

Report No. : EED32K00244301

Page 1 of 56

Product **Trade mark** Model/Type reference **ACT Job Number**

Serial Number **Report Number** Date of Issue **Test Standards Test result**

Electric Bicycles

ARIV

- Merge (folding), Meld (non-folding)
- 1028.0001.002 (Merge), 1028.0002.001 (Meld)

N/A ÷

- EED32K00244301
- Sep. 18, 2019
- 47 CFR Part 15Subpart C

PASS

Prepared for:

General Motors LLC 300 Renaissance Center Detroit, MI 48243 UNITED STATES

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

2 Version

	Version No.		Date			Descriptio	n	
	00	Se	p. 18, 2019		\bigcirc	Original	C	
Ð		Ì		G		Ì		Ì

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: Merge (folding), Meld (non-folding)

both produced by General Motors share the same electrical circuit design, layout, components, internal wiring, shell material and shape except the following points:

1) The Meld (non-folding) (1028.0002.001)has a non-folding frame. The frame profile looks like the Merge (folding) (1028.0001.002), but does not have the hinges allowing the frame to fold.

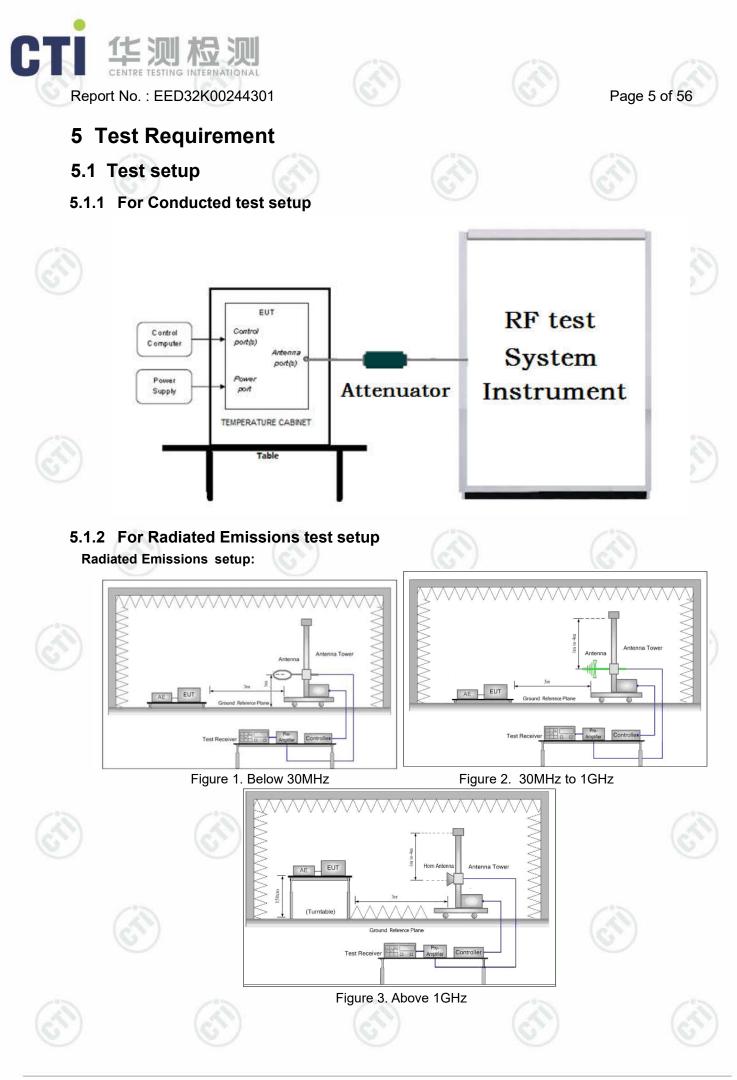
2) The Meld (non-Folding) (1028.0002.001) has a chain drive instead of the belt drive that is on Merge (folding) (1028.0001.002) so there are a few different drivetrain components:

a. The crankset (part that the pedals attach to) is designed for a chain instead of a belt

b.The rear wheel has a cog that is designed for a chain instead of a belt

c.instead of a belt it has a chain connecting those parts

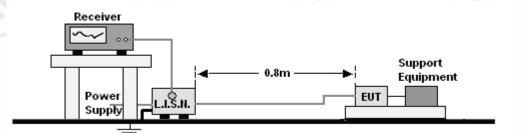
The test model is Merge (folding) and the test results are applicable to the others.



S)

4 Content

1 COVER PAGE		<u> </u>		1
2 VERSION				2
3 TEST SUMMARY		~		3
4 CONTENT				
5 TEST REQUIREMENT				
5.1 TEST SETUP				
5.1.1 For Conducted test setup				
5.1.2 For Radiated Emissions test s				
5.1.3 For Conducted Emissions test	•			
5.2 TEST ENVIRONMENT				
5.3 TEST CONDITION				6
6 GENERAL INFORMATION				7
6.1 CLIENT INFORMATION				7
6.2 GENERAL DESCRIPTION OF EUT				7
6.3 PRODUCT SPECIFICATION SUBJECTIVE				
6.4 DESCRIPTION OF SUPPORT UNITS				
6.5 TEST LOCATION				
6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CC				
6.8 OTHER INFORMATION REQUESTED BY				-
6.9 MEASUREMENT UNCERTAINTY (95%				
7 EQUIPMENT LIST				
8 RADIO TECHNICAL REQUIREMENTS	SPECIFICATION			12
Appendix A): 6dB Occupied Bandwi				
Appendix B): Conducted Peak Outp				
Appendix C): Band-edge for RF Cor				
Appendix D): RF Conducted Spuriou				
Appendix E): Power Spectral Densit Appendix F): Antenna Requirement.				
Appendix F): All Power Line Condu				
Appendix H): Restricted bands arou				
Appendix I): Radiated Spurious Emi				
PHOTOGRAPHS OF TEST SETUP	<u></u>	<u></u>	<u> </u>	43
PHOTOGRAPHS OF EUT CONSTRUCT	IONAL DETAILS			45
		•••••••	••••••	



5.1.3 For Conducted Emissions test setup Conducted Emissions setup

Ground Reference Plane

5.2 Test Environment

Operating Environment	Operating Environment for RF Conducted test:				
Temperature:	24°C	0			
Humidity:	52% RH				
Atmospheric Pressure:	101kPa				
1	25	1°2			

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
Test Mode	12/62	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
Gron		2402MHz	2440MHz	2480MHz	
TX mode	The EUT transmitted the continuo	us signal at the sp	ecific channel(s).		

