

FCC RADIO TEST REPORT

FCC ID	:	2AUPE-8959
Equipment	:	Digital Media Receiver
Model Name	:	T4E4AT
Applicant	:	Turley White LLC
		35 Village Road, Suite 100
		Middleton, MA 01949
		United States
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on May 07, 2020 and testing was started from Jun. 22, 2020 and completed on Jul. 15, 2020. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Lunis Win

Approved by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	/ of Test Result	4
1	General Description		
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	5
	1.4	Testing Location	6
	1.5	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	11
3	Test	Result	12
	3.1	6dB and 99% Bandwidth Measurement	12
	3.2	Output Power Measurement	16
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	21
	3.5	Radiated Band Edges and Spurious Emission Measurement	25
	3.6	AC Conducted Emission Measurement	29
	3.7	Antenna Requirements	31
4	List o	of Measuring Equipment	32
5	Unce	rtainty of Evaluation	33
Арр	pendix	A. Conducted Test Results	
Арр	pendix	R B. AC Conducted Emission Test Result	
Арр	pendix	c C. Radiated Spurious Emission	
Арр	pendix	CD. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issued Date
FR020110-01G	01	Initial issue of report	Jul. 22, 2020
FR020110-01G	02	Revise connection diagram of test system	Jul. 28, 2020

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)
3.1	15.247(a)(2)	6dB Bandwidth	Pass
3.1	2.1049	99% Occupied Bandwidth	Reporting only
3.2	15.247(b)(3)	Output Power	Pass
3.3	15.247(e)	Power Spectral Density	Pass
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass
3.6	15.207	AC Conducted Emission	Pass
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Dara Chiu

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
Equipment	Digital Media Receiver		
Model Name	T4E4AT		
FCC ID	2AUPE-8959		
	WLAN 11b/g/n HT20 WLAN 11a/n HT20/HT40		
EUT supports Radios application	WLAN 11ac VHT20/VHT40/VHT80		
	Bluetooth BR/EDR/LE Zigbee/FSK/LoRa		

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	902.5 MHz ~ 926.5 MHz		
Number of Channels	31		
Maximum Output Power to Antenna	18.40 dBm (0.0692 W)		
99% Occupied Bandwidth	0.545MHz		
Antenna Type / Gain	Inverted F type Antenna with gain -0.48 dBi		
Type of Modulation	LoRa		

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site LocationNo.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton Site No. TH05-HY CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH16-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

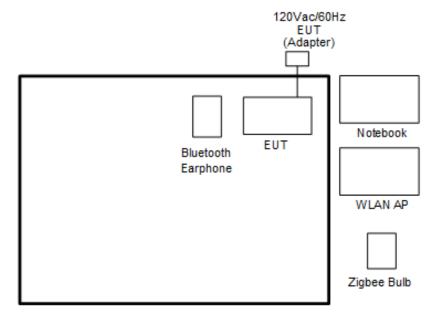
2.1 Carrier Frequency Channel

RTON LAB

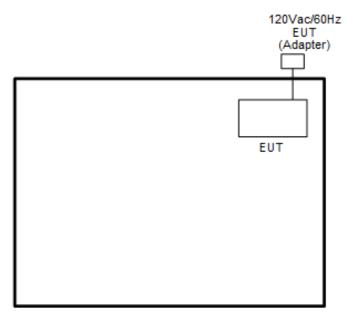
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	902.5	22	919.3
	2	903.3	23	920.1
	3	904.1	24	920.9
	4	904.9	25	921.7
	5	905.7	26	922.5
	6	906.5	27	923.3
	7	907.3	28	924.1
	8	908.1	29	924.9
	9	908.9	30	925.7
	10	909.7	31	926.5
902 – 928 MHz	11	910.5		
	12	911.3		
	13	912.1		
	14	912.9		
	15	913.7		
	16	914.5		
	17	915.3		
	18	916.1		
	19	916.9		
	20	917.7		
	21	918.5		

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).
- b. AC power line Conducted Emission was tested under maximum output power.

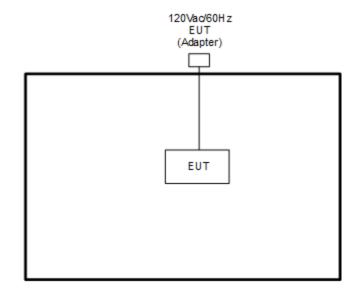

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Test Item	LoRa 500KHz DTS				
Conducted	Mode 1: LoRa 500KHz DTS Tx CH01_902.5 MHz				
Test Cases	Mode 2: LoRa 500KHz DTS Tx CH16_914.5 MHz				
Test Cases	Mode 3: LoRa 500KHz DTS Tx CH31_926.5 MHz				
Radiated	Mode 1: LoRa 500KHz DTS Tx CH01_902.5 MHz				
Test Cases	Mode 2: LoRa 500KHz DTS Tx CH16_914.5 MHz				
Test Cases	Mode 3: LoRa 500KHz DTS Tx CH31_926.5 MHz				
AC Conducted	Mode 1: WLAN (2.4GHz) Link + Bluetooth Link + Zigbee Link + Motor + Adapter +				
Emission	H-Pattern + Audio + Display 40				
Emission	Mode 2: Lora Tx + Adapter + Display 40				
Remark: The worst case of conducted emission is mode 2; only the test data of it was reported.					



