band Spectrum Ref Level 27.62 Att 4 SGL Count 2000/3	1 2 1 2.34 Edge(Hop dBm Offset 7 H0 dB SWT 1	ping) N	-41.01 dBm	H5 24021 Mode Auto	FFT	Ant1 Ho		4.97 d	Bm
M3 M4 Band Spectrum Ref Level 27.62 Att 4 SGL Count 2000/ 1Pk Max 20 dBm	1 2 1 2.34 Edge(Hop dBm Offset 7 H0 dB SWT 1	ping) N	-41.01 dBm	H5 24021 Mode Auto	FFT	Ant1 Hop		4.97 d	Bm
M3 M4 Band Spectrum Ref Level 27.62 Att 4 SGL Count 2000/ 1Pk Max 20 dBm 10 dBm	1 2 1 2.34 Edge(Hop dBm Offset 7 H0 dB SWT 1	ping) N	-41.01 dBm	H5 24021 Mode Auto	FFT	Ant1 Hop	2.405	4.97 d	Bm
M3 M4 Band Spectrum Ref Level 27.62 Att 4 SGL Count 2000/ 1Pk Max 20 dBm 10 dBm	1 2 1 2.34 Edge(Hop dBm Offset 7 H0 dB SWT 1	ping) N	-41.01 dBm	H5 24021 Mode Auto	FFT	Ant1 Hop	2.405	4.97 d	Bm
M3 M4 Band Spectrum Ref Level 27.62 Att 4 SGL Count 2000/ 1Pk Max 20 dBm 10 dBm	1 2 1 2.34 Edge(Hop dBm Offset 7 H0 dB SWT 1	ping) N	-41.01 dBm	H5 24021 Mode Auto	FFT	Ant1 Ho	2.405	4.97 d	Bm
M3 M4 Band Spectrum Ref Level 27.62 Att 4 SGL Count 2000/ 1Pk Max 20 dBm 10 dBm 0 dBm	1 2 1 2.34 Edge(Hop dBm Offset 7 H0 dB SWT 1	ping) N	-41.01 dBm	H5 24021 Mode Auto	FFT	Ant1 Ho	2.405	4.97 d	Bm

Band Edge(Hopping) NVNT 3-DH5 2402MHz Ant1 Hopping Emission

1001 pts

-30 dBm

-60 dBm--70 dBm-

CF 2.402 GHz

Span 8.0 MHz

LXI

Spectrum										
Ref Level 27 Att	40 dB			_	BW 100 kH: /BW 300 kH:		Auto FFT			(•)
SGL Count 50 1Pk Max	0/500									
IPK Max						M	1[1]			3.77 dBm
20 dBm			_				1[1]		2.40	405000 GHz
						M	2[1]			-45.59 dBm
LO dBm							I	I	2.40	000000 ĢHz ▼
) dBm			_							mily
10 dBm										101
	-15.033	dBm	_							
20 dBm										
30 dBm			_							
			M	4						
40 dBm	and the shares	morne the	Hubbertowak	what	no the Marsh	mentiona	and and the first	working poloneth	1713 ₩4504, ₩ 0,~0446	Man hur
-50 dBm	V * 4	T T				- γγ γ		V	V	
60 dBm										
70 dBm					1001	nto			Ptop	2.406 GHz
larker	Π2				1001	μις			асор	2.400 GH2
Type Ref	Trc	X-va	ue		Y-value	Func	tion	Fun	ction Resu	lt
M1		0.4	040E CU-	,	3.77 dB	m				
	1	2.4	0405 GHz							
M2 M3	1		2.4 GHz	2	-45.59 dB	m				
M3 M4		2.:	2.4 GHz 2.39 GHz 3407 GHz	2	-45.59 dB -45.54 dB -40.47 dB	m m m) Read	iy 🚺		KA
M3 M4		2.:	2.4 GHz 2.39 GHz 3407 GHz	2	-45.59 dB -45.54 dB	m m m] Read	o-Hoppi	ng Ref	×
M3 M4 Spectrum Ref Level 27 Att SGL Count 10	1 1 1 Band .60 dBm 40 dB	2.: Edge	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB	m m BOMHz		b-Hoppi	ng Ref	
M3 M4 Spectrum Ref Level 27 Att SGL Count 10	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3w 100 kHz	m m BOMHz Mode A	uto FFT	D-Hoppi	ng Ref	
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 D1Pk Max	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3w 100 kHz	m m BOMHz Mode A		D-Hoppi		2.93 dBm 999200 GHz
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 D1Pk Max	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3w 100 kHz	m m BOMHz Mode A	uto FFT	o-Hoppi		2.93 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 D1Pk Max 20 dBm	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3w 100 kHz	m m BOMHz Mode A	uto FFT	o-Hoppi		2.93 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 D1Pk Max 20 dBm	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3w 100 kHz	Mode A	uto FFT	b-Hoppi		2.93 dBm
M3 M4	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3W 100 kHz 3W 100 kHz	Mode A	uto FFT	D-Hoppi		2.93 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 D1Pk Max 20 dBm 10 dBm	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3W 100 kHz 3W 100 kHz	Mode A	uto FFT	D-Hoppi		2.93 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 p1Pk Max 20 dBm 10 dBm 0 dBm	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3W 100 kHz 3W 100 kHz	Mode A	uto FFT	D-Hoppi		2.93 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 D1Pk Max 20 dBm 0 dBm 0 dBm	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3W 100 kHz 3W 100 kHz	Mode A	uto FFT	D-Hoppi		2.93 dBm
M3 M4 Spectrum Ref Level 27 Att SGL Count 10 D1Pk Max 20 dBm 10 dBm 10 dBm	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3W 100 kHz 3W 100 kHz	Mode A	uto FFT	D-Hoppi		2.93 dBm
M3	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3W 100 kHz 3W 100 kHz	Mode A	uto FFT	D-Hoppi		2.93 dBm
M3	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3W 100 kHz 3W 100 kHz	Mode A	uto FFT	D-Hoppi		2.93 dBm
M3 Image: Mail of the mail	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3W 100 kHz 3W 100 kHz	Mode A	uto FFT	D-Hoppi		2.93 dBm
M3 Image: Mail of the mail	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3W 100 kHz 3W 100 kHz	Mode A	uto FFT	D-Hoppi		2.93 dBm
M3	1 1 1 Band .60 dBm 40 dB	2. Edge Offset	2.4 GHz 2.39 GHz 3407 GHz NVNT 7.60 dB	- 3-[-45.59 dB -45.54 dB -40.47 dB OH5 248 3W 100 kHz 3W 100 kHz	Mode A	uto FFT			2.93 dBm