6 General Information

6.1 Client Information

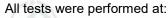
Applicant:	General Motors LLC	
Address of Applicant:	300 Renaissance Center Detroit, MI 48243 UNITED STATES	
Manufacturer:	G-ONE TECH (VIETNAM) COMPANY LIMITED	
Address of Manufacturer:	No. 8B VSIP IIA, Street. 30, Vietnam-Singapore Industrial Park IIA, Vinh Tan Commune, Tan Uyen Town, Binh Duong Province, Vietnam	
Factory:	G-ONE TECH (VIETNAM) COMPANY LIMITED	
Address of Factory:	No. 8B VSIP IIA, Street. 30, Vietnam-Singapore Industrial Park IIA, Vinh Tan Commune, Tan Uyen Town, Binh Duong Province, Vietnam	

6.2 General Description of EUT

Product Name:	Electric Bicy	cles	S				
Model No.(EUT):	Merge (folding), Meld (non-folding)						
Test Model No.:	Merge (foldir	Merge (folding)					
Trade Mark:	ARIV						
EUT Supports Radios application:	BT 4.1 BT S	Band5; Band4, Band5, Band17 ingle mode, 2402MHz to 2480MHz 9MHz to 1610MHz		(°)			
Power Supply:	Adapter	Model: BC1315 1.01 Input: 100-240VAC, 50/60Hz, 2.0A Output: +49.2V1.75A					
	Battery	Battery 43V DC	U				
Firmware version:	GMD-45130	01; GMT-5303202(manufacturer declare)					
Hardware version:	GMD-V5.1; 0	GMT-V3.0(manufacturer declare)		10-			
Sample Received Date:	Sep. 06, 2018						
Sample tested Date:	Sep. 20, 201	8 to Sep. 18, 2019		C			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	4.1	(\mathcal{C})
Modulation Technique:	DSSS	\sim
Modulation Type:	GFSK	
Number of Channel:	40	10
Test Power Grade:	N/A(manufacturer declare)	*) (A*
Test Software of EUT:	uEnergyTest (manufacturer declare)	
Antenna Type:	РСВ	
Antenna Gain:	-0.23dBi	1
Test Voltage:	AC 120V, 60Hz	


Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 3368385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

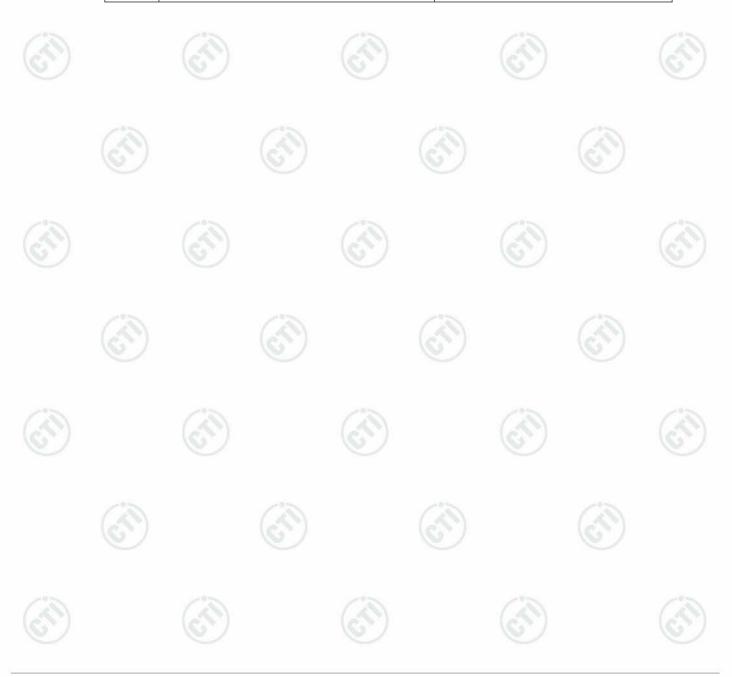
None.

6.7 Abnormalities from Standard Conditions

None.

None.

6.8 Other Information Requested by the Customer



6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	PE power conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Padiated Spurious optionian test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Equipment List 7

		RF test syste			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-02-2018 03-01-2019	03-01-2019 02-29-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-02-2018 03-01-2019	03-01-2019 02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-02-2018 03-01-2019	03-01-2019 02-29-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002		01-10-2018 01-09-2019	01-09-2019 01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	6 7)	01-10-2018 01-09-2019	01-09-2019 01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-02-2018 03-01-2019	03-01-2019 02-29-2020
PC-1	Lenovo	R4960d		03-02-2018 03-01-2019	03-01-2019 02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-02-2018 03-01-2019	03-01-2019 02-29-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-02-2018 03-01-2019	03-01-2019 02-29-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-02-2018 03-01-2019	03-01-2019 02-29-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-02-2018 03-01-2019	03-01-2019 02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-02-2018 03-01-2019	03-01-2019 02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

		Conducted dist	urbance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-25-2018 05-20-2019	05-24-2019 05-18-2020
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018 06-14-2019	07-01-2019 06-12-2020
Communication test set	Agilent	E5515C	GB47050534	03-02-2018 03-01-2019	03-01-2019 02-29-2020
Communication test set	R&S	CMW500	102898	01-19-2018 01-18-2019	01-18-2019 01-17-2020
LISN	R&S	ENV216	100098	05-10-2018 05-08-2019	05-10-2019 05-06-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.56	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018 05-20-2019	05-29-2019 05-18-2020
ISN	TESEQ	ISN T800	30297	01-17-2018 01-16-2019	01-16-2019 01-15-2020

Report No. : EED32K00244301

Page 11 of 56

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
3M Chamber & Accessory Equipment	ТDК	SAC-3	<u>ی</u>	06-04-2016 05-04-2019	06-03-2019 05-22-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018 07-26-2019	07-29-2019 07-25-2020
Microwave Preamplifier	Agilent	8449B	3008A02425	08-21-2018 07-12-2019	08-20-2019 07-11-2020
Microwave Preamplifier	Tonscend	EMC051845SE	980380	01-17-2018 01-16-2019	01-16-2019 01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.6041	08-08-2018 07-26-2019	08-07-2019 07-25-2020
Preamplifier	EMCI	EMC001330	980563	06-20-2018 05-08-2019	06-19-2019 05-06-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018 04-28-2019	05-10-2019 04-26-2020
Receiver	R&S	ESCI	100435	05-25-2018 05-20-2019	05-24-2019 05-18-2020
Receiver	R&S	ESCI7	100938-003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/10711 112	<u></u>	01-10-2018 01-09-2019	01-09-2019 01-08-2020
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018 05-08-2019	05-10-2019 05-06-2020
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018 05-08-2019	05-10-2019 05-06-2020
Signal Generator	Agilent	E4438C	MY45095744	03-02-2018 03-01-2019	03-01-2019 02-29-2020
Signal Generator	Keysight	E8257D	MY53401106	03-02-2018 03-01-2019	03-01-2019 02-29-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050534	03-02-2018 03-01-2019	03-01-2019 02-29-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018 01-09-2019	01-09-2019 01-08-2020
Communication test set	R&S	CMW500	104466	01-10-2018 01-09-2019	01-09-2019 01-08-2020
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-10-2018 01-09-2019	01-09-2019 01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	20	01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	9	01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002	/	01-10-2018 01-09-2019	01-09-2019 01-08-2020
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001	(d	01-10-2018 01-09-2019	01-09-2019 01-08-2020

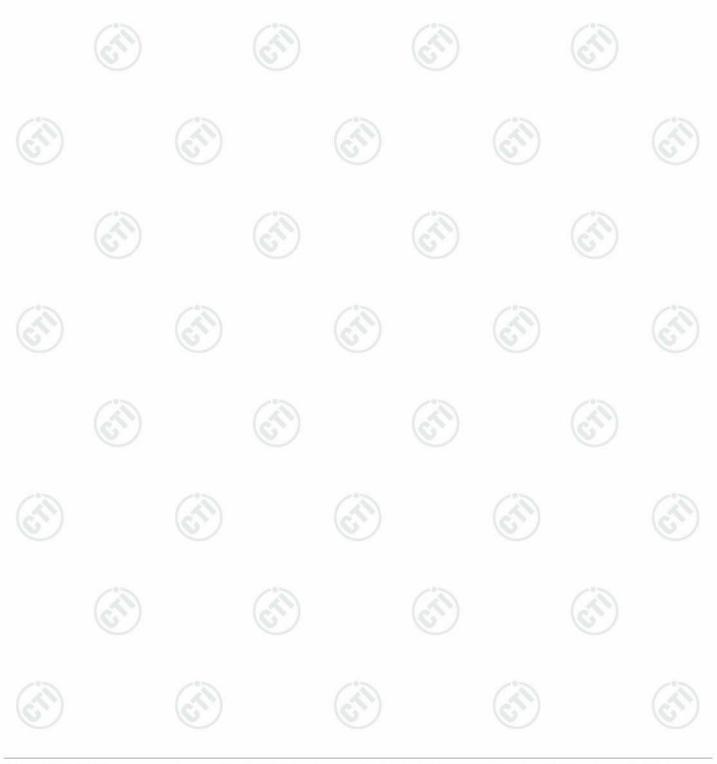
8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title	
1	FCC Part15C	Subpart C-Intentional Radiators	
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices	~
oot P	Posults List		2