2.3 Connection Diagram of Test System

<AC Conducted Emission with WLAN(2.4GHz)/Bluetooth/Zigbee Mode>



<AC Conducted Emission Lora Tx Mode>

<LoRa Tx Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,1.8m
2.	Notebook	DELL	Latitude E3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	Zigbee Bulb	OSRAM	73674	DZO-IQHOME	N/A	N/A
4.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "Compliance v1.0.0.87" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

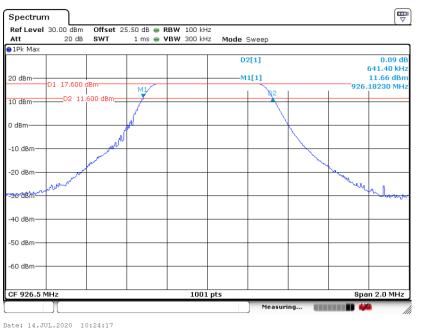
EUT

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

6 dB Bandwidth Plot on Channel 01


Date: 13.JUL.2020 16:42:50

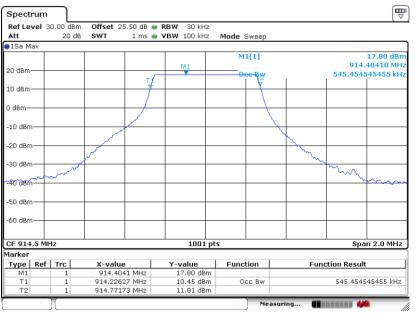
6 dB Bandwidth Plot on Channel 16

Date: 14.JUL.2020 10:05:16



6 dB Bandwidth Plot on Channel 31

3.1.6 Test Result of 99% Occupied Bandwidth


Please refer to Appendix A.

99% Bandwidth Plot on Channel 01

Date: 14.JUL.2020 09:58:31

99% Occupied Bandwidth Plot on Channel 16

Date: 14.JUL.2020 10:14:29

99% Occupied Bandwidth Plot on Channel 31

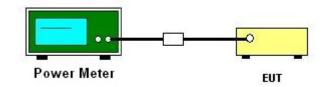
Date: 14.JUL.2020 10:37:11

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

Section 15.247(b)(3) For systems using digital modulation in the 902-928 MHz, the limit for peak output power is 1 watt.


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 3. The path loss was compensated to the results for each measurement.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

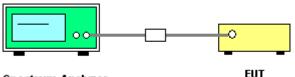
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

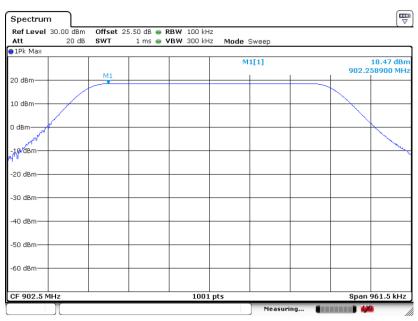

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.3 Method AVGPSD-1.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = RMS, Sweep time = auto couple, Trace mode = Average, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 30dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

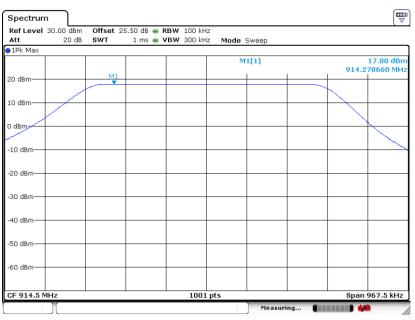
3.3.4 Test Setup



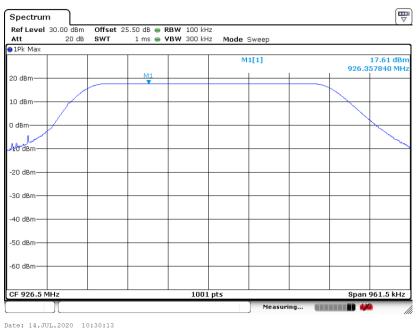
Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