Band Edge NVNT 3-DH5 2480MHz Ant1 No-Hopping Emission

1001 pts

-70 dBm-

CF 2.48 GHz

Span 8.0 MHz

LXI

1010020100

Spectrum Ref Level : Att SGL Count :	27.60 dBm 40 dB			RBW 100 kHz /BW 300 kHz		Auto FFT			
1Pk Max			1			1[1]			4.00 dBm
20 dBm					IVI	1[1]		2.479	4.30 dBm 95000 GHz
10 d &m					M	2[1]			45.85 dBm 50000 GHz
Ť								2.403	30000 GH2
0 dBm									
-10 cBm		l <u> </u>							
-20 cBm	01 -17.071	dBm							
-30 dBm									
-40 dBm		M4							
	Mahambuth	own Rentary	ward have been a	how who was a second	white white	a sun spranghoft	when white white	and have been	water water
-60 dBm									
-70 dBm	CH2			1001	nts			Stor	2.576 GHz
larker	3112			1001	P13			acop /	2.070 012
Type Ref M1	Trc 1	X-value	95 GHz	Y-value 4.30 dBr	Func	tion	Fund	tion Result	
M2	1	2.48	35 GHz	-45.85 dBr	n				
M3 M4	1		2.5 GHz 195 GHz	-46.49 dBr -43.25 dBr					
	20					Rea	dy 🚺		
Spectrum Ref Level :	27.60 dBm	Offset 7	.60 dB 👄 RE	/NT 3-D			Ant1 Hoj	pping R	ef
Spectrum Ref Level : Att SGL Count :	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE		H5 248 Mode A		Ant1 Hoj	pping R	
Spectrum Ref Level : Att SGL Count : 1Pk Max	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A		Ant1 Ho		.5.52 dBm
Spectrum Ref Level : Att SGL Count :	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Hop		
Spectrum Ref Level : Att SGL Count : 1Pk Max	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Hop		.5.52 dBm
Spectrum Ref Level : Att SGL Count :) IPk Max 20 dBm 10 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Hop		.5.52 dBm
Spectrum Ref Level : Att SGL Count : 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Hop		.5.52 dBm
Spectrum Ref Level : Att SGL Count : PIPk Max 20 dBm 10 dBm - dBm -10 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Hop		.5.52 dBm
Spectrum Ref Level : Att SGL Count : IPk Max 20 dBm 10 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Ho		.5.52 dBm
Spectrum Ref Level : Att SGL Count : PIPk Max 20 dBm 10 dBm - dBm -10 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Hop		.5.52 dBm
Spectrum Ref Level : Att SGL Count : PIPK Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Hop		.5.52 dBm
Spectrum Ref Level : Att SGL Count : PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Hop		.5.52 dBm
Spectrum Ref Level : Att SGL Count : PIPk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Hop		.5.52 dBm
Spectrum Ref Level : Att SGL Count : PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Ho		.5.52 dBm
Spectrum Ref Level : SGL Count : SGL Count : SGL Count : SGL Count : 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 👄 RE	3W 100 kHz	Mode A	uto FFT	Ant1 Hop		.5.52 dBm
Spectrum Ref Level 3 Att SGL Count 3 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	27.60 dBm 40 dB 2000/2000	Offset 7	.60 dB 👄 RE	3W 100 kHz		uto FFT	Ant1 Hop	2.479	.5.52 dBm
Spectrum Ref Level : SGL Count : SGL Count : PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	27.60 dBm 40 dB 2000/2000	Offset 7	.60 dB 👄 RE	3W 100 kHz BW 300 kHz		uto FFT	Ant1 Hop	2.479	5.52 dBm 16080 GHz

