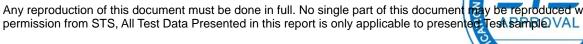


RADIO TEST REPORT

S

S


Report No:STS1911220W01

Issued for

Dongguan Laisimar Electronics Technologies Co., Ltd

Room 201,No.15 Hsinmin Industrial Changan Town,Dongguan City,Guangdong Province,China

Product Name:	Wireless Mouse
Brand Name:	
Model Name:	S1000
Series Model:	S1000 Puls, S1000 Pro
FCC ID:	2AUPZS1000
Test Standard:	FCC Part 15.247

Shenzhen STS Test Services Co., Ltd. A 1/F, Building B, Zhuoke Science Park, No.190 Chongqing Road, HepingShequ, Fuyong Sub-District, Bao'an District, Shenzhen, Guang Dong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's Name:	Dongguan Laisimar Electronics Technologies Co., Ltd
Address	Room 201,No.15 Hsinmin Industrial Changan Town,Dongguan City,Guangdong Province,China
Manufacture's Name:	Dongguan Laisimar Electronics Technologies Co., Ltd
Address:	Room 201,No.15 Hsinmin Industrial Changan Town,Dongguan City,Guangdong Province,China
Product Description	
Product Name:	Wireless mouse
Brand Name:	
Model Name:	S1000
Series Model:	S1000 Puls, S1000 Pro
Test Standards	FCC Part15.247
Test Procedure	ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document...

Date of Test.....

Date (s) of performance of tests .: 14 Nov. 2019 ~ 06 Dec. 2019

Date of Issue 07 Dec. 2019

Test Result Pass

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

Page 3 of 48 Report No.: STS1911220W01

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 DESCRIPTION OF THE TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.5 EQUIPMENTS LIST	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 RADIATED EMISSION MEASUREMENT	15
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	26
4.1 LIMIT	26
4.2 TEST PROCEDURE	26
4.3 TEST SETUP	26
4.4 EUT OPERATION CONDITIONS	26
4.5 TEST RESULTS	27
5. NUMBER OF HOPPING CHANNEL	32
5.1 LIMIT	32
5.2 TEST PROCEDURE	32
5.3 TEST SETUP	32
5.4 EUT OPERATION CONDITIONS	32
5.5 TEST RESULTS	33
6. AVERAGE TIME OF OCCUPANCY	34
6.1 LIMIT	34
6.2 TEST PROCEDURE	34
6.3 TEST SETUP	34
6.4 EUT OPERATION CONDITIONS	34
6.5 TEST RESULTS	35
7. HOPPING CHANNEL SEPARATION MEASUREMEN	39
7.1 LIMIT	39
7.2 TEST PROCEDURE	39

Page 4 of 48 Report No.: STS1911220W01

Table of Contents	Page
7.3 TEST SETUP	39
7.4 EUT OPERATION CONDITIONS	39
7.5 TEST RESULTS	40
8. BANDWIDTH TEST	42
8.1 LIMIT	42
8.2 TEST PROCEDURE	42
8.3 TEST SETUP	42
8.4 EUT OPERATION CONDITIONS	42
8.5 TEST RESULTS	43
9. OUTPUT POWER TEST	45
9.1 LIMIT	45
9.2 TEST PROCEDURE	45
9.3 TEST SETUP	45
9.4 EUT OPERATION CONDITIONS	45
9.5 TEST RESULTS	46
10. ANTENNA REQUIREMENT	47
10.1 STANDARD REQUIREMENT	47
10.2 EUT ANTENNA	47

Page 5 of 48 Report No.: STS1911220W01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	07 Dec. 2019	STS1911220W01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

	FCC Part 15.247,Subpart C					
Standard Section	Test Item	Judgment	Remark			
15.207	Conducted Emission	N/A				
15.247(a)(1)	Hopping Channel Separation	PASS				
15.247(a)(1)&(b)(1)	Output Power	PASS				
15.247(c)	Radiated Spurious Emission	PASS				
15.247(d)	Conducted Spurious & Band Edge Emission	PASS				
15.247(a)(iii)	Number of Hopping Frequency	PASS				
15.247(a)(iii)	Dwell Time	PASS				
15.247(a)(1)	Bandwidth	PASS				
15.205	Restricted Band Edge Emission	PASS				
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS				
15.203	Antenna Requirement	PASS				

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China FCC test Firm Registration Number: 625569 A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.68dB
2	Unwanted Emissions, conducted	±2.988dB
3	All emissions, radiated 30-1GHz	±6.7dB
4	All emissions, radiated 1G-6GHz	±5.5dB
5	All emissions, radiated>6G	±5.8dB
6	Conducted Emission (9KHz-150KHz)	±4.43dB
7	Conducted Emission (150KHz-30MHz)	±5dB

Shenzhen STS Test Services Co., Ltd.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Wireless mouse
Trade Name	
Model Name	S1000
Series Model	S1000 Puls, S1000 Pro
Model Difference	Product appearance is different, internal PCBA is the same
Channel List	Please refer to the Note 2.
Operation Frequency	2402.85-2480.85MHz
Modulation Type	GFSK
Power Rating	Input: DC 1.5V from battery AA
Hardware version number	V1.3
Software version number	V2.3
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

	Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2402.85	7	2445.85	13	2419.85	
2	2426.85	8	2466.85	14	2439.85	
3	2441.85	9	2414.85	15	2453.85	
4	2463.85	10	2436.85	16	2480.85	
5	2407.82	11	2459.85			
6	2422.85	12	2473.85			

3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	hp	S1000	PCB	NA	-0.61	2.4G Antenna

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Worst Mode	Description	Data Rate/Modulation
Mode 1	TX CH01	1Mbps/GFSK
Mode 2	TX CH03	1Mbps/GFSK
Mode 3	TX CH16	1Mbps/GFSK

Note:

- 1. The measurements are performed at all Bit Rate of Transmitter, the worst data was reported
- 2. New battery is used during all test.