PSD 100kHz Plot on Channel 01

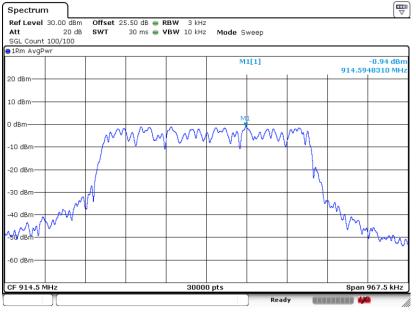

Date: 13.JUL.2020 17:21:58

PSD 100kHz Plot on Channel 16

Date: 14.JUL.2020 10:11:09

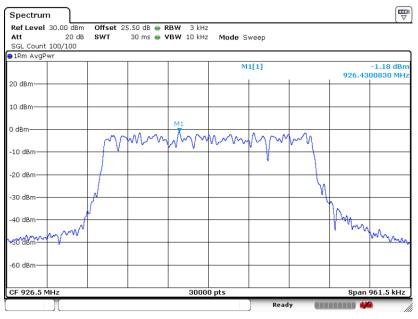
PSD 100kHz Plot on Channel 31

3.3.7 Test Result of Power Spectral Density Plots (3kHz)



PSD 3kHz Plot on Channel 01

Date: 13.JUL.2020 16:48:39



PSD 3kHz Plot on Channel 16

Date: 14.JUL.2020 10:08:47

PSD 3kHz Plot on Channel 31

Date: 14.JUL.2020 10:27:57

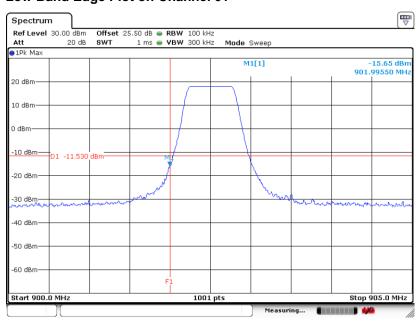
3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

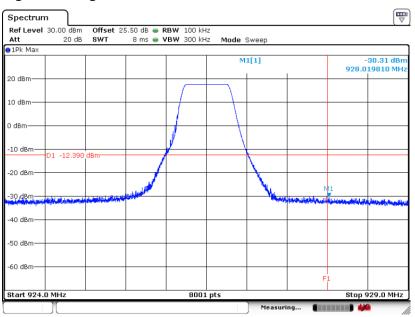

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

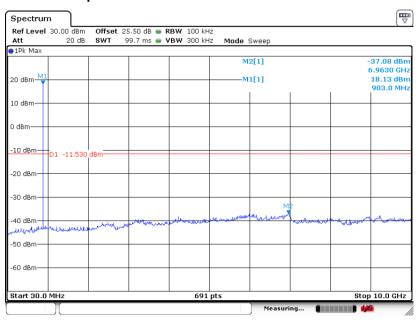

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

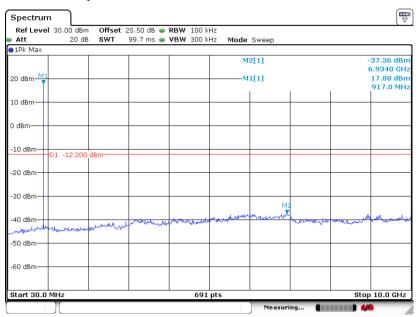

3.4.5 Test Result of Conducted Band Edges Plots

Low Band Edge Plot on Channel 01

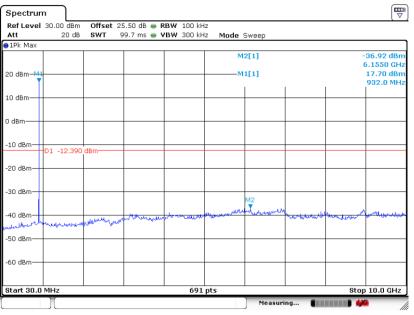

Date: 14.JUL.2020 09:41:37

High Band Edge Plot on Channel 31

Date: 14.JUL.2020 10:32:59


3.4.6 Test Result of Conducted Spurious Emission Plots

Conducted Spurious Emission Plot on Channel 01


Date: 14.JUL.2020 09:44:38

Conducted Spurious Emission Plot on Channel 16

Date: 14.JUL.2020 10:13:08

Conducted Spurious Emission Plot on Channel 31

Date: 14.JUL.2020 10:35:32

3.5 Radiated Band Edges and Spurious Emission Measurement

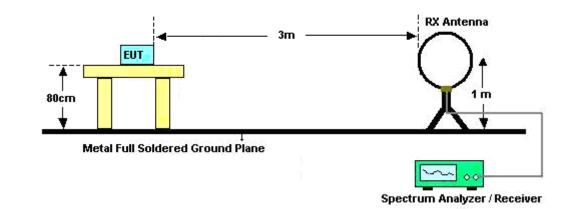
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