Ref Level	27.60 dBm	Offset 7.60 dB	RBW 100 kHz				
Att	40 dB	SWT 227.5 μs	🔵 VBW 300 kHz	Mode Auto	FFT		
SGL Count	500/500						
●1Pk Max							
20 dBm				M1[1]			5.18 dBm
20 aBm							705000 GHz
110 dBm-				M2[1]			-44.21 dBm 350000 GHz
T ubin				1	1	2.48	330000 GHZ
0.ldBm							
DidBm VVV							
-10 cBm					<u> </u>		
	D1 -14.48	D dBm					
-20 dBm							
-30 dBm-							
-30 uBill							
-40 dBm2		<u>M4</u>					
	man man	M4 name	Heapson pears when and	un phanger	monuballioner	marching and a provide the	they shop one no
-50 dBm					-		
-60 dBm							
70 40							
-70 dBm Start 2.476	0112		1001 p	+c		Eton	2.576 GHz
Marker			1001 b			зтор	2.370 GH2
Type Ref	f Trc	X-value	Y-value	Function	1	Function Resul	• 1
M1	1	2.47705 GHz	5.18 dBm	Function	_	Function Resul	L
M2	1	2.4835 GHz	-44.21 dBm				
M3	1	2.5 GHz	-45.53 dBm				
M4	1	2.4998 GHz	-42.94 dBm				

ACCREDITED

8.7 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-60.28	-20	Pass
NVNT	1-DH5	2441	Ant 1	-59.07	-20	Pass
NVNT	1-DH5	2480	Ant 1	-53.72	-20	Pass
NVNT	2-DH5	2402	Ant 1	-54.08	-20	Pass
NVNT	2-DH5	2441	Ant 1	-52.83	-20	Pass
NVNT	2-DH5	2480	Ant 1	-55.66	-20	Pass
NVNT	3-DH5	2402	Ant 1	-55.51	-20	Pass
NVNT	3-DH5	2441	Ant 1	-55.79	-20	Pass
NVNT	3-DH5	2480	Ant 1	-56.85	-20	Pass

ACC

Certificate #4298.01

Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Emission

10 dBm 0 dBm -10 dBm -20 dBm					м	1[1]			5.18 dBm
-10 dBm-01					M	2[1]			01650 GHz 54.41 dBm
D1							1	15.9	69183 GHz
-20 dBm	-14.127	dBm							
-30 dBm									
-40 dBm									
-50 dBm	МЗ	M4	N	45		M2	المعادية المعا		
-60 dBm	and the second second	an a	and	And the second s	a daga da sa d Na sa da s	A CARDON A			
-70 aBm									
-80 dBm Start 30.0 MH	Ηz			3000	1 pts			Stop	25.0 GHz
Marker	- 1	. I	1						
Type Ref	1		55 GHz	<u>Y-value</u> 5.18 dB			Fund	ction Result	<u> </u>
M2 M3	1	15.9691 4.66	33 GHz 36 GHz	-54.41 dB -60.31 dB					
M4 M5	1	7.0432		-58.74 dB -60.25 dB					
	[Rea	idy 🚺		0
10 dBm						1[1]		2.44115	6.03 dBm i79450 GHz
10 dBm					N	11			
0 dBm									
0 dBm									
-10 dBm									
-10 dBm									
-10 dBm -20 dBm -30 dBm									
-10 dBm -20 dBm -30 dBm -40 dBm									
-10 dBm -20 dBm -30 dBm									
-10 dBm -20 dBm -30 dBm -40 dBm									
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm									
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm									
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm				3000				Spa	n 1.5 MHz
-10 dBm -20 dBm -30 dBm -40 dBm									