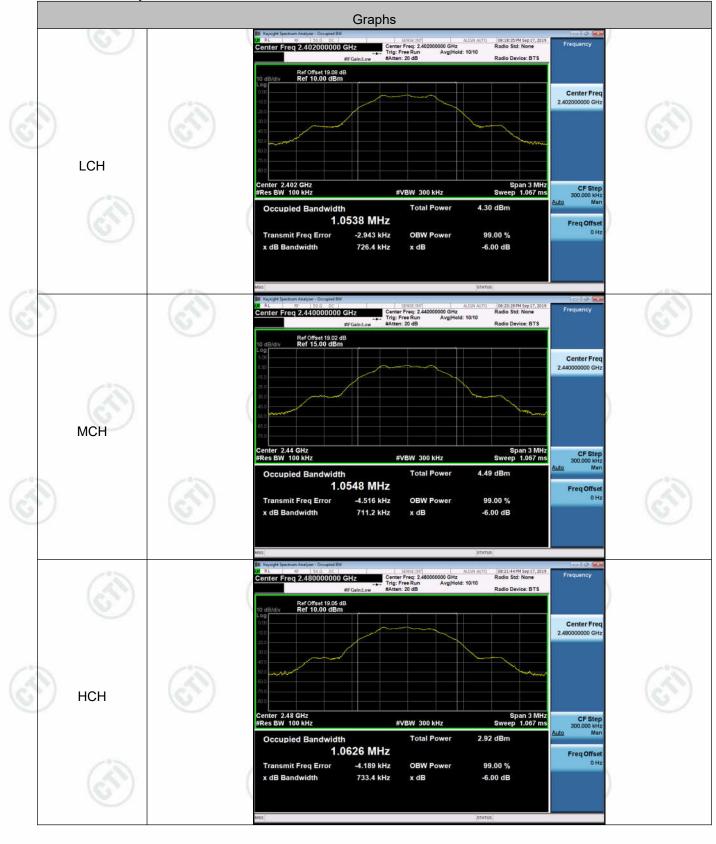
Tost Posulte Lis

est Results List:				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)
(3)	(67)	(6))	63	1

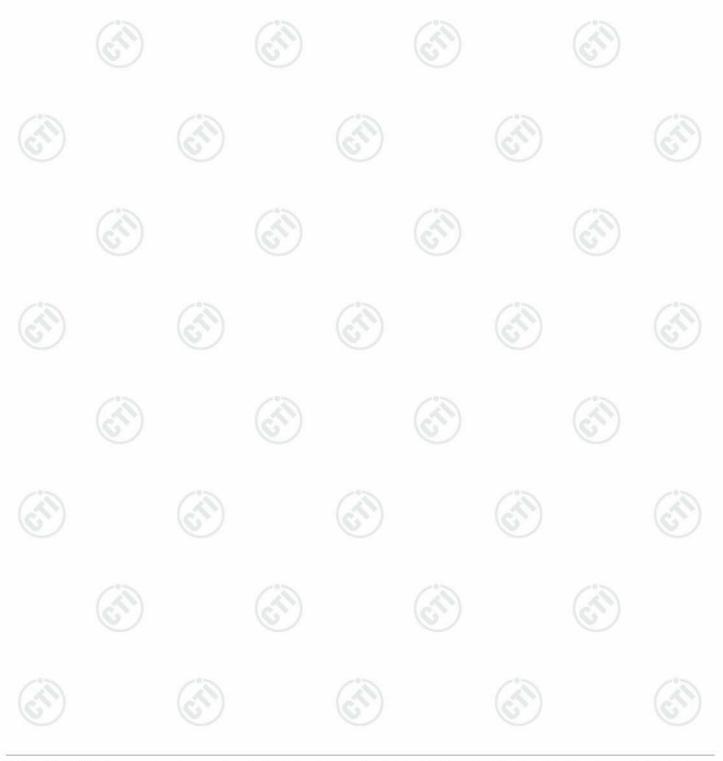


Appendix A): 6dB Occupied Bandwidth

	Test Resul	t	A) (A)		
	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
	BLE	LCH	0.7264	1.0428	PASS
13	BLE	MCH	0.7112	1.0427	PASS
G	BLE	НСН	0.7334	1.0454	PASS

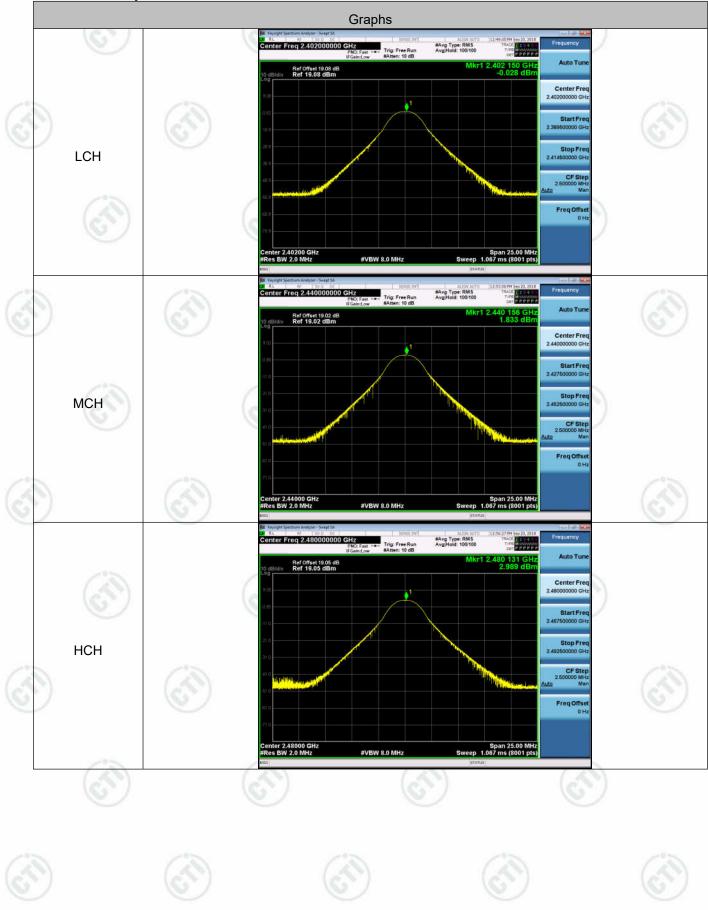


Test Graphs



Appendix B): Conducted Peak Output Power

Test Resul	lt		
Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-0.028	PASS
BLE	МСН	1.833	PASS
BLE	нсн	2.989	PASS



Page 17 of 56

Test Graphs

Page 18 of 56

	I		Duty Cyc	le	i		
Configuration	1	TX ON(ms)	TX ALL(m	s)	Duty Cycle(
BLE		1.0000		1.0000		100.00%	