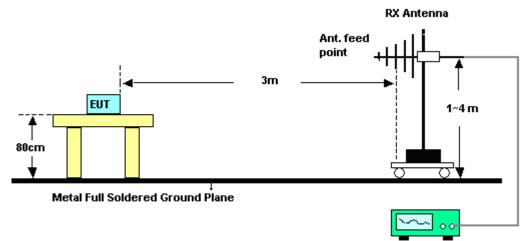
Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

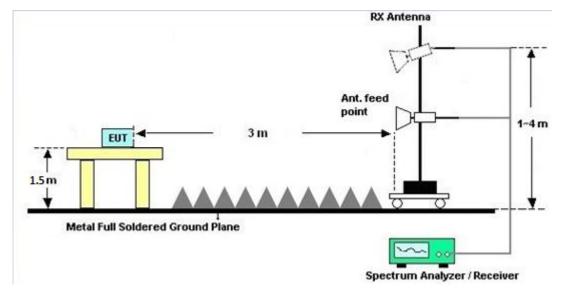

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

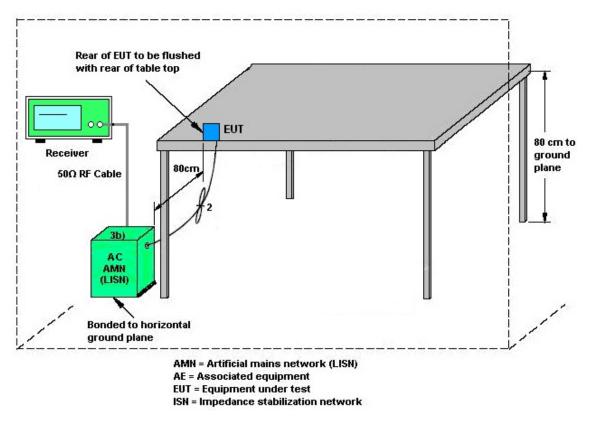
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHZ)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	608-H1	34893241	N/A	Mar. 02. 2020	Jul. 13, 2020 ~ Jul. 14, 2020	Mar. 01. 2021	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 10	10MHz~6GHz	Dec. 23, 2019	Jul. 13, 2020 ~ Jul. 14, 2020	Dec. 22, 2020	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV30	103738	9kHz~30GHz	May 14, 2020	Jul. 13, 2020 ~ Jul. 14, 2020	May 13, 2021	Conducted (TH05-HY)
Switch Control Manframe	Burgeon	ETF-058	EC1300484	N/A	Aug. 22,2019	Jul. 13, 2020 ~ Jul. 14, 2020	Aug. 21,2020	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB41292344	N/A	Dec. 27, 2019	Jul. 13, 2020 ~ Jul. 14, 2020	Dec. 26, 2020	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Dec. 27, 2019	Jul. 13, 2020 ~ Jul. 14, 2020	Dec. 26, 2020	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Jun. 22, 2020 ~ Jul. 08, 2020	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Nov. 15, 2019	Jun. 22, 2020~ Jul. 08, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 07, 2019	Jun. 22, 2020 ~ Jul. 08, 2020	Nov. 06, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 15, 2019	Jun. 22, 2020 ~ Jul. 08, 2020	Nov. 14, 2020	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Jun. 22, 2020 ~ Jul. 08, 2020	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 02, 2020	Jun. 22, 2020 ~ Jul. 08, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 02, 2020	Jun. 22, 2020 ~ Jul. 08, 2020	Jan. 01, 2021	Conduction (CO05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 09, 2020	Jul. 13, 2020 ~ Jul. 15, 2020	Jan. 08, 2021	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL6111D&00 802N1D01N-0 6	47020&06	30MHz to 1GHz	Oct. 12, 2019	Jul. 13, 2020 ~ Jul. 15, 2020	Oct. 11, 2020	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1G~18GHz	Sep. 19, 2019	Jul. 13, 2020 ~ Jul. 15, 2020	Sep. 18, 2020	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1G	Oct. 01. 2019	Jul. 13, 2020 ~ Jul. 15, 2020	Sep. 30. 2020	Radiation (03CH16-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	17100018000 55006	1GHz~18GHz	May 07, 2020	Jul. 13, 2020 ~ Jul. 15, 2020	May 06, 2021	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 11, 2019	Jul. 13, 2020 ~ Jul. 15, 2020	Dec.10, 2020	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY57290111	3Hz~26.5GHz	Dec. 05, 2019	Jul. 13, 2020 ~ Jul. 15, 2020	Dec. 04, 2020	Radiation (03CH16-HY)
Spectrum Analyzer	Agilent	E4446A	MY50180136	3Hz~44GHz	May 04, 2020	Jul. 13, 2020 ~ Jul. 15, 2020	May 03, 2021	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11680/4P E	NA	Aug. 30, 2019	Jul. 13, 2020 ~ Jul. 15, 2020	Aug. 29, 2020	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY11688/4P E	NA	Aug. 30, 2019	Jul. 13, 2020 ~ Jul. 15, 2020	Aug. 29, 2020	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300-5 757	NA	Aug. 30, 2019	Jul. 13, 2020 ~ Jul. 15, 2020	Aug. 29, 2020	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Jul. 13, 2020 ~ Jul. 15, 2020	N/A	Radiation (03CH16-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.3