TED

10 dBm M2[1] 2.440770 (-53.04 d) 10 dBm 01 -13.966 dBm 15.702837 (-10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -20 dBm -20 dBm -40 dBm -20 dBm -20 dBm -50 dBm -30 dBm -20 dBm -50 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm M11 1 2.44077 GHz 5.90 dBm M2 1 15.702837 GHz -53.04 dBm M3 1 5.078102 GHz -59.49 dBm M4 1 7.392821 GHz -59.49 dBm M4 1 7.392848 GHz -60.49 dBm M5 1 9.728	00 dBm M2 2.440770 GH2 50 dBm 01 -13.966 dBm 01 -13.966 dBm 01 - 13.966 dBm	0 dBm					
0 dBm 01 -13.966 dBm 15.702837 d -10 dBm 01 -13.966 dBm 1 1 -20 dBm -30 dBm -40 dBm 1 1 -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -60 dBm -59.71 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -73.04 dBm -	0 dBm 15.702837 GHz 10 dBm 01 -13.966 dBm 20 dBm 01 -13.966 dBm 20 dBm 01 -13.966 dBm 20 dBm 01 -13.966 dBm 30 dBm M2 40 dBm M2 50 dBm M2 60 dBm M2 70 dBm M2 8tart 30.0 MHz 30001 pts Start 30.0 MHz Start 20.0 MHz Start 30.0 MHz 5.90 dBm M1 1 1 2.44077 GHz 5.90 dBm Function Result M3 1 M3 1 M3 1 M4 1 7.902821 GHz -59.49 dBm M4 1	-10 dBm-D1 -13.96					
-20 dBm -30 dBm -40 dBm -40 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm -60 dBm -60 dBm -60 dBm M1 1 2.44077 GHz 5.90 dBm Marker -79 dBm -79 dBm -60 dBm M2 1 15.702837 GHz -53.04 dBm -60 dBm M3 1 5.073102 GHz -59.71 dBm -59.71 dBm M3 1 9.728348 GHz -60.49 dBm -60.49 dBm M5 1 9.728348 GHz -60.49 dBm -60.49 dBm M5 1 9.728348 GHz -60.49 dBm -60.49 dBm M5 1 9.728348 GHz -60.49 dBm -60.49 dBm -60.49 dBm	01 -13.966 dBm M2 30 dBm 40 dBm M2 M3 50 dBm M2 M5 M4 M5 60 dBm M2 M4 M5 M4 M4 70 dBm M2 M4 M5 M4 M4 M4 70 dBm M2 30001 pts Stop 25.0 GHz Stop 25.0 GHz Stop 25.0 GHz arker Trc X-value Y-value Function Function Result M4	D1 -13.96			M2[1]		
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -60 dBm -70	20 dBm 40 dBm 4						
-40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70	40 dBm 50 dBm 60 dBm 70 dBm 31 m 3 m M m5 60 dBm 70 dBm 1 1 2.44077 GHz 5.90 dBm M2 1 15.702837 GHz -53.04 dBm M3 1 5.078102 GHz -59.49 dBm M4 1 7.392821 GHz -59.11 dBm M5 1 9.728348 GHz -60.49 dBm M5 1 9.728348 GHz -60.49 dBm 70 dBm 70 dBm 70 dBm 1 9.728348 GHz -60.49 dBm 70 dBm 70 dBm 1 9.728348 GHz -60.49 dBm 1 9.72848 GHz -75868 GHz	-20 dBm	56 dBm				
-40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70	40 dBm 50 dBm 60 dBm 70 dBm 31 m 3 m M m5 60 dBm 70 dBm 1 1 2.44077 GHz 5.90 dBm M2 1 15.702837 GHz -53.04 dBm M3 1 5.078102 GHz -59.49 dBm M4 1 7.392821 GHz -59.11 dBm M5 1 9.728348 GHz -60.49 dBm M5 1 9.728348 GHz -60.49 dBm 70 dBm 70 dBm 70 dBm 1 9.728348 GHz -60.49 dBm 70 dBm 70 dBm 1 9.728348 GHz -60.49 dBm 1 9.72848 GHz -75868 GHz	-30 dBm					
-50 dBm -50 dBm -60 dBm -70 dBm -7	S0 dBm M3 M4 M5 M2 60 dBm M3 M4 M5 M4						
-60 dBn M3 M5 M5 -70 dBn -0 <td>60 dBm 70 dBm 3tart 30.0 MHz 30001 pts 3tart 30.0 MHz 30001 pts 3tart 30.0 MHz 30001 pts 30001 pts 300001 pts</td> <td></td> <td></td> <td></td> <td>M2</td> <td></td> <td></td>	60 dBm 70 dBm 3tart 30.0 MHz 30001 pts 3tart 30.0 MHz 30001 pts 3tart 30.0 MHz 30001 pts 30001 pts 300001 pts				M2		
270 dBm and	Y0 dsm Stop 25.0 GHz Start 30.0 MHz 30001 pts Stop 25.0 GHz Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz 5.90 dBm 6.90 dBm 6.97 dBm 7.97 dBm				and the second second	a to a set the bar	ويقرر والمروان والتروي والمرور والمرور
Stort 30.0 MHz Stop 25.0 Gl Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz 5.90 dBm 6 Function Result 6 M2 1 15.702837 GHz -53.04 dBm 6 6 6 M3 1 5.078102 GHz -59.71 dBm 6 7 6 7	Start 30.0 MHz 30001 pts Stop 25.0 GHz larker Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz 5.90 dBm Function Function Result M2 1 15.702837 GHz -59.04 dBm Function Function Result M3 1 5.078102 GHz -59.71 dBm Function Function Result M4 1 7.392821 GHz -59.71 dBm Function Function Result M5 1 9.728348 GHz -60.49 dBm Function Function Result M5 1 9.728348 GHz -60.49 dBm Function Function Ref Level 17.60 dBm Offset 7.60 dB RBW 100 kHz M1 Function Function Soci Count 1000/1000 SWT 18.9 µs YBW 300 kHz Mode Auto FFT S.63 dBm 10 dBm 0 M1 2.4801575950 GHz Function Function 20 dBm 0 M1 Function Function	A share of the state of the sta	and hits and a second	and the second	and the first state of the second	A A A A A A A A A A A A A A A A A A A	and the second
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz 5.90 dBm -53.04 dBm -53.04 dBm M2 1 15.702837 GHz -53.04 dBm -53.04 dBm -53.04 dBm M3 1 5.078102 GHz -59.71 dBm -59.71 dBm -59.71 dBm M4 1 7.392821 GHz -59.71 dBm -59.71 dBm -59.71 dBm M5 1 9.728348 GHz -60.49 dBm -59.71 dBm -59.71 dBm M5 1 9.728348 GHz -60.49 dBm -59.71 dBm -59.71 dBm -59.71 dBm M5 1 9.728348 GHz -60.49 dBm -59.71	Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz 5.90 dBm	-270 dBm					
Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz 5.90 dBm M2 1 15.702837 GHz -53.04 dBm <td< th=""><td>Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz 5.90 dBm </td><td>Start 30.0 MHz</td><td></td><td>30001 pts</td><td></td><td></td><td>Stop 25.0 GHz</td></td<>	Type Ref Trc X-value Y-value Function Function Result M1 1 2.44077 GHz 5.90 dBm	Start 30.0 MHz		30001 pts			Stop 25.0 GHz
M1 1 2.44077 GHz 5.90 dBm M2 1 15.702837 GHz -53.04 dBm M3 1 5.078102 GHz -59.49 dBm M4 1 7.392821 GHz -59.71 dBm M5 1 9.728348 GHz -60.49 dBm Ready Ref Level 17.60 dBm Offset 7.60 dB RBW 100 kHz Att 20 dB SWT 18.9 μs VBW 300 kHz Mode Auto FFT SGL Count 1000/1000 IPk Max M1[1] 5.63 d	M1 1 2.44077 GHz 5.90 dBm M2 1 15.702837 GHz -53.04 dBm M3 1 5.078 dBm -59.94 dBm M4 1 7.392821 GHz -59.71 dBm M5 1 9.728348 GHz -60.49 dBm M6 1 9.728348 GHz -60.49 dBm M6 1 9.728348 GHz -60.49 dBm M6 Tx. Spurious NVNT 1-DH5 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dBm Offset 7.60 dB RBW 100 kHz Att 20 dB SWT 18.9 μs VBW 300 kHz M11 2.4801575950 GHz M1 2.4801575950 GHz 10 dBm 0 0 0 0 30 dBm 0 0 0 0		Y ushus 1			E	
M3 1 5.078102 GHz -59.49 dBm M4 1 7.392821 GHz -59.71 dBm M5 1 9.728348 GHz -60.49 dBm Tx. Spurious NVNT 1-DH5 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dBm Offset 7.60 dB • RBW 100 kHz Att 20 dB SWT 18.9 μs< • VBW 300 kHz Mode Auto FFT SGL Count 1000/1000 IPk Max M1[1] 5.63 d	M3 1 5.078102 GHz -59.49 dBm M4 1 7.392821 GHz -59.71 dBm M5 1 9.728348 GHz -60.49 dBm M5 1 9.728348 GHz -60.49 dBm Ready Tx. Spurious NVNT 1-DH5 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dBm Offset 7.60 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 1000/1000 M11 0 dBm 10 dBm 0 dBm 10 dBm 0 dBm 0 dBm 30 dBm	M1 1	2.44077 GHz	5.90 dBm	unction	Functio	in Result
M4 1 7.392821 GHz -59.71 dBm M5 1 9.728348 GHz -60.49 dBm Roady Tx. Spurious NVNT 1-DH5 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dBm Offset 7.60 dB RBW 100 kHz Att 20 dB SWT 18.9 μs VBW 300 kHz Mode Auto FFT SGL Count 1000/1000 19k Max M1[1] 5.63 d	M4 1 7.392821 GHz -59.71 dBm M5 1 9.729348 GHz -60.49 dBm Printly Tx. Spurious NVNT 1-DH5 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dBm Offset 7.60 dB RBW 100 kHz Att 20 dB SWT 18.9 μs VBW 300 kHz Mode Auto FFT SGL Count 1000/1000 N1 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2						
Tx. Spurious NVNT 1-DH5 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dBm Offset 7.60 dB RBW 100 kHz Att 20 dB SWT 18.9 μs VBW 300 kHz Mode Auto FFT SGL Count 1000/1000 III.9 Max M1[1] 5.63 d	Tx. Spurious NVNT 1-DH5 2480MHz Ant1 Ref Spectrum Ref Level 17.60 dBm Offset 7.60 dB ● RBW 100 kHz Att 20 dB SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT SGL Count 1000/1000 1PK Max 10 dBm 10 dBm 20 dBm 10 dBm 20 dBm 10 dBm 20 dBm 10	M4 1	7.392821 GHz	-59.71 dBm			
Spectrum (Ref Level 17.60 dB Offset 7.60 dB RBW 100 kHz Att 20 dB SWT 18.9 μs VBW 300 kHz Mode Auto FFT SGL Count 1000/1000 •<	Spectrum Ref Level 17.60 dBm Offset 7.60 dB ● RBW 100 kHz Att 20 dB SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT SGL Count 1000/1000 01Pk Max 10 dBm 0 0 dBm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9.728348 GHZ	-60.49 UBM	Dend		4.92
10 dBm M1 2.4801575950 0	10 dBm 20 dBm 30 zBm	Ref Level 17.60 dB Att 20 (SGL Count 1000/100	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT	Ant1 Ref	\
0 dBm	20 dBm 30 dBm	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-10 dBm	20 dBm 30 dBm	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
	30.dBm	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-20 dBm		Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm 0 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-30,dBm		Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm 0 dBm -10 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
		Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
	40 dBm	Ref Level 17.60 dB Att 20 d SGL Count 10 dBm 0 0 dBm -10 dBm -20 dBm -30 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-40 dBm		Ref Level 17.60 dB Att 20 d SGL Count 10 dBm 0 0 dBm -10 dBm -20 dBm -30 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-40 dBm	50 dBm	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -40 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-50 dBm		Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-50 dBm	60 dBm	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm 0 dBm 0 dBm - - -10 dBm - - -20 dBm - - -30 dBm - - -50 dBm - - -60 dBm - -	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-50 dBm	60 dBm	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm 0 dBm 0 dBm - - -10 dBm - - -20 dBm - - -30 dBm - - -50 dBm - - -60 dBm - -	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-50 dBm	60 dBm / / / / / / / / / / / / / / / /	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -70 dBm -80 dBm -80 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	RBW 100 kHz Mo VBW 300 kHz Mo	de Auto FFT M1[1]		5.63 dB 2.4801575950 GF
	50 dBm	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 IPk Max 10 dBm 0 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
	50 dBm	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-50 dBm		Ref Level 17.60 dB Att 20 d SGL Count 1000/100 IPk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm -	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-50 dBm		Ref Level 17.60 dB Att 20 d SGL Count 1000/100 IPk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm -	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-50 dBm	60 dBm	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 IPk Max 10 dBm 0 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm -	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-50 dBm	60 dBm	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 IPk Max 10 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm - -70 dBm -	Bm Offset 7.60 dB dB SWT 18.9 μs	• RBW 100 kHz	de Auto FFT M1[1]		5.63 dB
-50 dBm	60 dBm / / / / / / / / / / / / / / / /	Ref Level 17.60 dB Att 20 d SGL Count 1000/100 IPk Max 10 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -60 dBm - -70 dBm - -80 dBm -	Bm Offset 7.60 dB dB SWT 18.9 μs	RBW 100 kHz Mo VBW 300 kHz Mo	de Auto FFT M1[1]		5.63 dB 2.4801575950 GF