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

Radiated Spurious Emission Test

2.4 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Necessary accessories						
Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note		
N/A	N/A	N/A	N/A	N/A	N/A		

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
N/A	N/A	N/A	N/A	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength ^a column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.5 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2019.07.29	2020.07.28
Signal Analyzer	Agilent	N9020A	MY51110105	2019.03.02	2020.03.01
Active loop Antenna	ZHINAN	ZN30900C	16035	2018.03.11	2021.03.10
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2020.11.01
Horn Antenna	SCHWARZBECK	BBHA 9120D(1201)	9120D-1343	2018.10.19	2021.10.18
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	J211020657	2018.03.11	2021.03.10
Pre-Amplifier(0.1M-3G Hz)	EM	EM330	060665	2019.10.09	2020.10.08
Pre-Amplifier (1G-18GHz)	SKET	LNPA-01018G-45	SK201808090 1	2019.10.09	2020.10.08
Temperature & Humidity	HH660	Mieo	N/A	2019.10.09	2020.10.08
turn table	EM	SC100_1	60531	N/A	N/A
Antenna mast	EM	SC100	N/A	N/A	N/A
Test SW	FARAD	E	Z-EMC(Ver.STS	LAB-03A1 RE)	

RF Connected Test

Kind of Equipment	Manufacturer	Manufacturer Type No. Serial No. L		Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2019.10.09	2020.10.08
Signal Analyzer	Agilent	N9020A	MY49100060	2019.10.09	2020.10.08
Temperature & Humidity	HH660	Mieo N/A		2019.10.12	2020.10.11
Test SW	FARAD	LZ-RF /LzRf-3A3			

Т

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emissionlimit (dBuV)		
FREQUENCT (MIDZ)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

3.1.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.4 TEST RESULT

Temperature:	25.2°C	Relative Humidity:	64%
Test Voltage:	N/A	Phase:	L/N
Test Mode:	N/A		

Note: EUT is only power by battery, So it is not applicable for this test.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/AV		
Start Frequency	1000 MHz(Peak/AV)		
Stop Frequency	10th carrier hamonic(Peak/AV)		
RB / VB (emission in restricted			
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz		

For Band edge

Spectrum Parameter	Setting	
Detector	Peak/AV	
	Lower Band Edge: 2300 to 2403 MHz	
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz	
RB / VB (emission in restricted band)	PK=1MHz / 1MHz, AV=1 MHz / 10 Hz	

Shenzhen STS Test Services Co., Ltd.

Page 16 of 48 Report No.: STS1911220W01

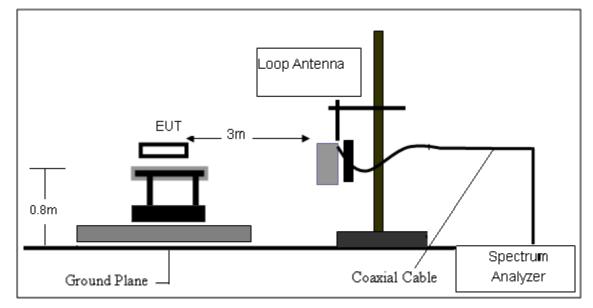
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

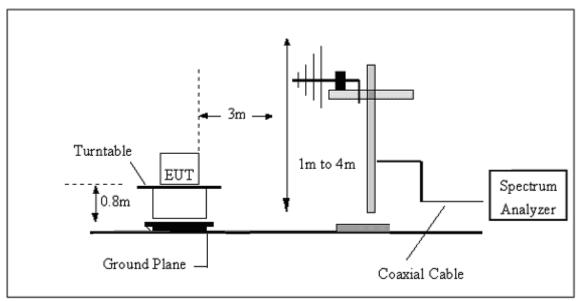
- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

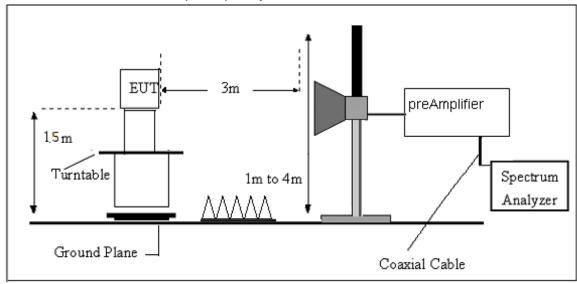

No deviation

Page 17 of 48 Report No.: STS1911220W01



3.2.4 TESTSETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Page 18 of 48

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

- AG = Amplifier Gain
- AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

3.2.7 TEST RESULTS

(9KHz-30MHz)

Temperature:	22.7 ℃	Relative Humidity:	61%
Test Voltage:	DC 1.5V	Test Mode:	TX Mode

Freq.	Reading	Limit	Margin	State	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	Test Result
					PASS
					PASS

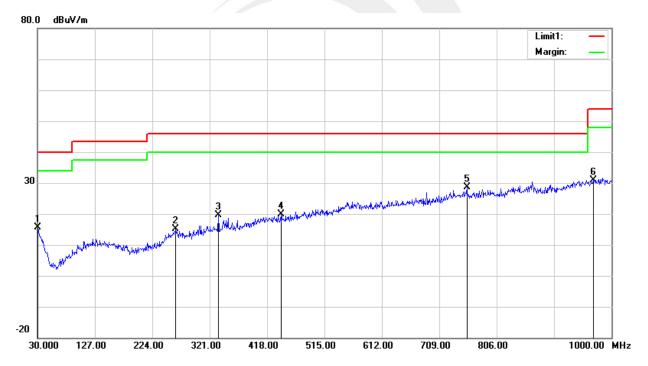
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

Shenzhen STS Test Services Co., Ltd.

