

TEST REPORT

No.B22N01190-HAC RF

For

Rhino Mobility LLC

Smart Phone

Model Name: PACE A1

With

Hardware Version: H318_MB_V2

Software Version: PACE_A1(005)_20220531

FCC ID: 2AUOUPA1NA

Results Summary: M Category = M4

Issued Date: 2022-07-12

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
B22N01190-HAC RF	Rev.0	1st edition	2022-07-12

CONTENTS

1. SUMMARY OF TEST REPORT	5
1.1. TEST ITEMS	5
1.2. TEST STANDARDS	5
1.3. TEST RESULT	5
1.4. TESTING LOCATION	5
1.5. PROJECT DATA	
1.6. SIGNATURE	5
2. CLIENT INFORMATION	6
2.1. APPLICANT INFORMATION	6
2.2. MANUFACTURER INFORMATION	6
3. EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	7
3.1. ABOUT EUT	7
3.2. INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	7
3.3. INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
3.4. AIR INTERFACES / BANDS INDICATING OPERATING MODES	7
4. REFERENCE DOCUMENTS	8
5. OPERATIONAL CONDITIONS DURING TEST	9
5.1. HAC MEASUREMENT SET-UP	9
5.2. PROBE SPECIFICATION	10
5.3. TEST ARCH PHANTOM & PHONE POSITIONER	11
5.4. ROBOTIC SYSTEM SPECIFICATIONS	11
6. EUT ARRANGEMENT	12
6.1. WD RF EMISSION MEASUREMENTS REFERENCE AND PLANE	12
7. SYSTEM VALIDATION	13
7.1. VALIDATION PROCEDURE	13
7.2. VALIDATION RESULT	
8. MODULATION INTERFERENCE FACTOR (MIF)	14
9. EVALUATION FOR LOW-POWER EXEMPTION	16
9.1. PRODUCT TESTING THRESHOLD	16
9.2. CONDUCTED POWER	
10. RF TEST PROCEDURES	17
11. MEASUREMENT RESULTS (E-FIELD)	18
12. ANSI C 63.19-2011 LIMITS	18
13. MEASUREMENT UNCERTAINTY	19
14. MAIN TEST INSTRUMENTS	20

ANNEX A: RF EMISSION TEST PLOT	21
ANNEX B: SYSTEM VALIDATION RESULT	26
ANNEX C: PROBE CALIBRATION CERTIFICATE	27
ANNEX D: DAE CALIBRATION CERTIFICATE	36
ANNEX E: DIPOLE CALIBRATION CERTIFICATE	39
ANNEX F: UID SPECIFICATION	44

1. Summary of Test Report

1.1. Test Items

Description:

Smart Phone

Model Name:

PACE A1

Applicant's Name:

Rhino Mobility LLC

Manufacturer's Name:

Rhino Mobility LLC

1.2. Test Standards

ANSI C63.19-2011

1.3. Test Result

Pass

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project Data

Testing Start Date: 2022-07-10

Testing End Date: 2022-07-10

1.6. Signature

Li Yongfu

李明高

(Prepared this test report)

Zhang Yunzhuan

(Reviewed this test report)

Cao Junfei

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	Rhino Mobility LLC	
Address:	8 The Green, Suite A	
City:	Dover, Delaware, 19901	
Country:	USA	
Telephone:	1	

2.2. Manufacturer Information

Company Name:	Rhino Mobility LLC
Address:	8 The Green, Suite A
City:	Dover, Delaware, 19901
Country:	USA
Telephone:	/

3. Equipment under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description:	Smart Phone
Mode Name:	PACE A1
Condition of EUT as received:	No obvious damage in appearance
Fraguency Panda:	WCDMA Band 2/4/5,
Frequency Bands:	LTE Band 2/4/5/12/13/25/26/41/66/71

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version	Receipt Date
UT02aa	353919025680130	H318_MB_V2	PACE_A1(005)_20220531	2022-05-24

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test HAC with the UT02aa.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Type	Manufacturer
AE1	Battery	BPA1	/

^{*}AE ID: is used to identify the test sample in the lab internally.

3.4. Air Interfaces / Bands Indicating Operating Modes

Air-interface	Band(MHz)	Туре	C63.19 / tested	Simultaneous Transmissions	Name of Voice Service	Power Reduction
MCDMA	B2 / B4/ B5	VO	Yes	BT,WLAN	CMRS Voice	No
WCDMA	HSPA	DT	No	BT,WLAN	NA	No
LTE (FDD)	2/4/5/12/13/25/26/66/71	VD	Yes	BT,WLAN	VoLTE	No
LTE (TDD)	41	VD	Yes	BT,WLAN	VoLTE	No

VO: Voice CMRS/PSTN Service Only

VD: Voice CMRS/PSTN and Data Service

DT: Digital Transport

^{*} HAC Rating was not based on concurrent voice and data modes; Non-current mode was found to represent worst case rating for both M and T rating

4. Reference Documents

The following document listed in this section is referred for testing.