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.9
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	6.7
of 95% (U = 2Uc(y))	6.7

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	2.0
of 95% (U = 2Uc(y))	3.9

Report Number : FR020110-01G

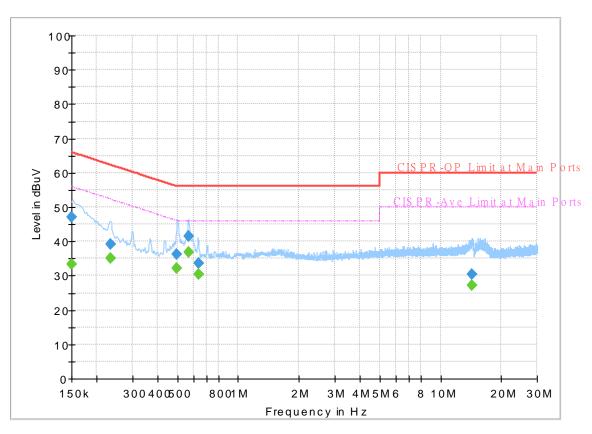
Appendix A. Test Result of Conducted Test Items

Test Engineer	Shiming Liu	Temperature:	23.9~24.1	°C
Test Date:	2020/7/13~2020/7/14	Relative Humidity:	52.8~53	%

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth									
Mod.	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail		
Lora	1	1	902.5	0.539	0.641	0.50	Pass		
Lora	1	16	914.5	0.545	0.645	0.50	Pass		
Lora	1	31	926.5	0.543	0.641	0.50	Pass		

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>									
Mod.	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
Lora	1	1	902.5	18.40	30.00	-0.48	17.92	36.00	Pass
Lora	1	16	914.5	18.20	30.00	-0.48	17.72	36.00	Pass
Lora	1	31	926.5	18.00	30.00	-0.48	17.52	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Average Power Density</u>										
Mod.	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Average PSD (dBm /3kHz)	DG (dBi)	Average PSD Limit (dBm /3kHz)	Pass/Fail		
Lora	1	1	902.5	18.47	-0.89	-0.48	8.00	Pass		
Lora	1	16	914.5	17.80	-0.94	-0.48	8.00	Pass		
Lora	1	31	926.5	17.61	-1.18	-0.48	8.00	Pass		

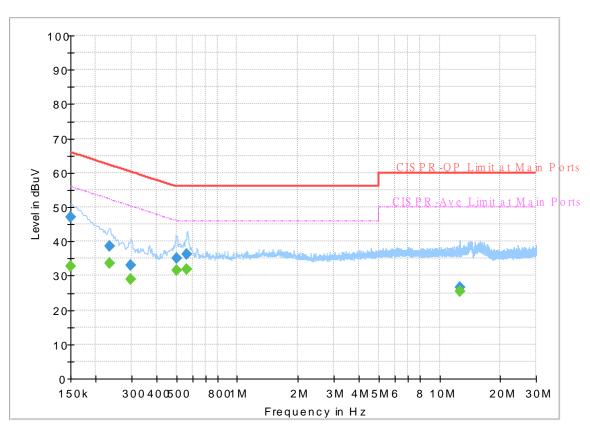


Appendix B. AC Conducted Emission Test Results

Test Engineer :	Tom Loo	Temperature :	23~25 ℃
rest Engineer .	Tom Lee	Relative Humidity :	42~50%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 020110-01 Mode 2 120Vac/60Hz Line


Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		33.20	56.00	22.80	L1	OFF	19.6
0.150000	46.93		66.00	19.07	L1	OFF	19.6
0.233430		35.04	52.33	17.29	L1	OFF	19.6
0.233430	39.08		62.33	23.25	L1	OFF	19.6
0.498750		32.13	46.02	13.89	L1	OFF	19.6
0.498750	36.16		56.02	19.86	L1	OFF	19.6
0.566520		36.70	46.00	9.30	L1	OFF	19.6
0.566520	41.46		56.00	14.54	L1	OFF	19.6
0.634560		30.36	46.00	15.64	L1	OFF	19.6
0.634560	33.49		56.00	22.51	L1	OFF	19.6
14.364510		27.10	50.00	22.90	L1	OFF	20.2
14.364510	30.34		60.00	29.66	L1	OFF	20.2