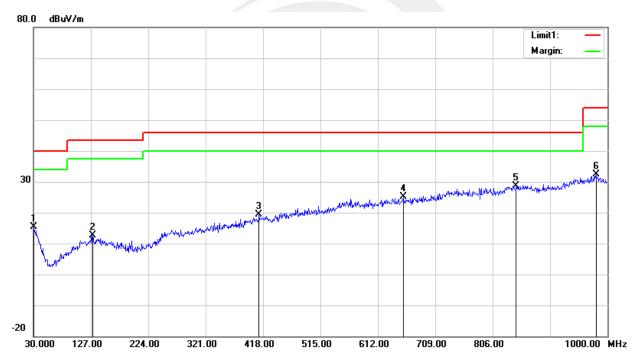

(30MHz-1000MHz)

Temperature:	22.7 °C	Relative Humidity:	61%			
Test Voltage:	DC 1.5V	Phase:	Horizontal			
Test Mode:	Mode 1/2/3 (Mode 1 worst mode)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	28.54	-12.85	15.69	40.00	-24.31	QP
2	263.7700	29.96	-14.75	15.21	46.00	-30.79	QP
3	336.0350	33.10	-13.53	19.57	46.00	-26.43	QP
4	441.7650	29.93	-10.01	19.92	46.00	-26.08	QP
5	756.0450	30.91	-2.16	28.75	46.00	-17.25	QP
6	970.4150	28.97	2.02	30.99	54.00	-23.01	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit



Temperature:	22.7 °C	Relative Humidity:	61%			
Test Voltage:	DC 1.5V	Phase:	Vertical			
Test Mode:	Mode 1/2/3 (Mode 1 worst mode)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.0000	28.20	-12.85	15.35	40.00	-24.65	QP
2	130.3950	30.82	-18.25	12.57	43.50	-30.93	QP
3	411.6950	29.81	-10.49	19.32	46.00	-26.68	QP
4	654.6800	29.92	-4.86	25.06	46.00	-20.94	QP
5	845.7700	29.15	-0.58	28.57	46.00	-17.43	QP
6	981.0850	29.74	2.60	32.34	54.00	-21.66	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Shenzhen STS Test Services Co., Ltd.

Page 22 of 48 Report No.: STS1911220W01

(1GHz~25GHz) Restricted band and Spurious emission Requirements

					GFSK					
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Orrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
	-			Low Ch	annel (2402.8	35 MHz)		-		
3265.76	61.86	44.70	6.70	28.20	-9.80	52.06	74.00	-21.94	PK	Vertical
3265.76	50.18	44.70	6.70	28.20	-9.80	40.38	54.00	-13.62	AV	Vertical
3265.34	62.01	44.70	6.70	28.20	-9.80	52.21	74.00	-21.79	PK	Horizontal
3265.34	51.05	44.70	6.70	28.20	-9.80	41.25	54.00	-12.75	AV	Horizontal
4806.07	59.32	44.20	9.04	31.60	-3.56	55.76	74.00	-18.24	PK	Vertical
4806.07	49.88	44.20	9.04	31.60	-3.56	46.32	54.00	-7.68	AV	Vertical
4806.08	59.10	44.20	9.04	31.60	-3.56	55.54	74.00	-18.46	PK	Horizontal
4806.08	49.16	44.20	9.04	31.60	-3.56	45.60	54.00	-8.40	AV	Horizontal
5361.55	48.81	44.20	9.86	32.00	-2.34	46.47	74.00	-27.53	PK	Vertical
5361.55	39.54	44.20	9.86	32.00	-2.34	37.20	54.00	-16.80	AV	Vertical
5361.57	47.31	44.20	9.86	32.00	-2.34	44.97	74.00	-29.03	PK	Horizontal
5361.57	39.20	44.20	9.86	32.00	-2.34	36.86	54.00	-17.14	AV	Horizontal
7208.38	53.60	43.50	11.40	35.50	3.40	57.00	74.00	-17.00	PK	Vertical
7208.38	44.10	43.50	11.40	35.50	3.40	47.50	54.00	-6.50	AV	Vertical
7208.02	53.77	43.50	11.40	35.50	3.40	57.17	74.00	-16.83	PK	Horizontal
7208.02	44.72	43.50	11.40	35.50	3.40	48.12	54.00	-5.88	AV	Horizontal
				Middle C	hannel (2441	.85 MHz)				
3264.74	62.04	44.70	6.70	28.20	-9.80	52.24	74.00	-21.76	PK	Vertical
3264.74	50.84	44.70	6.70	28.20	-9.80	41.04	54.00	-12.96	AV	Vertical
3264.60	61.03	44.70	6.70	28.20	-9.80	51.23	74.00	-22.77	PK	Horizontal
3264.60	49.94	44.70	6.70	28.20	-9.80	40.14	54.00	-13.86	AV	Horizontal
4882.31	59.11	44.20	9.04	31.60	-3.56	55.55	74.00	-18.45	PK	Vertical
4882.31	49.77	44.20	9.04	31.60	-3.56	46.21	54.00	-7.79	AV	Vertical
4882.59	59.46	44.20	9.04	31.60	-3.56	55.90	74.00	-18.10	PK	Horizontal
4882.59	50.05	44.20	9.04	31.60	-3.56	46.49	54.00	-7.51	AV	Horizontal
5359.65	49.22	44.20	9.86	32.00	-2.34	46.88	74.00	-27.12	PK	Vertical
5359.65	40.11	44.20	9.86	32.00	-2.34	37.77	54.00	-16.23	AV	Vertical
5359.72	48.15	44.20	9.86	32.00	-2.34	45.81	74.00	-28.19	PK	Horizontal
5359.72	38.08	44.20	9.86	32.00	-2.34	35.74	54.00	-18.26	AV	Horizontal
7323.93	54.92	43.50	11.40	35.50	3.40	58.32	74.00	-15.68	PK	Vertical
7323.93	44.36	43.50	11.40	35.50	3.40	47.76	54.00	-6.24	AV	Vertical
7323.81	54.89	43.50	11.40	35.50	3.40	58.29	74.00	-15.71	PK	Horizontal
7323.81	44.44	43.50	11.40	35.50	3.40	47.84	54.00	-6.16	AV	Horizontal