	<u> </u>			
Reference	Title	Version		
	American National Standard for Methods of Measurement			
ANSI C63.19-2011	of Compatibility between Wireless Communication Devices	2011		
	and Hearing Aids			
I/DD 205070 D04	Equipment Authorization Guidance for Hearing Aid	05		
KDB 285076 D01	Compatibility	v05		
	Guidance for performing T-Coil tests for air interfaces			
KDB 285076 D02	supporting voice over IP (e.g., LTE and WiFi) to support	v03		
	CMRS based telephone services			

5. Operational Conditions During Test

5.1. HAC Measurement Set-up

These measurements are performed using the DASY5 NEO automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Stäubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor. The robot is a six-axis industrial robot performing precise movements. A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the HP Intel Core2 1.86 GHz computer with Windows XP system and HAC Measurement Software DASY5 NEO, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

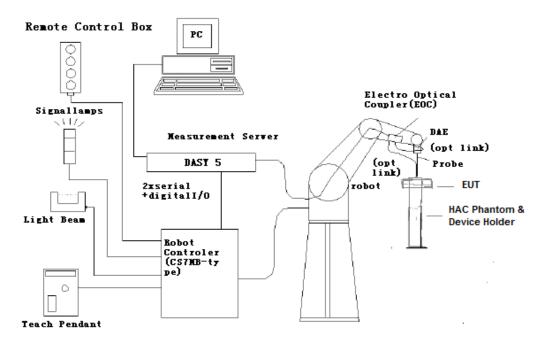


Fig. 1 HAC Test Measurement Set-up

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

5.2. Probe Specification

E-Field Probe Description

Construction One dipole parallel, two dipoles normal to probe axis

Built-in shielding against static charges

PEEK enclosure material

Calibration In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%,

k=2)

Frequency 40 MHz to > 6 GHz (can be extended to < 20 MHz)

Linearity: ± 0.2 dB (100 MHz to 3 GHz)

Directivity ± 0.2 dB in air (rotation around probe axis)

± 0.4 dB in air (rotation normal to probe axis)

Dynamic Range 2 V/m to > 1000 V/m; Linearity: ± 0.2 dB

Dimensions Overall length: 330 mm (Tip: 16 mm)

Tip diameter: 8 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.5 mm

Application General near-field measurements up to 6 GHz

Field component measurements

Fast automatic scanning in phantoms

[ER3DV6]

5.3. Test Arch Phantom & Phone Positioner

The Test Arch phantom should be positioned horizontally on a stable surface. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. It enables easy and well defined positioning of the phone and validation dipoles as well as simple teaching of the robot (Dimensions: $370 \times 370 \times 370 \text{ mm}$).

The Phone Positioner supports accurate and reliable positioning of any phone with effect on near field $<\pm0.5$ dB.

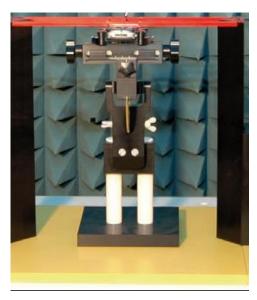


Fig. 2 HAC Phantom & Device Holder

5.4. Robotic System Specifications

Specifications

Positioner: Stäubli Unimation Corp. Robot Model: RX160XL

Repeatability: ±0.02 mm

No. of Axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: Intel Core2 Clock Speed: 1.86 GHz

Operating System: Windows XP

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY5 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

6. EUT Arrangement

6.1. WD RF Emission Measurements Reference and Plane

Figure 4 illustrates the references and reference plane that shall be used in the WD emissions measurement.

- The grid is 5 cm by 5 cm area that is divided into 9 evenly sized blocks or sub-grids.
- The grid is centered on the audio frequency output transducer of the WD (speaker or T-coil).
- The grid is located by reference to a reference plane. This reference plane is the planar area that contains the highest point in the area of the WD that normally rests against the user's ear
- The measurement plane is located parallel to the reference plane and 15 mm from it, out from the phone. The grid is located in the measurement plane.

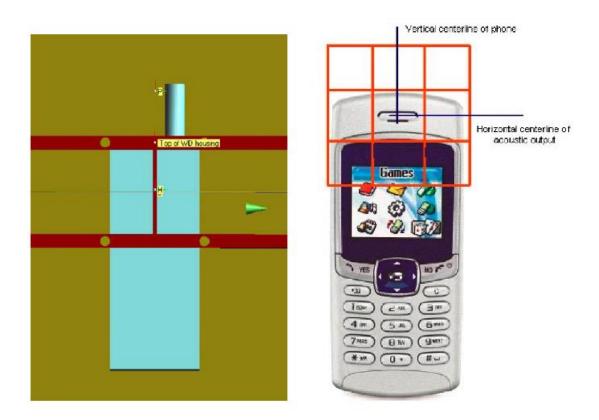


Fig. 3 WD reference and plane for RF emission measurements

7. System Validation

7.1. Validation Procedure

Place a dipole antenna meeting the requirements given in ANSI C63.19 in the position normally occupied by the WD. The dipole antenna serves as a known source for an electrical output. Position the E-field probes so that:

- The probes and their cables are parallel to the coaxial feed of the dipole antenna
- The probe cables and the coaxial feed of the dipole antenna approach the measurement area from opposite directions
- The center point of the probe element(s) are 15 mm from the closest surface of the dipole elements.