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 020110-01 Mode 2 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		32.84	56.00	23.16	Ν	OFF	19.6
0.150000	47.00		66.00	19.00	Ν	OFF	19.6
0.233250		33.74	52.33	18.59	Ν	OFF	19.5
0.233250	38.70		62.33	23.63	Ν	OFF	19.5
0.296070		28.81	50.35	21.54	Ν	OFF	19.5
0.296070	33.04		60.35	27.31	Ν	OFF	19.5
0.502620		31.54	46.00	14.46	Ν	OFF	19.5
0.502620	35.19		56.00	20.81	Ν	OFF	19.5
0.561750		31.73	46.00	14.27	Ν	OFF	19.5
0.561750	36.33		56.00	19.67	Ν	OFF	19.5
12.601500		25.30	50.00	24.70	Ν	OFF	19.9
12.601500	26.59		60.00	33.41	Ν	OFF	19.9

Appendix C. Radiated Spurious Emission

Test Engineer :	Karl Hou, Andy Yang, and CR Liro	Temperature :	20~25°C
rest Engineer .	Kan Hou, Andy Tang, and CK Life	Relative Humidity :	50~60%

Lora	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT 4		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		2707.5	48.18	-25.82	74	72.65	27.81	9.05	61.33	100	0	Ρ	н
LoRa		3610	38.37	-35.63	74	58.99	29.1	10.7	60.42	100	0	Р	Н
CH 01		2707.5	47.95	-26.05	74	72.42	27.81	9.05	61.33	100	0	Р	V
902.5Hz		3610	39.75	-34.25	74	60.37	29.1	10.7	60.42	100	0	Р	V
		2743.5	46.52	-27.48	74	70.83	27.89	9.11	61.31	100	0	Р	Н
LoRa		3658	39.07	-34.93	74	59.56	29.12	10.74	60.35	100	0	Р	Н
CH 16 914.5MHz		2743.5	47.15	-26.85	74	71.46	27.89	9.11	61.31	100	0	Р	V
914.311112		3658	38.48	-35.52	74	58.97	29.12	10.74	60.35	100	0	Р	V
		2779.5	48.07	-25.93	74	72.1	28.08	9.17	61.28	100	0	Р	Н
		3706	40.13	-33.87	74	60.44	29.2	10.76	60.27	100	0	Р	Н
		4632.5	44	-30	74	60.31	30.83	11.84	58.98	100	0	Р	Н
LoRa		8338.5	48.76	-25.24	74	53.36	36.52	16.78	57.9	100	0	Ρ	Н
CH 31 926.5MHz		2779.5	46.94	-27.06	74	70.97	28.08	9.17	61.28	100	0	Ρ	V
920.JWI12		3706	40.88	-33.12	74	61.19	29.2	10.76	60.27	100	0	Ρ	V
		4632.5	45.84	-28.16	74	62.15	30.83	11.84	58.98	100	0	Р	V
		8338.5	47.33	-26.67	74	51.93	36.52	16.78	57.9	100	0	Р	V
Remark		o other spurious results are PA		Peak and	Average lim	it line.	·			•	•		

LoRa (Harmonic @ 3m)

Lora	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
4		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		71.71	28.97	-11.03	40	37.71	12.31	11.3	32.35	-	-	Р	Н
		218.18	28.95	-17.05	46	33.47	15.37	12.44	32.33	-	-	Р	Н
		362.71	31.48	-14.52	46	29.86	20.76	13.12	32.26	-	-	Р	Н
		461.65	35.85	-10.15	46	31.08	23.39	13.51	32.13	-	-	Ρ	Н
		545.07	37.13	-8.87	46	30.56	24.69	13.89	32.01	-	-	Ρ	Н
LoRa		637.22	38.64	-7.36	46	30.05	26.37	14.23	32.01	100	0	Ρ	Н
CH 01		902.5	115.24	-	-	103	29.05	15.08	31.89	182	181	Р	Н
902.5MHz		70.74	33.11	-6.89	40	41.9	12.28	11.29	32.36	100	355	Q	V
LF		186.17	27.97	-15.53	43.5	33.28	14.76	12.24	32.31	-	-	Ρ	V
		260.86	30.45	-15.55	46	29.98	20.09	12.72	32.34	-	-	Р	V
		379.2	31.18	-14.82	46	29.13	21.07	13.21	32.23	-	-	Р	V
		465.53	35.26	-10.74	46	30.44	23.43	13.52	32.13	-	-	Р	V
		612.97	37.98	-8.02	46	30.2	25.57	14.16	31.95	-	-	Р	V
		902.5	113.66	-	-	101.42	29.05	15.08	31.89	100	53	Р	V
Remark		o other spurious I results are PA		mit line.									