●1Pk Max					м	1[1]			5.28 dBm
10 dBm - ML					м	2[1]			79890 GHz 48.09 dBm
0 dBm							I		09649 GHz
-10 dBm	1 -14.371	dBm							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm	M	в М	4	MIS		ton a			
-60 dBm	ale bill the set		a an agricer in the		المرجعية المرجع المرجعين المرجعية المرجع المرجع م		an daharin da sakular Marina yang basar yang		الدينة بين المراجع المراجع . مرجع مرجع من المراجع .
-70 dBm	A CONTRACTOR OF THE OWNER OF THE								
-80 dBm Start 30.0 M				3000	1 ntc			Stor	25.0 GHz
Marker	112			3000	r pes				
Type Ref M1	Trc 1	X-value 2.479	9 GHz	Y-value 5.28 dB	Func m	tion	Fur	iction Result	:
M2 M3	1	1.7096	49 GHz	-48.09 dB -60.06 dB	m				
M4	1	7.4452	58 GHz	-58.90 dB	m				
M5		10.0912	45 GH2	-60.06 dB	m	Re	ad v 🚺		64
	,)			- ///
SGL Count 1 SGL Max	20 dB 000/1000			VBW 300 kH		1[1]			5.79 dBm
10 dBm			h	13			I	2.40183	85550 GHz
0 dBm					\rangle				
o ubiii									
-10 dBm									
-20 dBm									
20 d0m									
-30 dBm									
-30 dBm		1		1					
-40 dBm									
-40 dBm									
-40 dBm									
-40 dBm -50 dBm -60 dBm -70 dBm									
-40 dBm	 Z			3000	1 pts				n 1.5 MHz
-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	z			3000	1 pts	Re	ady 🔳	Spa	
-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm)[Spuriou) Re 1Hz Ar	adv (1)	· · · · · · · · · · · · · · · · · · ·	
-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm)[Spuriou	us NVN	3000 IT 2-DH5) Pe 1Hz Ar	ndv nt1 Emis	· · · · · · · · · · · · · · · · · · ·	
-40 dBm -50 dBm -60 dBm -70 dBm -80 dBm)[Spuriou	us NVN) Pe 1Hz Ar	ndv nt1 Emis	· · · · · · · · · · · · · · · · · · ·	