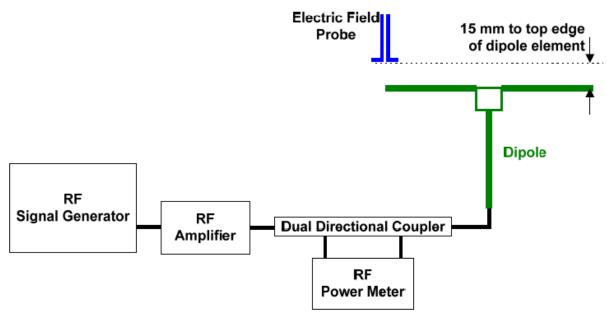


Fig. 4 Dipole Validation Setup

7.2. Validation Result

	E-Field Scan							
Mode Frequency		Input Power	Measured ¹	Target ²	Deviation ³	Limit⁴		
Wode	(MHz)	(mW)	Value(dBV/m)	Value(dBV/m)	(%)	(%)		
CW	2600	100	39.94	38.62	3.42	±25		

Notes:

- 1. Please refer to the attachment for detailed measurement data and plot.
- 2. Target value is provided by SPEAD in the calibration certificate of specific dipoles.
- 3. Deviation (%) = 100 * (Measured value minus Target value) divided by Target value.
- 4. ANSI C63.19 requires values within \pm 25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty. Values independently validated for the dipole actually used in the measurements should be used, when available.

8. Modulation Interference Factor (MIF)

The HAC Standard ANSI C63.19-2011 defines a new scaling using the Modulation Interference Factor (MIF) which replaces the need for the Articulation Weighting Factor (AWF) during the evaluation and is applicable to any modulation scheme.

The Modulation Interference factor (MIF, in dB) is added to the measured average E-field (in dBV/m) and converts it to the RF Audio Interference level (in dBV/m). This level considers the audible amplitude modulation components in the RF E-field. CW fields without amplitude modulation are assumed to not interfere with the hearing aid electronics. Modulations without time slots and low fluctuations at low frequencies have low MIF values, TDMA modulations with narrow transmission and repetition rates of few 100 Hz have high MIF values and give similar classifications as ANSI C63-2007.

Definitions

ER3D, E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. DASY52 is therefore using the "indirect" measurement method according to ANSI C63.19-2011 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by probe modulation response (PMR) calibration in order to not overestimate the field reading.

The evaluation method or the MIF is defined in ANSI C63.19-2011 section D.7. An RMS demodulated RF signal is fed to a spectral filter (similar to an A weighting filter) and forwarded to a temporal filter acting as a quasi-peak detector. The averaged output of these filtering is called to a 1 kHz 80% AM signal as reference. MIF measurement requires additional instrumentation and is not well suited for evaluation by the end user with reasonable uncertainty It may alternatively be determined through analysis and simulation, because it is constraint and characteristic for a communication signal. DASY52 uses well defined signals for PMR calibration. The MIF of these signals has been determined by simulation and is automatically applied.

MIF values were not tested by a probe or as specified in the standards but are based on analysis provided by SPEAG for all the air interfaces (GSM, WCDMA, CDMA, LTE). The data included in this report are for the worst case operating modes. The UIDs used are listed below:

UID	Communication System Name	MIF (dB)
10011	UMTS-FDD (WCDMA)	-27.23
10170	LTE-FDD(SC-FDMA, 1RB, 20MHz, 16-QAM)	-9.76
10176	LTE-FDD(SC-FDMA, 1RB, 10MHz, 16-QAM)	-9.76
10173	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16QAM)	-1.44

A PMR calibrated probe is linearized for the selected waveform over the full dynamic range within the uncertainty specified in its calibration certificate. ER3D, EF3D and EU2D E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. DASY52 is therefore using the \indirect" measurement method according to ANSI C63.19-2011 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by PMR calibration in order to not overestimate the field reading.

The MIF measurement uncertainty is estimated as follows, for modulation frequencies from slotted waveforms with fundamental frequency and at least 2 harmonics within 10 kHz:

0.2 dB for MIF -7 to +5 dB, 0.5 dB for MIF -13 to +11 dB 1 dB for MIF > -20 dB

9. Evaluation for low-power exemption

9.1. Product testing threshold

There are two methods for exempting an RF air interface technology from testing. The first method requires evaluation of the MIF for the worst-case operating mode. An RF air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is \leq 17 dBm for any of its operating modes. The second method does not require determination of the MIF. The RF emissions testing exemption shall be applied to an RF air interface technology in a device whose peak antenna input power, averaged over intervals \leq 50 μ s20, is \leq 23 dBm. An RF air interface technology that is exempted from testing by either method shall be rated as M4. The first method is used to be exempt from testing for the RF air interface technology in this report.