Emission below 1GHz

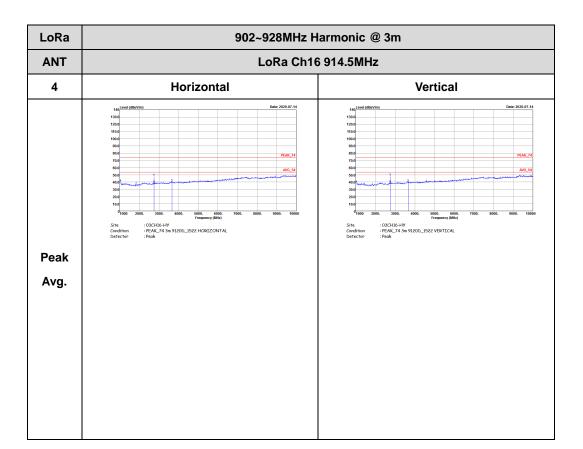
LoRa (LF)

Lora	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
4		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		94.99	28.85	-14.65	43.5	34.37	15.24	11.51	32.27	-	-	Р	Н
		216.24	29.42	-16.58	46	34.09	15.24	12.42	32.33	-	-	Ρ	Н
		361.74	31.59	-14.41	46	30	20.74	13.11	32.26	-	-	Ρ	н
		424.79	34.12	-11.88	46	30.11	22.8	13.38	32.17	-	-	Ρ	Н
		500.45	35.67	-10.33	46	30.2	23.92	13.64	32.09	-	-	Р	Н
LoRa		645.95	38.5	-7.5	46	29.88	26.39	14.26	32.03	100	0	Ρ	Н
CH 16		914.5	115.16	-	-	102.47	29.33	15.11	31.75	186	185	Р	Н
914.5MHz		69.77	33.69	-6.31	40	42.58	12.18	11.29	32.36	100	348	Q	V
LF		115.36	30.17	-13.33	43.5	33.57	17.14	11.72	32.26	-	-	Р	V
		259.89	29.86	-16.14	46	29.4	20.08	12.72	32.34	-	-	Р	V
		412.18	33.15	-12.85	46	29.67	22.32	13.35	32.19	-	-	Ρ	V
		525.67	36.33	-9.67	46	30.62	23.98	13.78	32.05	-	-	Ρ	V
		625.58	38.5	-7.5	46	30.28	26	14.2	31.98	-	-	Ρ	V
		914.5	113.49	-	-	100.8	29.33	15.11	31.75	102	51	Ρ	V
Remark	1. No	o other spurious	s found.										
	2. All	l results are PA	SS against li	mit line.									

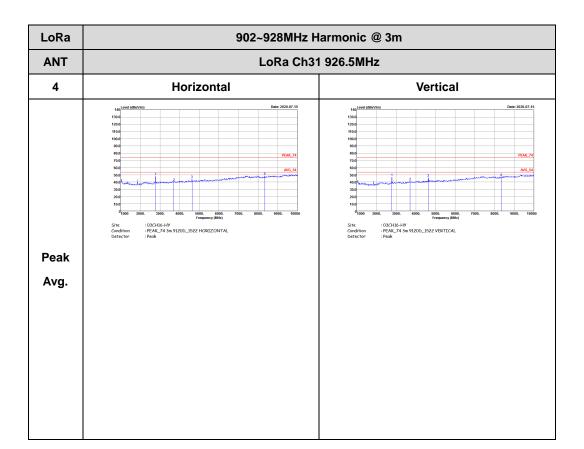
Lora	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
4		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		95.96	29.2	-14.3	43.5	34.65	15.29	11.52	32.26	-	-	Ρ	Н
		214.3	29.16	-14.34	43.5	33.91	15.17	12.41	32.33	-	-	Ρ	Н
		380.17	31.81	-14.19	46	29.73	21.1	13.21	32.23	-	-	Ρ	н
		462.62	35.3	-10.7	46	30.52	23.4	13.51	32.13	-	-	Р	н
		546.04	36.56	-9.44	46	29.88	24.8	13.89	32.01	-	-	Ρ	н
LoRa		681.84	39.54	-6.46	46	30.83	26.42	14.4	32.11	100	0	Ρ	н
CH 31		926.5	114.27	-	-	101.04	29.69	15.15	31.61	177	173	Р	н
926.5MHz		69.77	33.5	-6.5	40	42.39	12.18	11.29	32.36	100	352	Q	V
LF		256.98	29.16	-16.84	46	29.22	19.59	12.69	32.34	-	-	Р	V
		347.19	30.82	-15.18	46	29.76	20.3	13.04	32.28	-	-	Р	V
		401.51	32.93	-13.07	46	29.91	21.9	13.32	32.2	-	-	Ρ	V
		557.68	38.36	-7.64	46	30.36	26.05	13.94	31.99	-	-	Ρ	V
		645.95	38.77	-7.23	46	30.15	26.39	14.26	32.03	-	-	Ρ	V
		926.5	112.61	-	-	99.38	29.69	15.15	31.61	103	50	Р	V
Remark	1. No	o other spurious	s found.	•							•		
itemai K	2. All	results are PA	SS against li	mit line.									