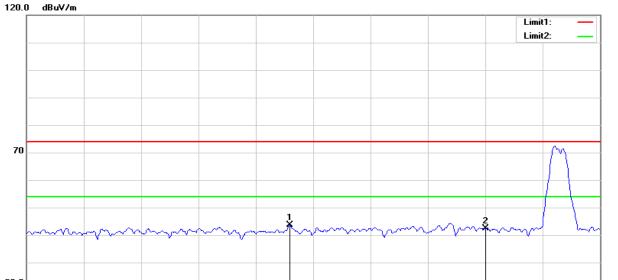
Page 23 of 48 Report No.: STS1911220W01

				High Ch	annel (2480	.85 MHz)				
3264.88	60.95	44.70	6.70	28.20	-9.80	51.15	74.00	-22.85	PK	Vertical
3264.88	50.22	44.70	6.70	28.20	-9.80	40.42	54.00	-13.58	AV	Vertical
3264.65	61.79	44.70	6.70	28.20	-9.80	51.99	74.00	-22.01	PK	Horizontal
3264.65	50.61	44.70	6.70	28.20	-9.80	40.81	54.00	-13.19	AV	Horizontal
4960.42	58.46	44.20	9.04	31.60	-3.56	54.90	74.00	-19.10	PK	Vertical
4960.42	49.50	44.20	9.04	31.60	-3.56	45.94	54.00	-8.06	AV	Vertical
4960.33	58.20	44.20	9.04	31.60	-3.56	54.64	74.00	-19.36	PK	Horizontal
4960.33	50.08	44.20	9.04	31.60	-3.56	46.52	54.00	-7.48	AV	Horizontal
5359.81	48.38	44.20	9.86	32.00	-2.34	46.04	74.00	-27.96	PK	Vertical
5359.81	40.05	44.20	9.86	32.00	-2.34	37.71	54.00	-16.29	AV	Vertical
5359.72	47.30	44.20	9.86	32.00	-2.34	44.96	74.00	-29.04	PK	Horizontal
5359.72	39.07	44.20	9.86	32.00	-2.34	36.73	54.00	-17.27	AV	Horizontal
7439.78	54.48	43.50	11.40	35.50	3.40	57.88	74.00	-16.12	PK	Vertical
7439.78	44.10	43.50	11.40	35.50	3.40	47.50	54.00	-6.50	AV	Vertical
7439.71	54.72	43.50	11.40	35.50	3.40	58.12	74.00	-15.88	PK	Horizontal
7439.71	44.42	43.50	11.40	35.50	3.40	47.82	54.00	-6.18	AV	Horizontal

Note:

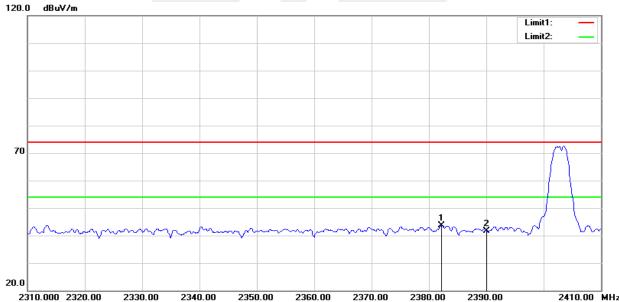
1) Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Reading + Factor


The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency

2) emission is mainly from the environment noise.