9.2. Conducted power

Band	Power (dBm)	MIF (dB)	Sum (dBm)	HAC Test
WCDMA Band 2	22.5	-27.23	-4.73	No
WCDMA Band 4	22.5	-27.23	-4.73	No
WCDMA Band 5	22.5	-27.23	-4.73	No
LTE Band 2	23.0	-9.76	13.24	No
LTE Band 4	22.5	-9.76	12.74	No
LTE Band 5	23.0	-9.76	13.24	No
LTE Band 12	23.0	-9.76	13.24	No
LTE Band 13	23.0	-9.76	13.24	No
LTE Band 25	23.5	-9.76	13.74	No
LTE Band 26	23.0	-9.76	13.24	No
LTE Band 66	22.5	-9.76	12.74	No
LTE Band 71	23.0	-9.76	13.24	No
LTE Band 41	23.0	-1.44	21.56	Yes

Note: Power = Max tune-up limit

10. RF Test Procedures

The evaluation was performed with the following procedure:

- 1) Confirm proper operation of the field probe, probe measurement system and other instrumentation and the positioning system.
- 2) Position the WD in its intended test position. The gauge block can simplify this positioning.
- 3) Configure the WD normal operation for maximum rated RF output power, at the desired channel and other operating parameters (e.g., test mode), as intended for the test.
- 4) The center sub-grid shall centered on the center of the T-Coil mode axial measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane. If the field alignment method is used, align the probe for maximum field reception.
- 5) Record the reading.
- 6) Scan the entire 50 mm by 50 mm region in equally spaced increments and record the reading at each measurement point. The distance between measurement points shall be sufficient to assure the identification of the maximum reading.
- 7) Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified.
- 8) Identify the maximum field reading within the non-excluded sub-grids identified in Step 7)
- 9) Evaluate the MIF and add to the maximum steady-state rms field-strength reading to obtain the RF audio interference level..
- Compare this RF audio interference level with the categories and record the resulting WD category rating.

11. Measurement Results (E-Field)

Frequ	ency	Measured Value	Power Drift	Cotomorus		
Channel	MHz	(dBV/m)	(dB)	Category		
	LTE Band 41					
41490	2680.0	23.84	0.04	M4 (see Fig A.1)		
41055	2636.5	23.80	0.03	M4 (see Fig A.2)		
40620	2593.0	24.05	0.08	M4 (see Fig A.3)		
40185	2549.5	23.88	0.06	M4 (see Fig A.4)		
39750	2506.0	23.56	0.01	M4 (see Fig A.5)		

12. ANSI C 63.19-2011 Limits

WD RF audio interference level categories in logarithmic units

Emission categories	< 960 MHz E-field emissions		
1			
Category M1	50 to 55	dB (V/m)	
Category M2	45 to 50	dB (V/m)	
Category M3	40 to 45	dB (V/m)	
Category M4	< 40	dB (V/m)	
Emission categories	> 960 MHz		
1	E-field e	emissions	
Category M1	40 to 45	dB (V/m)	
Category M2	35 to 40	dB (V/m)	
Category M3	30 to 35	dB (V/m)	
Category M4	< 30	dB (V/m)	

13. Measurement Uncertainty

No.	Error source	Туре	Uncert ainty Value (%)	Prob. Dist.	k	c _i E	Standard Uncertainty (%) u _i (%)	Degree of freedom V _{eff} or v _i	source
1	System repeatability	Α	0.24	N	1	1	0.24	9	Measurement
Meas	surement System								
2	Probe Calibration	В	10.1	N	1	1	10.1	∞	Manufacturer
3	Axial Isotropy	В	0.5	R	$\sqrt{3}$	1	0.5	8	Cal report
4	Sensor Displacement	В	16.5	R	$\sqrt{3}$	1	9.5	8	Manufacturer
5	Boundary Effects	В	2.4	R	$\sqrt{3}$	1	1.4	8	Manufacturer
6	Linearity	В	0.6	R	$\sqrt{3}$	1	0.35	∞	Cal report
7	Scaling to Peak Envolope Power	В	2.0	R	$\sqrt{3}$	1	1.2	∞	Standard
8	System Detection Limit	В	1.0	R	$\sqrt{3}$	1	0.6	∞	Manufacturer
9	Readout Electronics	В	0.3	N	1	1	0.3	∞	Manufacturer
10	Response Time	В	0.8	R	$\sqrt{3}$	1	0.5	∞	Manufacturer
11	Integration Time	В	2.6	R	$\sqrt{3}$	1	1.5	∞	Manufacturer
12	RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.7	∞	Measurement
13	RF Reflections	В	12.0	R	$\sqrt{3}$	1	6.9	∞	Measurement
14	Probe Positioner	Α	1.2	R	$\sqrt{3}$	1	0.7	∞	Manufacturer
15	Probe Positioning	Α	4.7	R	$\sqrt{3}$	1	2.7	8	Manufacturer
16	Extra. And Interpolation	В	1.0	R	$\sqrt{3}$	1	0.6	8	Manufacturer
Test	Sample Related								
17	Device Positioning Vertical	В	4.7	R	$\sqrt{3}$	1	2.7	∞	Manufacturer
18	Device Positioning Lateral	В	1.0	R	$\sqrt{3}$	1	0.6	∞	Manufacturer
19	Device Holder and Phantom	В	2.4	R	$\sqrt{3}$	1	1.4	8	Manufacturer
20	Power Drift	В	5.0	R	$\sqrt{3}$	1	2.9	∞	Measurement
Phar	ntom and Setup related								
21	Phantom Thickness	В	2.4	R	$\sqrt{3}$	1	1.4	∞	Manufacturer
PMF	related								
22	Monitor amplitude	В	3.5	R	$\sqrt{3}$	1	2.02	∞	Manufacturer
23	Setup repeatability	Α	2.3	N	1	1	2.3	9	Manufacturer
24	Sensor amplitude	В	12	R	$\sqrt{3}$	1	6.93	∞	Manufacturer
	Combined standard uncertaint	y(%)		T	T		18.3		
	Expanded uncertainty (confidence interval of 95 %)	u_e	$=2u_c$	N	k=	=2	36.6		