					м	1[1]			4.09 dBm
10 dBm— M	1				м	2[1]			01650 GHz 48.29 dBm
0 dBm					·	1	I		03.950 MHz
-10 dBm—	D1 -14.205	i dBm							
-20 dBm—									
-30 dBm—	-								
-40 dBm									
-50 dBm-	M	M4	м						
-60 dBm				المحمد المربعة معروب المحمولية. المحمد المربعة معروب المحمولية المحمولية الم	المردية المريكة بالتي أقيا المريكة المريكة التي التي				الي منه ي محمو المالية. محمو المالية عنه المحمو المالية المحمو المحمو المحمو المحمو المحمو المحمو المحمو
-70 asm	a successive shares and a successive state		and the second		-				
-80 dBm	MU ₂			3000	1 ptc			Stor	25.0 GHz
Marker	MHZ			3000	1 pts			3.01	5 25.0 GHZ
Type Re M1	ef Trc	X-value 2,401	9 65 GHz	<u>Y-value</u> 4.09 dB	Func 3m	tion	Fund	ction Result	:
M2 M3	1	903.9	95 MHz 51 GHz	-48.29 dB -61.17 dB	3m				
M4	1	7.0440	73 GHz	-57.55 dB	3m				
M5		9.7458	27 GHZ	-60.84 dB	sm	Pea			6
						2			
10 dBm					М	1[1]		2.44083	5.90 dBm 86550 GHz
10 0.011									
0 dBm	~						†	-	
							ļ		
-10 dBm-									
-10 dBm-									
-28 dBm—									
-28 dBm—									
-28 dBm—									
-28 dBm									
-28 dBm— -30 dBm— -40 dBm—									
-28 dBm									
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm									
-28 dBm	GHz			3000	1 pts				n 1.5 MHz
-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	GHz			3000	1 pts	Rea		Spa	
-28 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm		Spurio		3000 T 2-DH5) Real	1 Emiss		
-28 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm		Spurior	us NVN au) Real	1 Emiss		
-28 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm		Spurior	us NVN) Rea 1Hz Ant	1 Emiss		