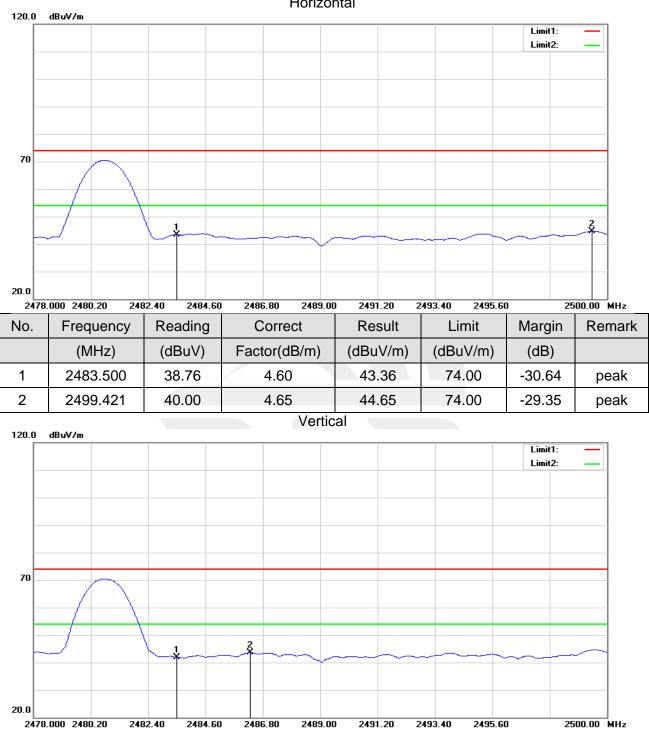
Restricted band Requirements


GFSK-Low Horizontal

20.0

2310.	000 2320.00 233	80.00 2340.00	2350.00 2360.00	2370.00	2380.00 2390.00) 24	10.00 MHz
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2355.900	39.78	3.83	43.61	74.00	-30.39	peak
2	2390.000	38.08	4.34	42.42	74.00	-31.58	peak
			Vartia				

Vertical


2311	2310.000 2320.00 2330.00 2340.00 2350.00 2360.00 2370.00 2380.00 2380.00 2410.00 MHZ						U.UU MHZ
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2382.250	39.41	4.22	43.63	74.00	-30.37	peak
2	2390.000	37.35	4.34	41.69	74.00	-32.31	peak

Page 25 of 48

Report No.: STS1911220W01

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	37.20	4.60	41.80	74.00	-32.20	peak
2	2486.323	38.93	4.61	43.54	74.00	-30.46	peak

Note: GFSK of the nohopping and hopping mode all have been test, the worst case is GFSK of the nohopping mode, this report only show the worst case.

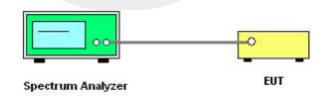
Shenzhen STS Test Services Co., Ltd.

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE


Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Eroguanau	Lower Band Edge: 2300– 2403 MHz
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

Remark: Hopping on and Hopping off mode all have been tested, only worst case hopping off is reported.

4.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

4.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	GFSK(1Mbps)-01/03/16 CH	Test Voltage:	DC 1.5V

00 CH

gilent Spectrum Analyzer						
enter Freq 12.51	PN		Free Run en: 30 dB	ALIGNAUTO Avg Type: L	og-Pwr	07:51:53 PM Nov 19, 201 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
Ref Offse 0 dB/div Ref 1.26					ſ	Vkr1 2.402 GH -23.834 dBr
.og 8.74						
18.7						
8.7						-36.61 dE
3.7						0
3.7		Harrison and the second states	work and	nermanshanner	have who who may and	Landered Anna and the Constraint of the State
3.7 Uninterest Martine		Der and the second of the seco				
3.7						
3.7						
enter 12.52 GHz Res BW 100 kHz		#VBW 300	kHz		Sweep	Span 24.97 GH 2.386 s (1001 pt
KR MODE TRC SCL <mark>1</mark> N 1 f	× 2.402 GHz	Y -23.834 dBm	FUNCTION FU	NCTION WIDTH	FUNCT	ION VALUE
2 N 1 f 3 N 1 f	4.799 GHz 9.618 GHz	-57.660 dBm -59.671 dBm				
4 N 1 f 5	24.526 GHz	-48.479 dBm				
5 7						
3						
D						
			111			>
3				STATUS		

03 CH

gilent Spec		alyzer - Swept SA						
<u>0</u>	RF	50 Ω AC		:PULSE	ALIGNAUTO	: Log-Pwr	07:58:44 PM No	ov 19, 201
enter i	-req 1	12.515000000 GHz	PNO: East	Trig: Free Run #Atten: 30 dB	Avg Type	. Log-r wi	TYPE	
0 dB/div		Offset 0.5 dB 7 1.26 dBm					Mkr1 2.442 -27.519	
.og		1.20 0011						
8.74								
8.7		1						
8.7								
38.7		\ ^						-37.95 c
8.7			^ 3 ─────		the warman	Anna	100 martinet for service	لمعميه
58.7 Hanna	لسميهم	hall many when when we when	La manage	and all the second	the summer and			
68.7								
78.7								
38.7								
	0.50.6						0	
enter 1 Res BV			#VBW	300 kHz		Sw	Span 24.9 eep 2.386 s (10	97 Gr 01 pt
ikr mode		×	Y	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
1 N 2 N 3 N 4 N	1 f 1 f 1 f 1 f	2.441 71 G 4.874 G 7.097 G 24.476 G	Hz -43.533 dE Hz -56.028 dE	3m 3m				
4 N 5 6	- T	24.476 G	12 -40.048 dE	5111				
7								
8 9								
0								
G					STATUS			

Shenzhen STS Test Services Co., Ltd.