14. Main Test Instruments

Table 14-1: List of Main Instruments

	i dalio i i ii ziot oi indiii inoli diiiotto					
No.	Name	Туре	Serial Number	Calibration Date	Valid Period	
01	Signal Generator	E8257D	MY47461211	2022-01-14	One year	
02	Power meter	E4418B	MY50000366	2021-12-12	One year	
03	Power sensor	E9304A	MY50000188	2021-12-12	One year	
04	Amplifier	VTL5400	0404	/		
05	HAC Test Arch	N/A	1150	/		
06	E-Field Probe	ER3DV6	2424	2021-03-04	Three years	
07	DAE	DAE4	1527	2022-01-12	One year	
08	HAC Dipole	CD2600V3	1020	2021-05-18	Three years	
09	BTS	CMW500	152499	2021-07-16	One year	
10	Software	DASY5	/	/	/	

ANNEX A: RF Emission Test Plot

HAC RF E-Field LTE-Band 41 High

Date: 2022-7-10

Electronics: DAE4 Sn1527

Medium: Air

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Communication System: UID 0, LTE_TDD (0) Frequency: 2680 MHz Duty Cycle: 1:1.58

Probe: ER3DV6 - SN2424 ConvF (1, 1, 1);

E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility

Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 22.18 V/m; Power Drift = 0.04 dB

Applied MIF = -1.44 dB

RF audio interference level = 23.84 dBV/m

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
23.5 dBV/m	24.61 dBV/m	24.55 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.55 dBV/m	23.84 dBV/m	23.81 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
19.85 dBV/m	23.39 dBV/m	23.39 dBV/m

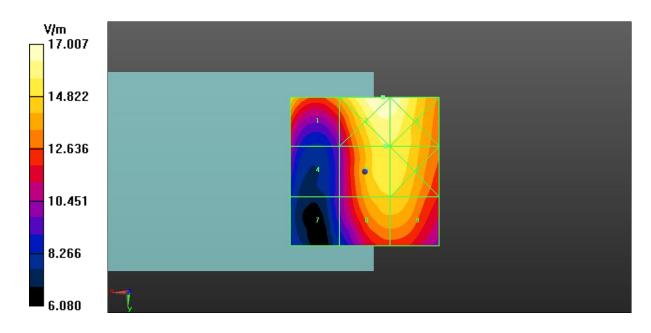


Fig A.1 HAC RF E-Field LTE-Band 41 High

HAC RF E-Field LTE-Band 41 Middle-1

Date: 2022-7-10

Electronics: DAE4 Sn1527

Medium: Air

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Communication System: UID 0, LTE_TDD (0) Frequency: 2636.5 MHz Duty Cycle: 1:1.58

Probe: ER3DV6 - SN2424 ConvF (1, 1, 1);

Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility

Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 20.66 V/m; Power Drift = 0.03 dB

Applied MIF = -1.44 dB

RF audio interference level = 23.80 dBV/m

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
22.76 dBV/m	24.64 dBV/m	24.53 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.34 dBV/m	23.8 dBV/m	23.7 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
19.33 dBV/m	22.57 dBV/m	22.57 dBV/m