Appendix C): Band-edge for RF Conducted Emissions

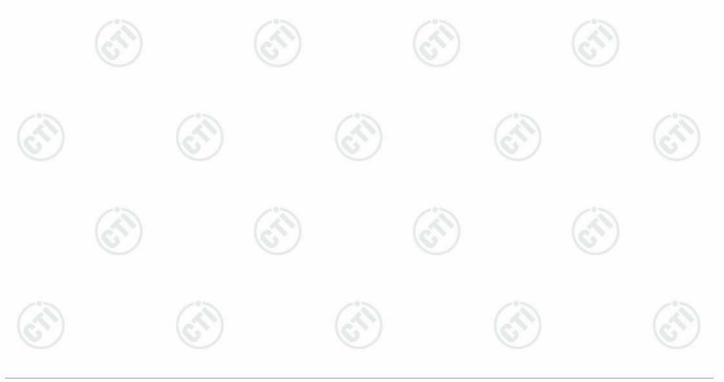
-	Resu	It Table		(2)	(3)		
	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
13	BLE	LCH	-0.156	-59.083	-20.16	PASS	
6	BLE	нсн	2.765	-45.102	-17.24	PASS	

Test Graphs

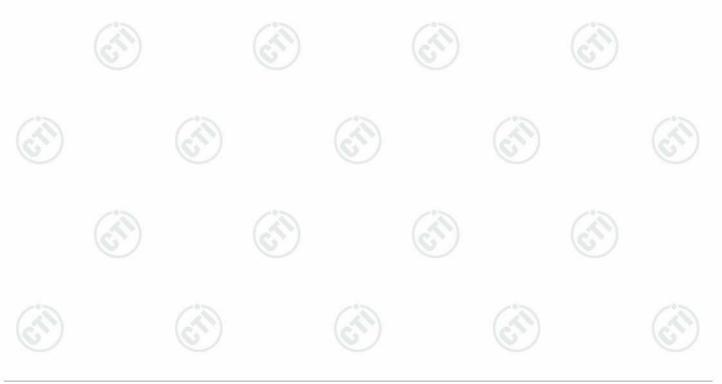
Appendix D): RF Conducted Spurious Emissions

Result	Table		(3)	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-0.262	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	МСН	1.599	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	2.667	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs



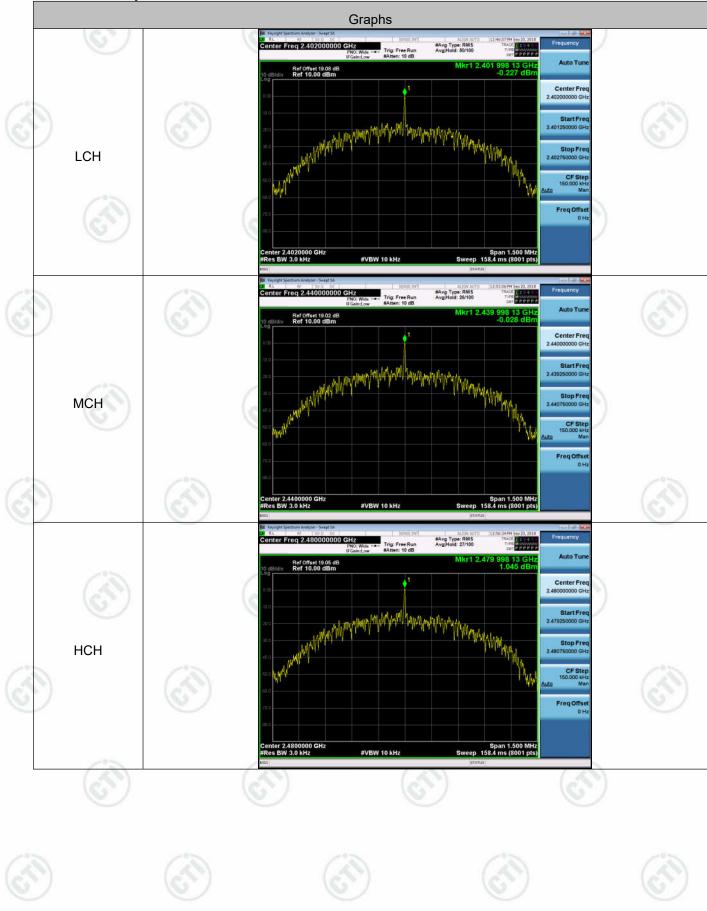
Page 21 of 56



Page 22 of 56

Appendix E): Power Spectral Density

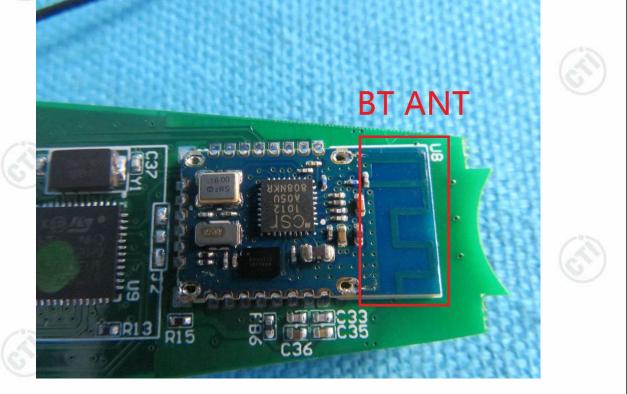
_	Result Ta	ble) (3	
	Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
	BLE	LCH	-0.227	8	PASS
1	BLE	МСН	-0.028	8	PASS
	BLE	НСН	1.045	8	PASS



Page 24 of 56

Test Graphs

Appendix F): Antenna Requirement


15.203 requirement:

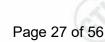
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement:

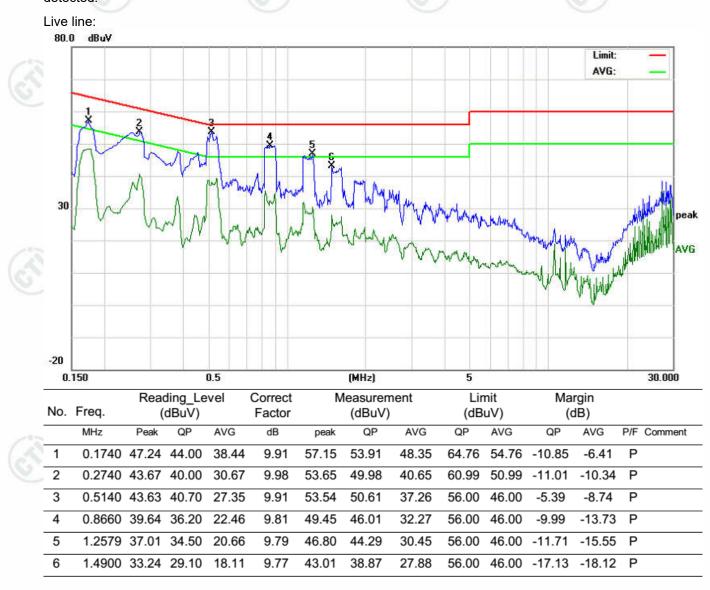
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB antanna and no consideration of replacement. The best case gain of the antenna is -0.23dBi.