10 dBm — 😽					м	1[1]		2.4	4.28 dBm
0 dBm					M	2[1]		-	40770 GHz 46.94 dBm
-10 dBm-								1.7	09649 GHz
-10 dBm	D1 -14.097	dBm							
-30 dBm									
-40 dBm2									
-50 dBm	M	3 M			يعليه بعد أبريك	والمتعط إحمالهم	and the state of the state	A LOW A MUS	the bar and the
-60 dBm	A DESCRIPTION OF A DESC		and the second se			NA PARAMANA.	all all a second states	-	and the second second
-70 dem									
Start 30.0	MHz			3000:	1 pts			Stop	25.0 GHz
Marker Type Re	f Trc	X-value	.	Y-value	Fund	tion	Fund	tion Result	:
M1 M2	1	2.440 1.70964	77 GHz 49 GHz	4.28 dB -46.94 dB					
M3 M4	1	5.04064	47 GHz	-60.46 dB -58.88 dB	m				
M5	1	7.3994		-60.40 dB					
][) Read	v 🛄		
• 1Pk Max 10 dBm						1[1]		2.48015	5.41 dBm 669950 GHz
10 dBm								2.48015	
10 dBm								2.48015	
10 dBm								2.48015	
10 dBm								2.48015	
10 dBm								2.48015	
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm								2.48015	
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm								2.48015	
10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -80 dBm									669950 GHz
10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm				3000					

ED

●1Pk Max 10 dBm					M1	[1]		2.4	-0.26 dBm 179890 GHz
0 dBm	1				M2	[1]	I		-50.25 dBm 709649 GHz
-10 dBm	D1 -14.594	dBm							
-30 dBm									
-40 dBm									
-50 dBm	м			M5	الم المربعة الم	n Artonist	المعرف والم		la statutta da secola se sa
-60 dBm	a local a la fait de la companya de		angegel og statende og som		and the second	an di	elisikati parta firit	"Ingeneration of	
-80 dBm	MHz			30001	nts			Stor	25.0 GHz
Marker Type Rei		M .ushus	. 1	Y-value	Functi	1	5	tion Result	
M1 M2	1	2.4798 1.70964	39 GHz	-0.26 dBr -50.25 dBr	n	ion	Fund	ction Result	<u> </u>
M3	1	5.00402	24 GHz	-60.19 dBr	n				
M4 M5	1	7.38449		-59.85 dBr -59.36 dBr					
Att SGL Count	۱ 17.62 dBm 20 dB			RBW 100 kHz VBW 300 kHz		uto FFT			
Ref Level Att SGL Count 1Pk Max	۱ 17.62 dBm 20 dB	Offset 7						2 40215	5.87 dBm
Ref Level Att SGL Count 1Pk Max	۱ 17.62 dBm 20 dB	Offset 7			Mode A	[1]		2.40215	
Ref Level Att SGL Count 1Pk Max	۱ 17.62 dBm 20 dB	Offset 7			Mode A	[1]		2.40215	5.87 dBm
Ref Level Att SGL Count 1Pk Max	۱ 17.62 dBm 20 dB	Offset 7			Mode A	[1]		2.40215	5.87 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm- 0 dBm-	۱ 17.62 dBm 20 dB	Offset 7			Mode A	[1]		2.40215	5.87 dBm
Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	۱ 17.62 dBm 20 dB	Offset 7			Mode A	[1]		2.40215	5.87 dBm
Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm	۱ 17.62 dBm 20 dB	Offset 7			Mode A	[1]		2.40215	5.87 dBm
Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm	۱ 17.62 dBm 20 dB	Offset 7			Mode A	[1]		2.40215	5.87 dBm
Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	۱ 17.62 dBm 20 dB	Offset 7			Mode A	[1]		2.40215	5.87 dBm
Ref Level Att SGL Count • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	۱ 17.62 dBm 20 dB	Offset 7			Mode A	[1]		2.40215	5.87 dBm
Ref Level Att SGL Count • 1Pk Max 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	17.62 dBm 20 dB 1000/1000	Offset 7		VBW 300 kHz	Mode A	[1]			5.87 dBm 577450 GHz
Ref Level Att SGL Count • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	17.62 dBm 20 dB 1000/1000	Offset 7			Mode A	[1]			5.87 dBm 577450 GHz