=

16 CH

ilent Spect	rum Analyze									
arker 1	RF 1 2.4770	50 Q AC		PNO: Fast G	ENSE:PULSE Trig: Free #Atten: 30	Run dB	ALIGN AUTO Avg Type:	Log-Pwr	т	5 PMNov 19, 201 RACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
0 dB/div		et 0.5 dB 26 dBm								.477 GH 948 dBn
3.74										
8.7	1									
3.7	¥						3			-39.72
8.7			2	dist. I.	and pratic restances and	Marson Nacho		- Marine and made	are and and a straight	molynographile
8.7 8.7	Advert	and all how and	, enclosed	an a	and the state of the					
8.7										
3.7										
	2.52 GHz / 100 kHz			#VI	300 kHz	<u>.</u>		#Sweep	Span 2.133 ms	24.97 GH 6 (1001 pt
2 N 3 N 4 N	1 f 1 f 1 f 1 f 1 f		2.477 GHz 5.755 GHz 16.468 GHz 24.343 GHz	-56.31 -52.05	8 dBm 9 dBm 3 dBm	NCTION FL	UNCTION WIDTH	FL	INCTION VALUE	
5 6 7										
в										
7 8 9 0 1										>

Shenzhen STS Test Services Co., Ltd.

For Band edge

01 CH

	Analyzer - Swept SA					
	RF 50 Ω AC		ENSE:PULSE		: Log-Pwr	07:44:39 PM Nov 19, 20 TRACE 1 2 3 4 9
enter Fred	q 2.353500000 G	PNO: Fast G IFGain:Low	⊃ Trig: Free Run #Atten: 30 dB	018 I M4	e. Log-r wi	TYPE MWWWW DET P N N N I
dB/div	Ref Offset 0.5 dB Ref 2.36 dBm				Mkr	1 2.402 72 GH -16.61 dBi
g 54						
.6						\ `
.6						- MA
.6						-36.61 d
.6						<u></u> 1
· .		h.		n M		N.
.6	-tropped Marine hotomore	- weld the processes - we	marched more and the	derman 1 Historic way real to the low	al parada and a sub-	welling and a start of the star
.6						
-						
.6						
enter 2.353 tes BW 10		#V	BW 300 kHz		Sweep 1	Span 107.0 MH 0.27 ms (1001 pt
R MODE TRC S		Y	FUNCTION	FUNCTION WIDTH	FUNCT	ON VALUE
N 1	f 2.400 f 2.370	00 GHz -53.82 73 GHz -50.51	3 dBm 5 dBm 0 dBm 2 dBm			
						8

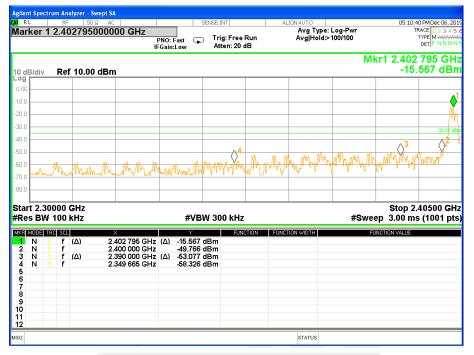
03 CH

Shenzhen STS Test Services Co., Ltd.

Т

16 CH

ilent Spectrum Anal	lyzer - Swept SA 50 Ω AC	SENSE	PULSE	ALIGNAUTO		08:02:04 PMNov 19, 20
	.487500000 GHz	PNO: East	Trig: Free Run #Atten: 30 dB	Avg Type: I	Log-Pwr	TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N
	Offset 0.5 dB 1.26 dBm				Mkr1	2.480 750 GH -19.719 dBr
74	1					
3.7	- M	1				-39.72 d
3.7	n M	Vm 2 3			4	N. A. DOOT
3.7	V N		t			the free to the second second second
B.7 B.7						
enter 2.48750 Res BW 100 k		#VBW	300 kHz		#Sweep 2	Span 25.00 Mi 2.133 ms (1001 pt
R MODE TRC SCL	×	Y	FUNCTION	FUNCTION WIDTH	FUNCT	ION VALUE
N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5	2.480 750 0 2.483 500 0 2.484 825 0 2.494 425 0	GHz -53.123 dB GHz -54.922 dB	lm Im			
5 7 8						
) 						>



Shenzhen STS Test Services Co., Ltd.

For Hopping Band edge

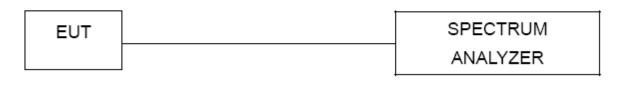
01 CH

16 CH

Shenzhen STS Test Services Co., Ltd.

5. NUMBER OF HOPPING CHANNEL

5.1 LIMIT


FCC Part 15.247,Subpart C						
Section	Test Item	Limit	FrequencyRange (MHz)	Result		
15.247 (a)(1)(iii)	Number of Hopping Channel	≥15	2400-2483.5	PASS		

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating FrequencyRange
RB	300KHz
VB	300KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

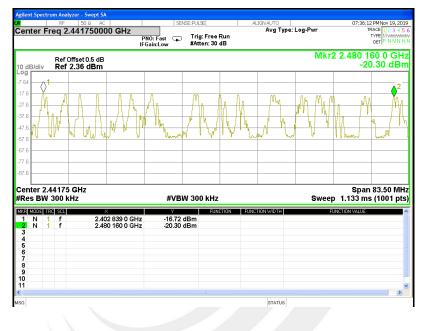
5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 300KHz, VBW=300KHz, Sweep time = Auto.