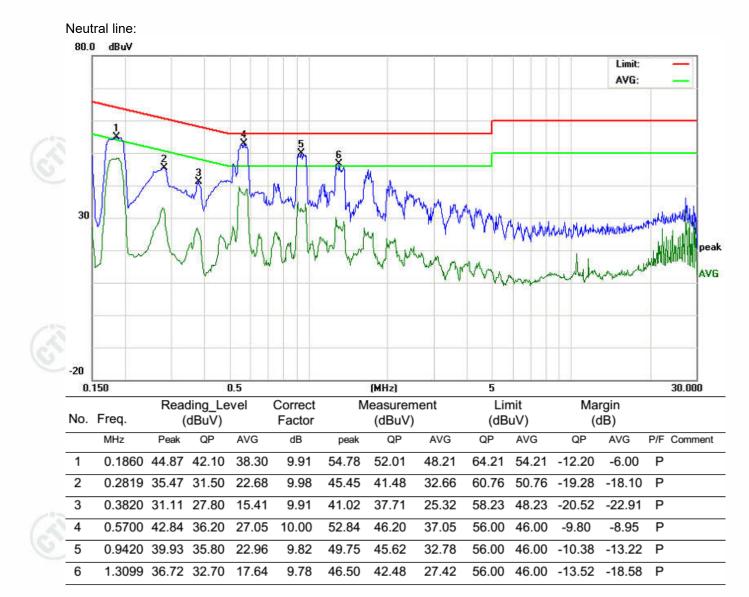
Appendix G): AC Power Line Conducted Emission


	 The mains terminal disturbant The EUT was connected to Stabilization Network) which power cables of all other up which was bonded to the group of the stability of the	AC power source the provides a $50\Omega/50$ mits of the EUT were	rough a LISN 1 (Lin)μH + 5Ω linear imp	e Impedan
	Stabilization Network) whic power cables of all other un which was bonded to the gr	h provides a $50\Omega/50$ nits of the EUT were)μH + 5Ω linear imp	
	for the unit being measured	d. A multiple socket	e in the same way a outlet strip was use	cond LISN as the LISN ed to conne
	multiple power cables to a s exceeded.	ingle LISN provided	the rating of the LIS	N was not
	3)The tabletop EUT was place reference plane. And for flo 12mm above the ground ref	or-standing arrange		
	 4) The test was performed with EUT shall be 0.4 m from the reference plane was bonde 1 was placed 0.8 m from t 	e vertical ground refe d to the horizontal g he boundary of the	erence plane. The ve round reference plan unit under test and	ertical grou ne. The LIS bonded to
	ground reference plane for plane. This distance was be All other units of the EUT a LISN 2.	etween the closest p	oints of the LISN 1 a	and the EU
	5) In order to find the maximum of the interface cables r conducted measurement.			
Limit:	(67)		(67)	
	Frequency range (MHz)	Limit	(dBµV)	
		Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	100
	0.5-5	56	46	6
	5-30	60	50	V
	* The limit decreases linearly with MHz to 0.50 MHz. NOTE : The lower limit is applied	C C		e range 0.
		: 53%	Press.: 101kPa	
Test Ambient:				



Measurement Data

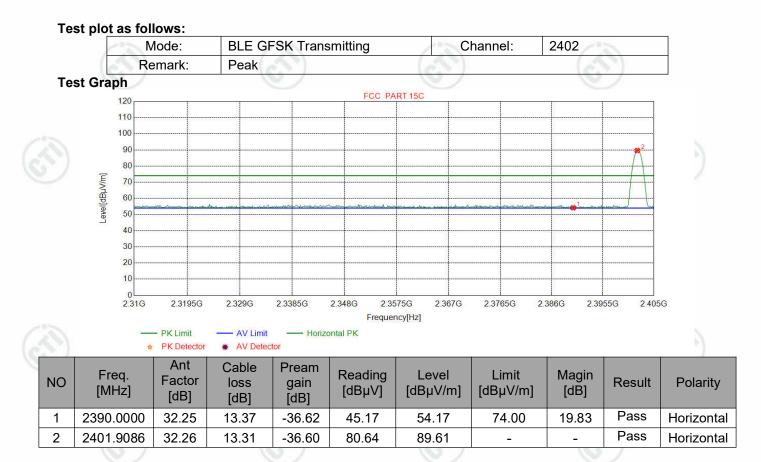
An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

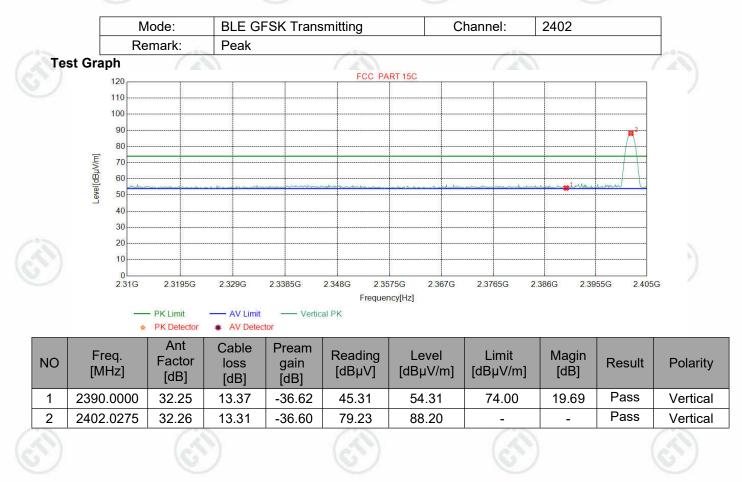


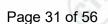
Notes:

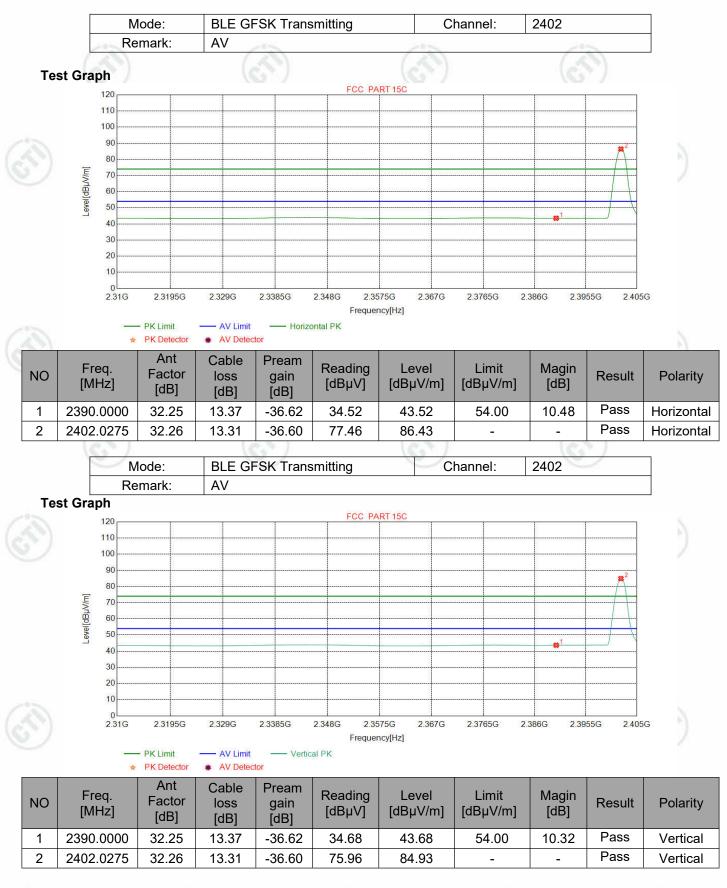
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32K00244301


Appendix H): Restricted bands around fundamental frequency (Radiated)


Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
		Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedu		(8	(°)		(
	 a. The EUT was placed of at a 3 meter semi-anex determine the position b. The EUT was set 3 meter semi-anex was mounted on the to c. The antenna height is determine the maximul polarizations of the antenna was turned from 0 deg e. The test-receiver system Bandwidth with Maxim 	on the top of a ro choic camber. The of the highest ra- eters away from op of a variable-he varied from one m value of the fi- tenna are set to nission, the EUT to heights from rees to 360 degreen was set to Per- um Hold Mode.	he table wa adiation. the interfer height ante meter to fo eld strengtl make the r 1 meter to rees to find eak Detect	ence-recei nna tower. our meters n. Both hor neasureme ged to its 4 meters the maxin Function a	360 degrees wing antenna above the gr izontal and v ent. worst case an and the rotata num reading. nd Specified ne transmit	to a, \ ou ver nd ab
	 f. Place a marker at the offrequency to show combands. Save the spect for lowest and highest Above 1GHz test procedution g. Different between above to fully Anechoic Chamment 18GHz the distance is h. Test the EUT in the logitation measure 	npliance. Also m rum analyzer plo channel ure as below: ve is the test site ber change forr 1 meter and tab pwest channel,	ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highesi	or each po rom Semi- meter to 1 ter). t channel	ower and mo Anechoic Cr .5 meter(Ab	du nai ov
	frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo	npliance. Also m rum analyzer plo channel ure as below: ve is the test site ber change forr 1 meter and tabl owest channel , ments are perfo d found the X ax	ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position	For each po rom Semi- meter to 1 ter). t channel Y, Z axis p ng which i	Anechoic Cr .5 meter(Ab positioning fo t is worse ca	du nar ov r
Limit:	frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an	npliance. Also m rum analyzer plo channel ure as below: ve is the test site ber change forr 1 meter and tabl pwest channel , ments are perfo d found the X av ires until all freq Limit (dBµV	e, change fi n table 0.8 le is 1.5 me the Highesi rmed in X, kis position uencies me /m @3m)	For each por moter to 1 ter). t channel Y, Z axis p ing which i easured wa	Anechoic Cr .5 meter(Ab positioning fo t is worse ca	du nar ov
Limit:	frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site ber change forr 1 meter and tabl owest channel , ments are perfo d found the X av ures until all freq	e, change fi n table 0.8 le is 1.5 me the Highesi rmed in X, kis position uencies me /m @3m)	For each por moter to 1 ter). Tring which i easured wa Rei Quasi-po	Anechoic Cr .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value	du nar ov r
Limit:	frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site ober change forr 1 meter and tabl pwest channel , ments are perfo d found the X as ures until all freq Limit (dBµV. 40.0	e, change fin n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	For each por moter to 1 ter). t channel Y, Z axis p mg which i easured wa Rei Quasi-po Quasi-po	Anechoic Ch .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value	du nar ov
Limit:	frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site aber change forr 1 meter and tabl owest channel , ments are perfo d found the X av ures until all freq Limit (dBµV. 40.0	e, change fin n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	For each por moter to 1 ter). The channel Y, Z axis p ing which i easured wat Rep Quasi-por Quasi-por Quasi-por	Anechoic Cr .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value	du nar ov
Limit:	frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site ober change forr 1 meter and tabl pwest channel , ments are perfo d found the X as ures until all freq Limit (dBµV. 40.0	e, change fin n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	For each por moter to 1 ter). The channel Y, Z axis p ing which i easured wat Rep Quasi-por Quasi-por Quasi-por	Anechoic Ch .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value	du nar ov
Limit:	frequency to show combands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site ber change forr 1 meter and tabl owest channel , ments are perfo d found the X as ures until all freq Limit (dBµV. 40.0	e, change fin n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	For each por moter to 1 ter). t channel Y, Z axis p ing which i easured wa Rei Quasi-po Quasi-po Quasi-po	Anechoic Cr .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value	du nar ov
Limit:	frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site ober change forr 1 meter and table owest channel , ments are perfo d found the X as ires until all freq Limit (dBµV. 40.0 43.0 46.0 54.0	ot. Repeat f e, change fin n table 0.8 le is 1.5 me the Highesi rmed in X, kis position uencies me /m @3m) 0 5 0 0	For each por meter to 1 ter). t channel Y, Z axis p mg which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po Averag	Anechoic Cr .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value eak Value	du nar ov r
Limit:	frequency to show com bands. Save the spect for lowest and highest Above 1GHz test procedu g. Different between abov to fully Anechoic Cham 18GHz the distance is h Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz	npliance. Also m rum analyzer plo channel ure as below: ve is the test site aber change forr 1 meter and tabl owest channel , ments are perfo d found the X as ures until all freq Limit (dBµV) 40.0 43.0 46.0 54.0	ot. Repeat f e, change fin n table 0.8 le is 1.5 me the Highesi rmed in X, kis position uencies me /m @3m) 0 5 0 0	For each por meter to 1 ter). t channel Y, Z axis p mg which i easured wa Rei Quasi-po Quasi-po Quasi-po Quasi-po Averag	Anechoic Cr .5 meter(Ab oositioning fo t is worse ca as complete. mark eak Value eak Value eak Value eak Value ye Value value	du nar ov





Page 33 of 56

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
6	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
(6)	Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

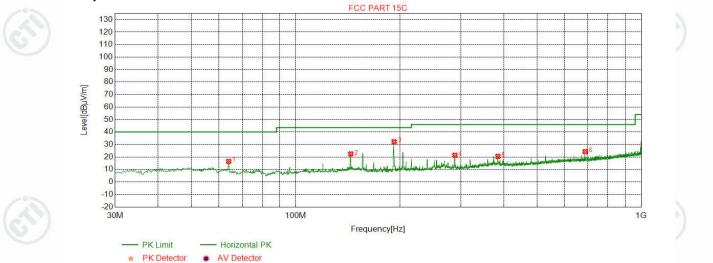
Below 1GHz test procedure as below:

- a. The EUT was placed on the 12 mm above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

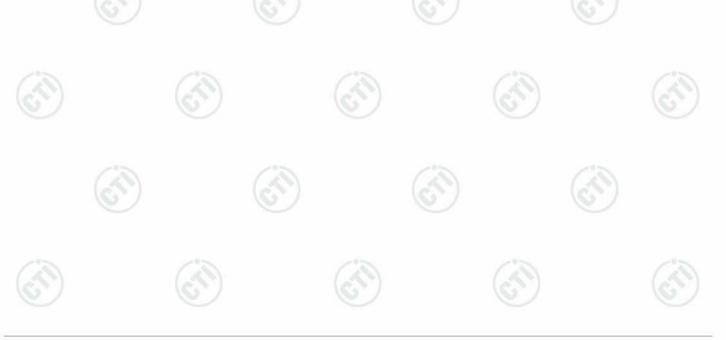
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

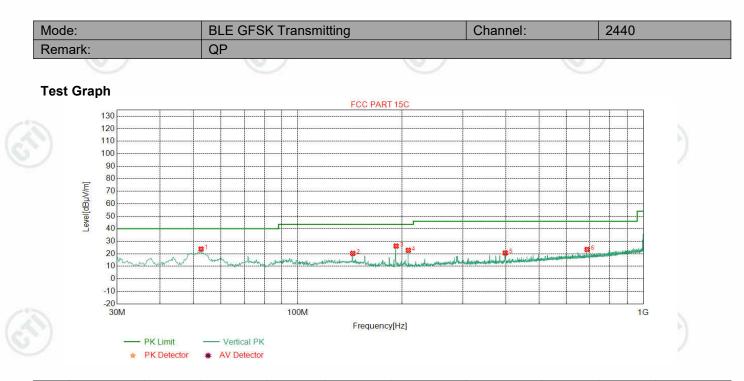
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24000/F(kHz)	-	20-	30	2.64
	1.705MHz-30MHz	30	-		30	
	30MHz-88MHz	100	40.0	Quasi-peak	3	6
	88MHz-216MHz	150	43.5	Quasi-peak	3	
	216MHz-960MHz	200	46.0	Quasi-peak	3	
	960MHz-1GHz	500	54.0	Quasi-peak	3	
G	Above 1GHz	500	54.0	Average	3	
	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	B above the maxir equipment under	num permi test. This p	itted average	emission limit	
Test Ambient:	Temp.: 21°C	Humid.: 56%	b	(62)	Press.: 101kPa	65