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

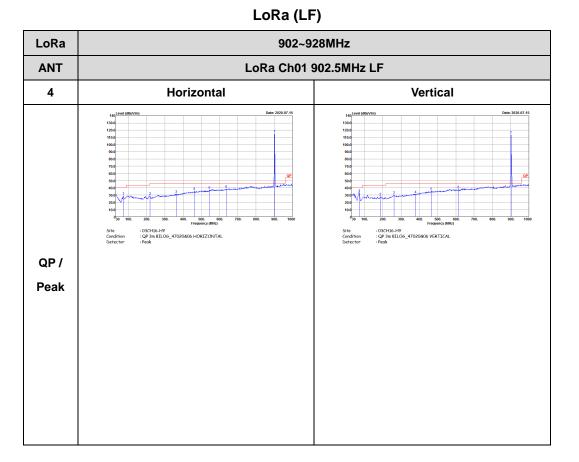
Note symbol

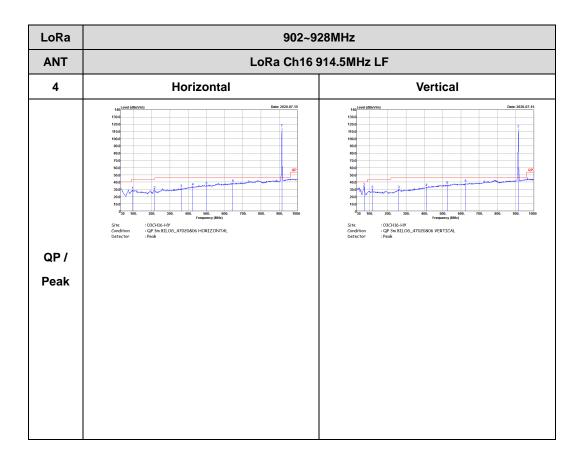

Appendix D. Radiated Spurious Emission Plots

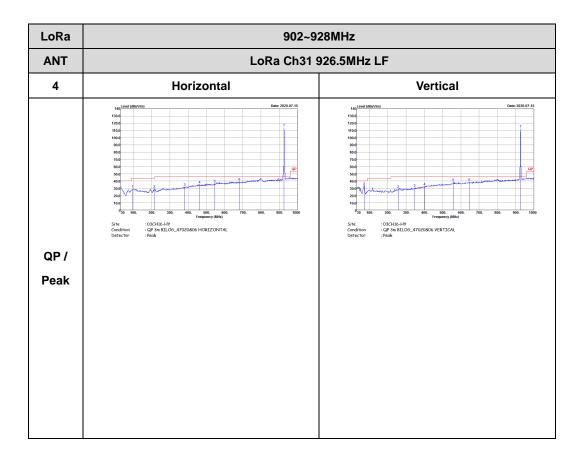
Toot Engineer		Temperature :	20~25°C
Test Engineer :	Karl Hou, Andy Yang, and CR Liro	Relative Humidity :	50~60%


LoRa	902~928MHz Harmonic @ 3m									
ANT	LoRa Ch0 ⁴	I 902.5MHz								
4	Horizontal	Vertical								
Peak Avg.	<pre>indication:</pre>	<pre></pre>								

LoRa (Harmonic @ 3m)






Emission below 1GHz

Appendix E. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
4	LoRa (DTS)	100.00	-	-	10Hz	0.00

LoRa (DTS)

Spectrur	n					
Ref Leve						
Att	20	IdB 🥌 SWT 5 m s	😑 VBW 10 MHz			
SGL						
⊖1Pk Max						10.05.15
M				M1[1]		18.25 dBn 490.00 µ:
20 dBm	-			 D2[1]		-0.01 dt
10 dBm		T				1.01000 m
TO OBIII-						
0 dBm						
-10 dBm—						
-20 dBm						
-20 aBm—						
-30 dBm						
-40 dBm—						
-50 dBm						
-50 ubiii—						
-60 dBm						
CF 914.5	MHz		1001 pt:	5	1	500.0 µs/
Marker						
	ef Trc	X-value	Y-value	Function	Fu	nction Result
M1	1	490.0 µs	18.25 dBm			
	41 1 41 1	1.01 ms 1.01 ms	-0.01 dB -0.01 dB			
03 1	1 1	1.01 ms	-0.01 dB			
	Д			, I	Ready 📰	

Date: 13.JUL.2020 15:08:18

-THE END-