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Mode:	Hopping Mode -GFSK Mode	Test Voltage:	DC 1.5V

Number of Hopping Channel

16

Hopping channel

Shenzhen STS Test Services Co., Ltd.

6. AVERAGE TIME OF OCCUPANCY

6.1 LIMIT

FCC Part 15.247,Subpart C						
Section	Test Item	Limit	FrequencyRange (MHz)	Result		
15.247 (a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS		

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW =1MHz/VBW =1MHz.
- c. Sweep Time is more than once pulse time.
- Set the center frequency on any frequency would be measure and set the frequency span to d. zero span.
- e. Measure the maximum time duration of one single pulse.
- f. Set the EUT for TX transmitting.
- g. Measure the maximum time duration of one single pulse.
- h. Dwell Time(s)= One pulse time(ms) * Burst number/1000

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

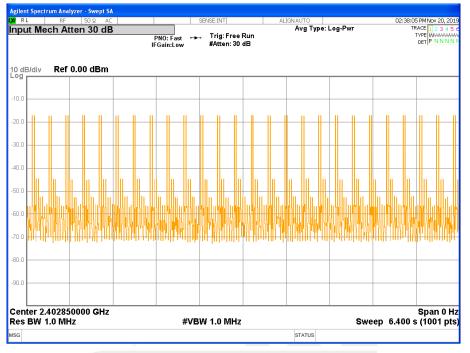
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Mode:	GFSK	Test Voltage:	DC 1.5V

Frequency (MHz)	Channel	One Pulse Time(ms)	Burst Number	Dwell Time(s)	Limits(s)	Verdict
2402.85	lower	0.170	52	0.009	0.4	Pass
2441.85	middle	0.160	52	0.008	0.4	Pass
2480.85	higher	0.160	52	0.008	0.4	Pass

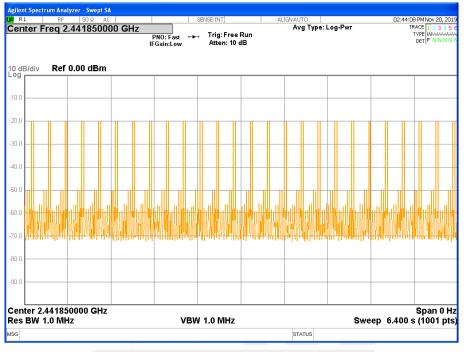

Shenzhen STS Test Services Co., Ltd.

Т

00 CH

Dwell time

One pulse

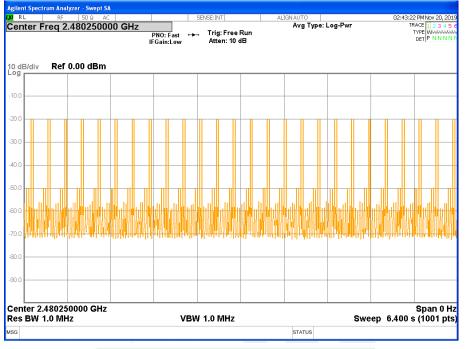

ent Spectrum Analyzer - S RL RF 50		SENSE:INT	ALIGN AUTO	02:40:07 PMNov 20, 2019	
arker 1 Δ 170.000			Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P N N N N N	Marker
dB/div Ref 0.00			۵	Mkr1 170.0 µs -0.29 dB	Select Marke
g .0					
0		M			Norn
					De
		Δ1Δ2			
habelauggeontallingeology	whether the second and the second of the second		น้ำสาวไรที่สาวมีการสารารไฟไหน้าสารารไรครั้ง	non-	
0					Fixe
nter 2.402850000	GHz			Span 0 Hz	
s BW 1.0 MHz		1.0 MHz	•).00 ms (1001 pts)	(
MODE TRC SCL $\Delta 2 1 t (\Delta)$ F $ 1 t$	× 170.0 μs (Δ)	-0.29 dB	CTION FUNCTION WIDTH	FUNCTION VALUE	
F 1 t	4.610 ms	-76.59 dBm			Propertie
F 1 t					Properue
					Mo
					1 c

Shenzhen STS Test Services Co., Ltd.

03 CH

Dwell time

One pulse


RL										
_	RF				SENSE:INT		ALIGN AUTC		01:5	5:24 PM Nov 20, 2
enter	r Freq 2	2.44185000	P	PNO: Fast ↔ Gain:Low	► Trig: Fr Atten:		Avg	Type: Log-Pwr		TRACE 1 2 3 4 TYPE WWWW DET P NNN
) dB/di	v Ref	f 0.00 dBm							ΔMki	1 160.0 -2.69 c
.0						N				
0										
0										
0										
					_	#				
						1Δ2				
0 14	work	n un manual and a second	patral-prelleptrive	wherework	normal and a	M The way	in white and	hannan mandana	hallow for the	144 miles with partic
	2.4418 V 1.0 M	50000 GHz Hz		#VI	BW 1.0 M	Hz		Sv	veep 10.00 r	
S BV	V 1.0 MI	Hz	× 160.0 µs	γ (Δ) -2	.69 dB	HZ	FUNCTION WIDT		veep 10.00 r	
SBV	V 1.0 MI	Hz		γ (Δ) -2			FUNCTION WIDT		· ·	
SBV 14003 ∆2 F	V 1.0 MI	Hz	160.0 µs	γ (Δ) -2	.69 dB		FUNCTION WIDT		· ·	
SBV 1 1000 ∆2 F	V 1.0 MI	Hz	160.0 µs	γ (Δ) -2	.69 dB		FUNCTION WIDT		· ·	
S BV 2003 5	V 1.0 MI	Hz	160.0 µs	γ (Δ) -2	.69 dB		FUNCTION WIDT		· ·	Span 0 ns (1001 p
SBV Δ2 F	V 1.0 MI	Hz	160.0 µs	γ (Δ) -2	.69 dB		FUNCTION WIDT		· ·	
SBV Δ2 F	V 1.0 MI	Hz	160.0 µs	γ (Δ) -2	.69 dB		FUNCTION WIDT		· ·	
S BV	V 1.0 MI	Hz	160.0 µs	γ (Δ) -2	.69 dB		FUNCTION WIDT		· ·	

Shenzhen STS Test Services Co., Ltd.