Radiated Spurious Emissions test Data:



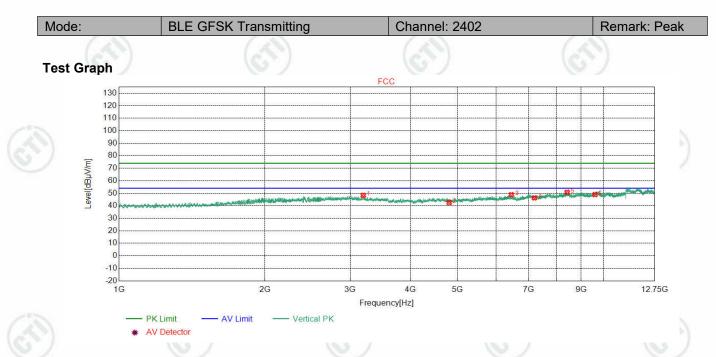
Mode:	BLE GFSK Transmitting	Channel:	2440
Remark:	QP		

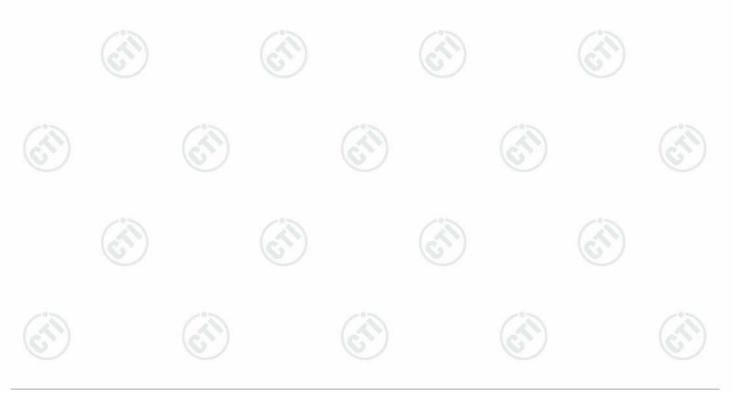

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	63.9568	10.57	0.92	-32.05	37.04	16.48	40.00	23.52	Pass	Horizontal
1.00	2	144.2889	7.35	1.42	-32.00	45.77	22.54	43.50	20.96	Pass	Horizontal
(4	3	192.6045	10.20	1.63	-31.97	52.41	32.27	43.50	11.23	Pass	Horizontal
6	4	288.6537	12.97	2.02	-31.88	38.29	21.40	46.00	24.60	Pass	Horizontal
	5	384.7029	15.06	2.33	-31.84	35.00	20.55	46.00	25.45	Pass	Horizontal
	6	687.5975	19.70	3.14	-32.06	33.54	24.32	46.00	21.68	Pass	Horizontal

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
	1	52.5085	12.80	0.82	-32.10	42.28	23.80	40.00	16.20	Pass	Vertical
	2	144.2889	7.35	1.42	-32.00	43.54	20.31	43.50	23.19	Pass	Vertical
	3	192.6045	10.20	1.63	-31.97	46.32	26.18	43.50	17.32	Pass	Vertical
13	4	208.9038	11.13	1.71	-31.94	41.87	22.77	43.50	20.73	Pass	Vertical
2	5	398.6737	15.37	2.38	-31.77	34.66	20.64	46.00	25.36	Pass	Vertical
Ľ	6	687.5975	19.70	3.14	-32.06	32.68	23.46	46.00	22.54	Pass	Vertical

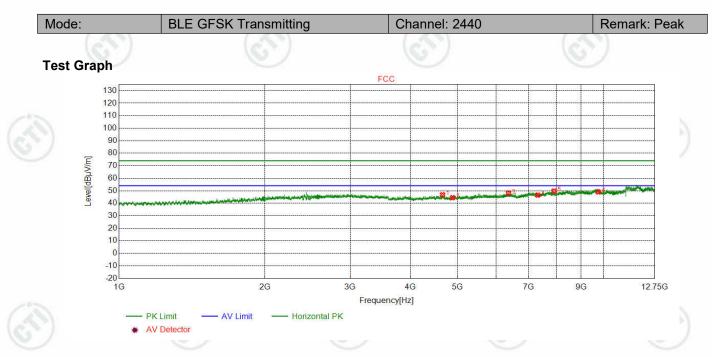
Remark : All modes are tested, only the worst mode is reported.

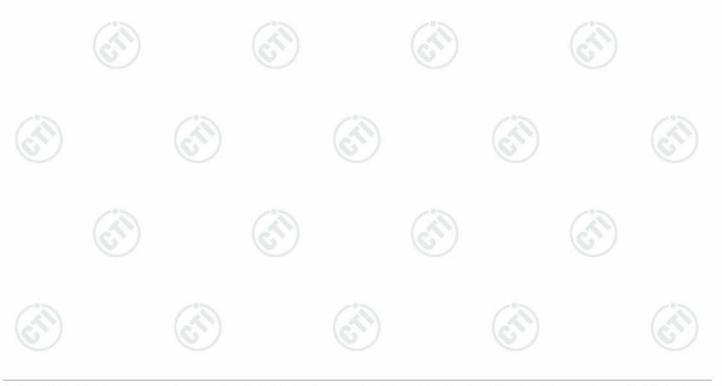
Mod	le:		BLE GF	SK Tran	smitting		Channel: 2	402		Remark	: Peak
Test	Gra	ph		ć	S)	FC	00		6	·*)	
	Leve[[dBµV/m]	130 120 110 00 90 80 70 60 50 40 30 20 10 0 -10 20									
				2	0	20	10 5	2 70			2750
		1G — PK	Limit	2 - AV Limit	G Horizor	3G Freque	4G 50 ncy[Hz]	G 70	6 9G	1:] 2.75G
		1G — PK	Limit			Freque		G 70	9G	1:	2.75G
NO		1G — PK				Freque		Limit [dBµV/m]	Margin [dB]	Result	G-)
NO 1	28	1G — Рк * АУ Freq.	Detector Ant Factor	- AV Limit Cable loss	— Horizor Pream gain	Freque tal PK Reading	ncy[Hz]	Limit	Margin		G-)
		1G — РК * АУ Freq. [MHz]	Ant Factor [dB]	- AV Limit Cable loss [dB]	Pream gain [dB]	Freque tal PK Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarit
1	48	1G — рк * AV Freq. [MHz] 340.3681	Ant Factor [dB] 32.94	- AV Limit Cable loss [dB] 4.23	Horizor Pream gain [dB] -36.91	Freque Reading [dBµV] 47.78	Level [dBµV/m] 48.04	Limit [dBµV/m] 74.00	Margin [dB] 25.96	Result Pass	Polarit
1 2	48	1G — РК * АУ Freq. [MHz] 340.3681 304.0000	Ant Factor [dB] 32.94 34.50	- AV Limit Cable loss [dB] 4.23 4.55	Pream gain [dB] -36.91 -36.15	Freque Reading [dBµV] 47.78 41.50	Level [dBµV/m] 48.04 44.40	Limit [dBµV/m] 74.00 74.00	Margin [dB] 25.96 29.60	Result Pass Pass	Polarit H H
1 2 3	48 61 72	1G — РК * AV Freq. [MHz] 340.3681 304.0000 198.3198	Ant Factor [dB] 32.94 34.50 35.84	- AV Limit Cable loss [dB] 4.23 4.55 5.22	Horizor gain [dB] -36.91 -36.15 -36.33	Freque tal PK Reading [dBμV] 47.78 41.50 42.87	Level [dBµV/m] 48.04 44.40 47.60	Limit [dBµV/m] 74.00 74.00 74.00	Margin [dB] 25.96 29.60 26.40	Result Pass Pass Pass	Polarit H H
1 2 3 4	48 61 72 81	1G — РК * АУ Freq. [MHz] 340.3681 304.0000 198.3198 206.0000	Ant Factor [dB] 32.94 34.50 35.84 36.31	- AV Limit Cable loss [dB] 4.23 4.55 5.22 5.81	Horizor gain [dB] -36.91 -36.15 -36.33 -36.43	Freque Reading [dBµV] 47.78 41.50 42.87 40.68	Level [dBµV/m] 48.04 44.40 47.60 46.37	Limit [dBµV/m] 74.00 74.00 74.00 74.00	Margin [dB] 25.96 29.60 26.40 27.63	Result Pass Pass Pass Pass	Polarit H H H