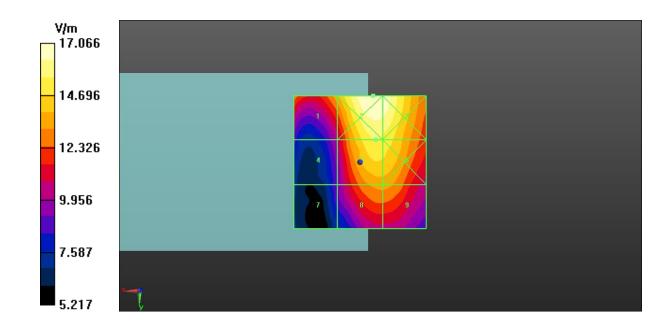


Fig A.2 HAC RF E-Field LTE-Band 41 Middle-1

HAC RF E-Field LTE-Band 41 Middle-2

Date: 2022-7-10

Electronics: DAE4 Sn1527

Medium: Air

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Communication System: UID 0, LTE_TDD (0) Frequency: 2593 MHz Duty Cycle: 1:1.58

Probe: ER3DV6 - SN2424 ConvF (1, 1, 1);

E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility

Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 20.81 V/m; Power Drift = 0.08 dB

Applied MIF = -1.44 dB

RF audio interference level = 24.05 dBV/m

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
23.63 dBV/m	25.26 dBV/m	25.06 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
20.98 dBV/m	24.05 dBV/m	23.86 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
19.09 dBV/m	22.15 dBV/m	22.13 dBV/m

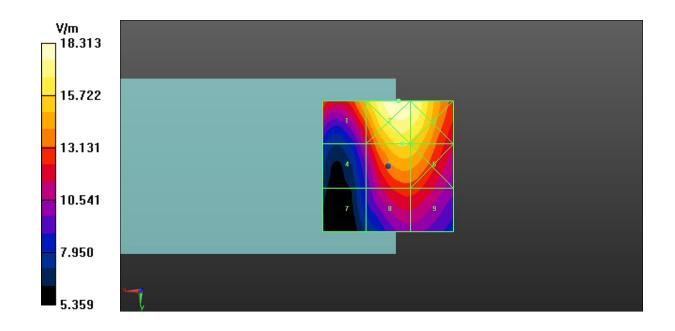


Fig A.3 HAC RF E-Field LTE-Band 41 Middle-2

HAC RF E-Field LTE-Band 41 Middle-3

Date: 2022-7-10

Electronics: DAE4 Sn1527

Medium: Air

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Communication System: UID 0, LTE_TDD (0) Frequency: 2549.5 MHz Duty Cycle: 1:1.58

Probe: ER3DV6 - SN2424 ConvF (1, 1, 1);

E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device/Hearing Aid Compatibility

Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 19.07 V/m; Power Drift = 0.06 dB

Applied MIF = -1.44 dB

RF audio interference level = 23.88 dBV/m

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
24.09 dBV/m	25.3 dBV/m	25.03 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
21.49 dBV/m	23.88 dBV/m	23.67 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
18.84 dBV/m	21.3 dBV/m	21.3 dBV/m

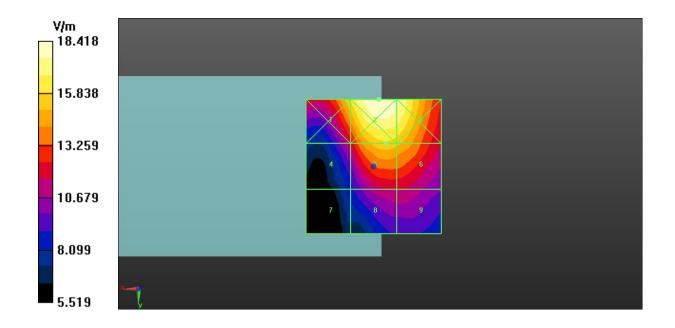


Fig A.4 HAC RF E-Field LTE-Band 41 Middle-3

HAC RF E-Field LTE-Band 41 Low

Date: 2022-7-10

Electronics: DAE4 Sn1527

Medium: Air

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Communication System: UID 0, LTE_TDD (0) Frequency: 2506 MHz Duty Cycle: 1:1.58

Probe: ER3DV6 - SN2424 ConvF (1, 1, 1);

E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device /Hearing Aid Compatibility

Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 18.76 V/m; Power Drift = 0.01 dB

Applied MIF = -1.44 dB

RF audio interference level = 23.56 dBV/m

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
24.57 dBV/m	25.3 dBV/m	24.67 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
21.86 dBV/m	23.56 dBV/m	23.27 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
18.36 dBV/m	20.75 dBV/m	20.77 dBV/m