●1Pk Max					M1	[1]			-0.46 dBm
10 dBm	ļ				M2	[1]			102490 GHz -49.65 dBm
0 dBm							I	1.7	09649 GHz
-10 dBm—	D1 -14.129	dBm							
-20 dBm—									
-30 dBm—									
-40 dBm									
-50 dBn	МЗ	M4	M						
-60 dBm	Tellipstrate Dier	and the second	A DESTRUCTION OF STREET		ا المارية من التي الميرية المارية منابع مارية	an all and the larger of the second			المسالف مغياته كما
-70 dem-	in the set of the state of the set of the se		and and the second s						
-80 dBm—									
Start 30.0 Marker	MHZ			30001	pts			Stop	25.0 GHz
Type Re M1	ef Trc	X-value	9 GHz	Y-value -0.46 dBm	Functi	ion	Fund	ction Result	t
M2	1	1.70964	49 GHz	-49.65 dBm	n				
M3 M4	1	4.62614		-60.37 dBn -58.92 dBn					
M5	1	9.79659	99 GHz	-59.58 dBr	1				
							Y III		
	20 dB t 1000/1000	SWT 1				uto FFT			
				MI	M1			2.44099	5.40 dBm 973500 GHz
SGL Count 1Pk Max				MI	M1			2.44099	
SGL Count 1Pk Max 10 dBm-				MI	M1			2.44099	
SGL Count P1Pk Max 10 dBm 0 dBm				M	M1			2.44099	
SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm				M	M1			2.44099	
SGL Count P1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm					M1			2.44099	
SGL Count PIPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm					M1			2.44099	
SGL Count					M1			2.44099	
SGL Count					M1			2.44099	
SGL Count									073500 GHz
SGL Count ● 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm				30001					073500 GHz

●1Pk Max		T T			M	1[1]			0.88 dBm
10 dBm								2.	440770 GHz
0 dBm					M	2[1]		1.	-50.39 dBm 709649 GHz
-10 dBm									
-20 dBm	01 -14.601						_		
-30 dBm							_		
-40 dBm							_		
-50 dBn							_	_	
-60 dBm	M	1B M4	1 Transfer to the second		وأسعره والعرواني والم		a a balance	and the state of the second	A starter at allow the
-70 dBm	and the second secon		ter peritina de	and the second	والاستيالي والارواق	(F. 1	and the second sec	a and a second s	in stilling in a start of the s
Start 30.0 M	1Hz			30001	l pts			Sto	p 25.0 GHz
Marker _Type Ref	Trc	X-value		Y-value	Fund	ion	Fu	nction Resu	lt 🔤
M1 M2	1	2.44077		0.88 dBi -50.39 dBi					
M3 M4	1	4.939102	GHz	-60.80 dBi -59.72 dBi	m				
M5	1	9.861521		-60.36 dB]
Spectrum		Tx. Spurio							
Ref Level Att SGL Count 1	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH: VBW 300 kH:	2				
Ref Level Att	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 2 Mode A				5.53 dBm
Ref Level Att SGL Count 1	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			
Ref Level Att SGL Count 1 1Pk Max 10 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 1Pk Max	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 1Pk Max 10 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 PIPK Max 10 dBm -10 dBm -20 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 PIPK Max 10 dBm -10 dBm -20 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 SGL Count 1 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 SGL Count 1 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	17.60 dBn 20 dl	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT			5.53 dBm
Ref Level Att SGL Count 1 SGL Count 1 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	17.60 dBn 20 dl .000/1000	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH3	2 Mode A	Auto FFT		2.4801	5.53 dBm 581950 GHz
Ref Level Att SGL Count 1 SGL Count 1 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	17.60 dBn 20 dl .000/1000	n Offset 7.6 B SWT 18.	0 dB 👄	RBW 100 kH;	2 Mode A	Auto FFT	ady	2.4801	5.53 dBm

	evel 1	7.60 dBi	m Offset 7.6	50 dB 😑 F	RBW 100 kHz	:				
Att		20 d	IB SWT 25	50 ms 😑	/BW 300 kHz	Mode /	Auto Swe	эр		
SGL Co	ount 10	/10								
●1Pk M	ах									
						M	1[1]			0.02 dBm
10 dBm			+ +							79890 GHz
0 dBm—	ML					M	2[1]			51.32 dBm
о авт-									1.7	09649 GHz
-10 dBm										
		-14.47	4 dBm							
-20 dBm	ν — —									
20 40-										
-30 dBm										
-40 dBm										
м										
-50 dBn			+							
			M3 M4	м	§	بالمرتبة المراجع	بالمعادرة أراحه ورابه	المراجع المراجع المراجع	have a set of the	فيلتب والمتعامية
-60 dBn	الما المرا	Align and produced		R Roman P 1			na ferense	and the state of the left		
70 aun	and the second	and the second secon		and the property of the proper	and the second se	and the second				
70 abii	·									
-80 dBm	ı——									
Start 3	0.0 MH	lz			30001	. pts			Stop	25.0 GHz
larker	Ref	Trc	X-value		Y-value	Fund	tion	Fund	ction Result	:
		1	2,47989	GHz	0.02 dBr					
1arker Type M1			1.709649	GHz	-51.32 dBr					
Type M1 M2		1								
Type M1		1 1	5.053132	2 GHz	-60.09 dBr -59.68 dBr					

END OF REPORT