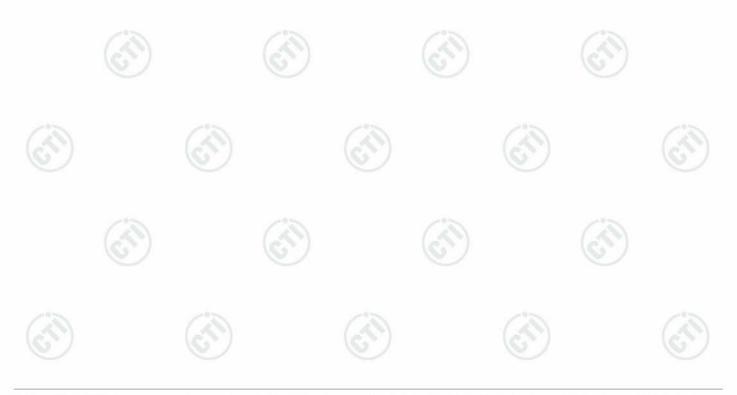


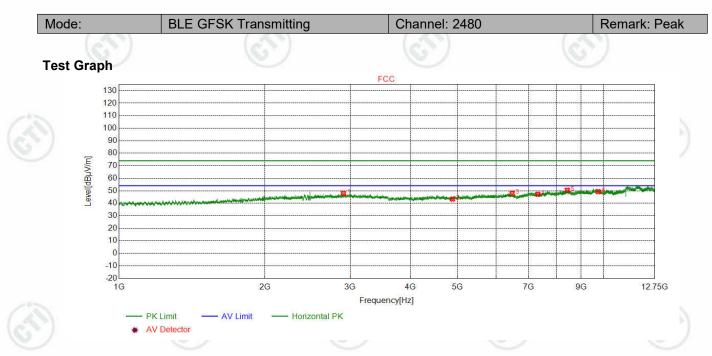
Page 38 of 56

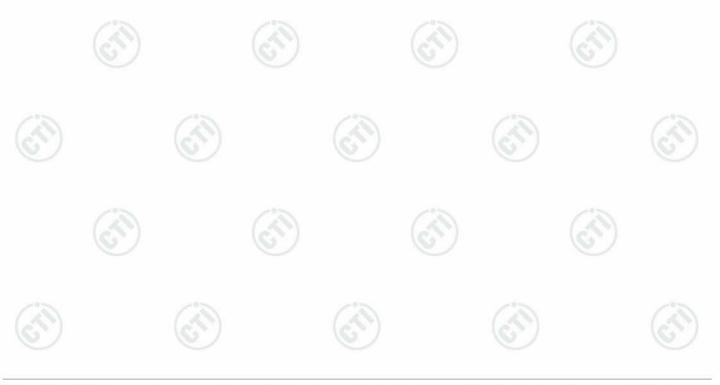

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	3193.0693	33.28	4.64	-36.73	47.12	48.31	74.00	25.69	Pass	V
2	4804.0000	34.50	4.55	-36.15	39.67	42.57	74.00	31.43	Pass	V
3	6456.7207	35.89	5.51	-36.25	43.69	48.84	74.00	25.16	Pass	V
4	7206.0000	36.31	5.81	-36.43	40.58	46.27	74.00	27.73	Pass	V
5	8419.5920	36.57	6.36	-36.33	44.16	50.76	74.00	23.24	Pass	V
6	9608.0000	37.64	6.63	-36.79	41.45	48.93	74.00	25.07	Pass	V
1	•	07				·				




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	4655.7156	34.50	4.85	-36.16	43.58	46.77	74.00	27.23	Pass	Н
2	4880.0000	34.50	4.80	-36.09	41.25	44.46	74.00	29.54	Pass	Н
3	6369.9370	35.87	5.40	-36.21	43.07	48.13	74.00	25.87	Pass	Н
4	7320.0000	36.42	5.85	-36.38	40.62	46.51	74.00	27.49	Pass	Н
5	7910.5911	36.44	6.03	-36.26	43.56	49.77	74.00	24.23	Pass	Н
6	9760.0000	37.70	6.73	-36.81	41.41	49.03	74.00	24.97	Pass	Н
1		~		I	~ /					100




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2986.7974	33.18	4.51	-36.74	49.80	50.75	74.00	23.25	Pass	V
2	4373.9124	34.32	4.53	-36.27	43.95	46.53	74.00	27.47	Pass	V
3	4880.0000	34.50	4.80	-36.09	40.88	44.09	74.00	29.91	Pass	V
4	7320.0000	36.42	5.85	-36.38	41.21	47.10	74.00	26.90	Pass	V
5	7788.7039	36.48	6.13	-36.61	44.26	50.26	74.00	23.74	Pass	V
6	9760.0000	37.70	6.73	-36.81	42.65	50.27	74.00	23.73	Pass	V
1		07		•		·		•	1	



	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2905.1810	33.05	4.38	-36.64	47.21	48.00	74.00	26.00	Pass	Н
	2	4880.0000	34.50	4.80	-36.09	40.12	43.33	74.00	30.67	Pass	Н
	3	6480.1230	35.90	5.49	-36.24	42.94	48.09	74.00	25.91	Pass	Н
	4	7320.0000	36.42	5.85	-36.38	41.32	47.21	74.00	26.79	Pass	Н
13	5	8423.4923	36.57	6.36	-36.33	43.90	50.50	74.00	23.50	Pass	Н
3	6	9760.0000	37.70	6.73	-36.81	41.66	49.28	74.00	24.72	Pass	Н

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	3198.9199	33.28	4.65	-36.70	46.21	47.44	74.00	26.56	Pass	V
	2	4880.0000	34.50	4.80	-36.09	40.35	43.56	74.00	30.44	Pass	V
	3	6911.1161	36.06	5.86	-36.27	43.13	48.78	74.00	25.22	Pass	V
	4	7320.0000	36.42	5.85	-36.38	41.55	47.44	74.00	26.56	Pass	V
83	5	8403.9904	36.56	6.34	-36.28	44.22	50.84	74.00	23.16	Pass	V
4	6	9760.0000	37.70	6.73	-36.81	41.48	49.10	74.00	24.90	Pass	V
57	1										

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