16 CH

Dwell time

One pulse

RL	RF 50 :	Ω AC		SENSE:INT	ALIGNAUTO		02:42:19 PMNov 20.2
arker 1	Δ 160.000	•	PNO: Fast 🔸		Avg Ty	e: Log-Pwr	TRACE 1 2 3 4 TYPE WWWW DET P N N N
dB/div	Ref 0.00 c	lBm					∆Mkr1 160.0 -2.50 c
g							
.0							
			Δ2				
" THIMAN	mappediations for	hlow why propriet of the	enthelignmentel	artoner attention the orthogen	sold and the second second	had the part way	howardman
Ľ							
nter 2.4 s BW 1	80250000 .0 MHz	GHz	VBV	V 1.0 MHz		Swee	Span 0 p 10.00 ms (1001 p
MODE TE A2 1 F 1	10 SOL t (Δ) t	× 160.0 µs 2.670 ms	(Δ) -2.9 -74.35	FUNCTION 50 dB dBm	FUNCTION WIDTH		UNCTION VALUE
	•	2.010 1113	-14.00	40.0			

7. HOPPING CHANNEL SEPARATION MEASUREMEN

7.1 LIMIT

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> 20 dB Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

7.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.5 TEST RESULTS

Temperature:	25℃	Relative Humidity:	50%
	CH01 / CH03 / CH16 (GFSK(1Mbps) Mode)	Test Voltage:	DC 1.5V

Frequency	Mark1 Frequency (MHz)	Mark2 Frequency (MHz)	Ch. Separation (MHz)	Limit (MHz)	Result
2402.85 MHz	2402.690	2407.700	5.010	2.165	Complies
2441.85 MHz	2441.712	2445.712	4.000	2.155	Complies
2480.85 MHz	2473.710	2480.738	7.028	2.181	Complies

For GFSK: Ch. Separation Limits: > 20dB bandwidth

CH01 -1Mbps

Shenzhen STS Test Services Co., Ltd.

CH03 -1Mbps

CH16 -1Mbps

8. BANDWIDTH TEST

8.1 LIMIT

FCC Part15 15.247,Subpart C						
Section	Test Item	Limit	FrequencyRange (MHz)	Result		
15.247 (a)(1)	Bandwidth	(20dB bandwidth)	2400-2483.5	PASS		

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)
VB	100 kHz (20dB Bandwidth) / 100 kHz (Channel Separation)
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep time = Auto.

8.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.4 EUT OPERATION CONDITIONS

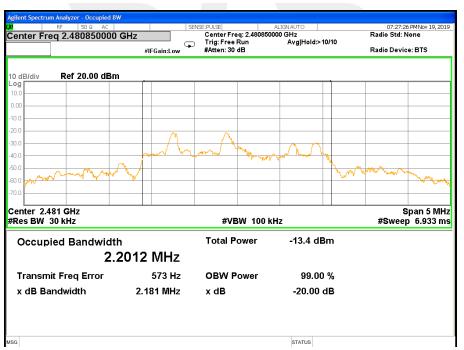
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25℃	Relative Humidity:	50%
	GFSK(1Mbps) CH01 / CH03 / C16	Test Voltage:	DC 1.5V

Frequency	20dB Bandwidth (MHz)	Result
2402.85 MHz	2.165	PASS
2441.85 MHz	2.155	PASS
2480.85 MHz	2.181	PASS


CH01 -1Mbps


Shenzhen STS Test Services Co., Ltd.

CH03 -1Mbps

CH16 -1Mbps

9. OUTPUT POWER TEST

9.1 LIMIT

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	FrequencyRange (MHz)	Result
45.047 Output	Outout	1 W or 0.125W		
15.247 (a)(1)&(b)(1)	Output Power	if channel separation > 2/3 bandwidthprovided thesystems operatewith an output power no greater than125 mW(20.97dBm)	2400-2483.5	PASS

9.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Sensor&PC

9.3 TEST SETUP

EUT Power sensor PC	
---------------------	--

9.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

9.5 TEST RESULTS

Temperature:	25°C	Relative Humidity:	60%
Test Voltage:	DC 1.5V		

Mode	Channel Number	Frequency (MHz)	Peak Power	Average Power	Limit
			(dBm)	(dBm)	(dBm)
GFSK(1M)	01	2402.85	-14.93	-35.26	30
	03	2441.85	-16.22	-38.23	30
	16	2480.85	-16.72	-40.00	30

Note: the channel separation > 20dB bandwidth

Shenzhen STS Test Services Co., Ltd.

10. ANTENNA REQUIREMENT

10.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

10.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.

Shenzhen STS Test Services Co., Ltd.

APPENDIX-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *

Shenzhen STS Test Services Co., Ltd.