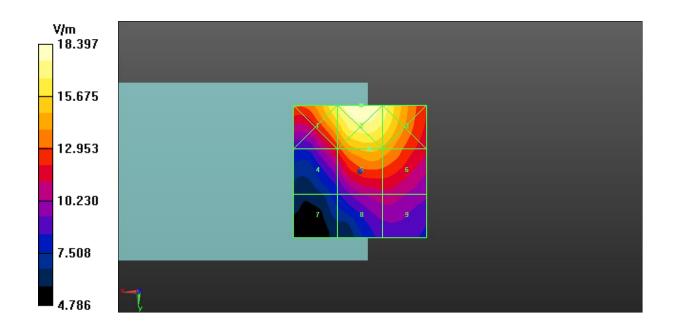


Fig A.5 HAC RF E-Field LTE-Band 41 Low

ANNEX B: System Validation Result

2600MHz

Date: 2022-7-10

Electronics: DAE4 Sn1527

Medium: Air

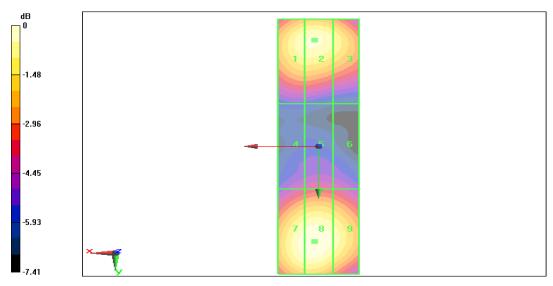
Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2424; ConvF (1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD2600 Dipole = 15mm /Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 108.5 V/m; Power Drift = 0.09 dB

Applied MIF = 0.00 dB

RF audio interference level = 39.94 dBV/m

MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
39.78 dBV/m	39.94 dBV/m	39.63 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
38.95 dBV/m	39.07 dBV/m	38.87 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
39.45 dBV/m	39.72 dB V/m	39.39 dBV/m

0 dB = 39.94 dBV/m

ANNEX C: Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

TMC-SZ (Auden)

Certificate No: ER3-2424 Mar21

CALIBRATION CERTIFICATE

ER3DV6-SN:2424 Object

Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v7

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date: March 4, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-291	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-291	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: CC2552 (20x)	31-Mar-20 (No. 217-03106)	Apr-21
DAE4	SN 789	23-Dec-20 (No. DAE4-789 Dec20)	Dec-21
Reference Probe ER3DV6	SN: 2328	05-Oct-20 (No. ER3-2328_Oct20)	Oct-21
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	66-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21

Name Function Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 4, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ER3-2424 Mar21

Page 1 of 9

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space DCP diode compression point

CF orest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D incident E-field orientation normal to probe axis Ep incident E-field orientation parallel to probe axis

Polarization o o rotation around probe axis

Polarization 9 a rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system.

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2005, * IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz". December 2005
b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3,1.1, May 2017

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f \leq 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no

Certificate No: ER3-2424_Mar21

Page 2 of 9

ER3DV6 - SN:2424

March 4, 2021

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²)	1.53	1.55	1.83	± 10.1 %
DCP (mV) ^B	99.3	99.8	101.3	35,1937,08

Calibration results for Frequency Response (30 MHz - 3 GHz)

Frequency MHz	Target E-Field V/m	Measured E-field (En) V/m	Deviation E-normal in %	Measured E-field (Ep) V/m	Deviation E-normal in %	Unc (k=2)
30	77.1	76.6	-0.7%	77.4	0.4%	± 5.1%
100	77.2	78.5	1.8%	77.9	0.9%	± 5.1%
450	77.2	78.6	1.9%	77.8	0.8%	± 5.1 %
600	77.0	78.2	1.5%	77.5	0.6%	± 5.1 %
750	77.0	78.1	1.5%	77.5	0.7%	± 5.1 %
1800	143.0	141.7	-0.9%	141.1	-1.3%	± 5.1 %
2000	135.1	134.4	-0.5%	133.5	-1.2%	± 5.1 %
2200	127.7	126.2	-1.2%	127.5	-0.1%	± 5.1 %
2500	125.5	126.0	0.4%	126,8	1.1%	± 5.1 %
3000	79.4	78.2	-1.6%	81.3	2.4%	± 5.1 %

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2424_Mar21

Numerical linearization parameter: uncertainty not required.
Lincertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ER3DV6 - SN:2424

March 4, 2021

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unction (k=2)
0	:CW	X	0.0	0.0	1.0	0.00	207.1	±3.5 %	± 4.7 %
		Y	0.0	0.0	1.0		194.8		-
		Z	0.0	0.0	1.0		208.5		
10021- DAC	GSM-FDD (TDMA, GMSK)	X	13.38	91.7	25.7	9.39	127.8	±3.0 %	±4.7 %
		Y	20.31	99.9	28.1		115.1		
		Z	25.39	99.9	28.1		145.9		
10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	×	4.95	75.3	21.8	3.60	114.8	±2.2 %	±4.7 %
		Y	4.11	72.3	20:5		106.0		
		Z	5.66	76.6	21.8		117.0		
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	X	12.21	74.8	27.6	11.00	104.9	±2.2 %	±4.7 %
		Y	13,33	78.3	29.7		144.6		
		Z	12.02	73.8	26.5		107.7		
10172- CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz. QPSK)	X	10.38	84.9	32.0	9.21	140,1	±2.5 %	± 4.7 %
		Y	8.50	78.8	28.9		126.9		
		Z	11.14	85.0	31.1		148.0		
10173- CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	×	10.60	84.6	31.9	9.48	139.5	±2.5 %	±4.7 %
		Y	9.11	80.2	29.6		127.0		
		Z	12.00	86.6	31.9		148.3		
10295- AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	Х	16,51	99.7	40.5	12.49	113.2	±3.5 %	± 4.7 %
		Y	15.91	100.0	40.9		101.3		
		Z	18.42	100.0	39.2		126.2		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2424_Mar21

Mumerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ER3DV6 - SN:2424

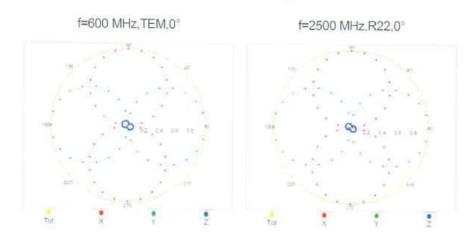
March 4, 2021

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2424

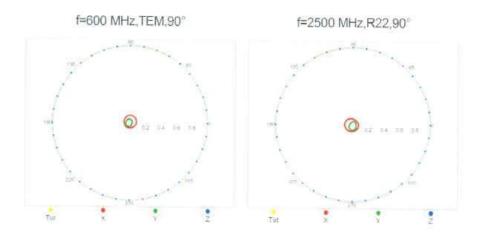
Sensor Frequency Model Parameters

	Sensor X	Sensor Y	Sensor Z
Frequency Corr. (LF)	-1.78	-1.32	0.22
Frequency Corr. (HF)	0.00	0.00	0.00

Other Probe Parameters


Sensor Arrangement	Rectangular
Connector Angle (*)	165.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

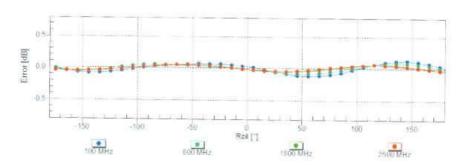
Certificate No: ER3-2424_Mar21


Page 5 of 9

ER3DV6 – SN:2424 March 4, 2021

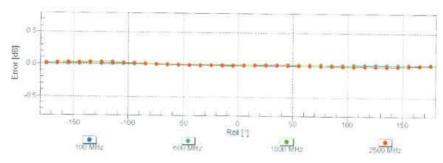
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$



Certificate No: ER3-2424_Mar21

Page 6 of 9

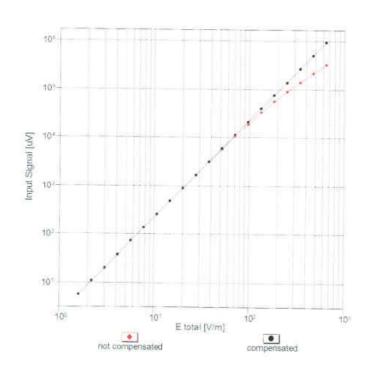

ER3DV6 - SN:2424 March 4, 2021

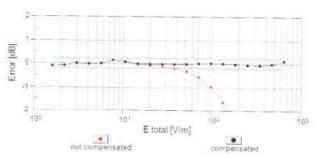
Receiving Pattern (\$\phi\$), \$\theta = 0^\circ\$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (\$\phi\$), \$\theta = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

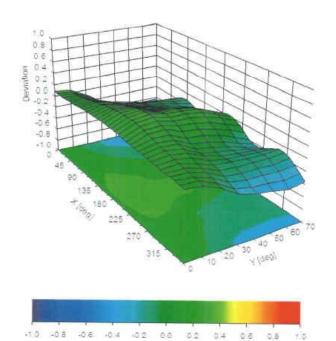

Certificate No: ER3-2424_Mar21


Page 7 of 9

ER3DV6 - SN:2424

March 4, 2021

Dynamic Range f(E-field) (TEM cell, f = 900 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ER3-2424_Mar21

Page 8 of 9

ER3DV6 - SN:2424 March 4, 2021

Deviation from Isotropy in Air Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2424_Mar21

Page 9 of 9

ANNEX D: DAE Calibration Certificate

中国认可 CAICT CALIBRATION CNAS L0570

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.com

	ICT	Certific	ate No: Z22-60003
CALIBRATION	CERTIFICAT	E	
Object	DAE4 -	- SN: 1527	
Calibration Procedure(s)	FF-Z11	-002-01	
	Calibra (DAEx)	tion Procedure for the Data Ac	quisition Electronics
Calibration date:	January	y 12, 2022	
	measurements and		which realize the physical units or probability are given on the following
All calibrations have be humidity<70%.	en conducted in t	the closed laboratory facility: en	vironment temperature(22±3)°C an
Calibration Equipment us	sed (M&TE critical fo	or calibration)	
Primary Standards	ID# Cal	Date(Calibrated by, Certificate No	Scheduled Calibration
Process Calibrator 753	1971018	15-Jun-21 (CTTL, No.J21X04465)	Jun-22
Calibrated by	Name	Function	Signature
Calibrated by:	Name Yu Zongying	Function SAR Test Engineer	Signature
			Signature
Calibrated by: Reviewed by: Approved by:	Yu Zongying	SAR Test Engineer	Signature Signature

Certificate No: Z22-60003

Page 1 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z22-60003

Page 2 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

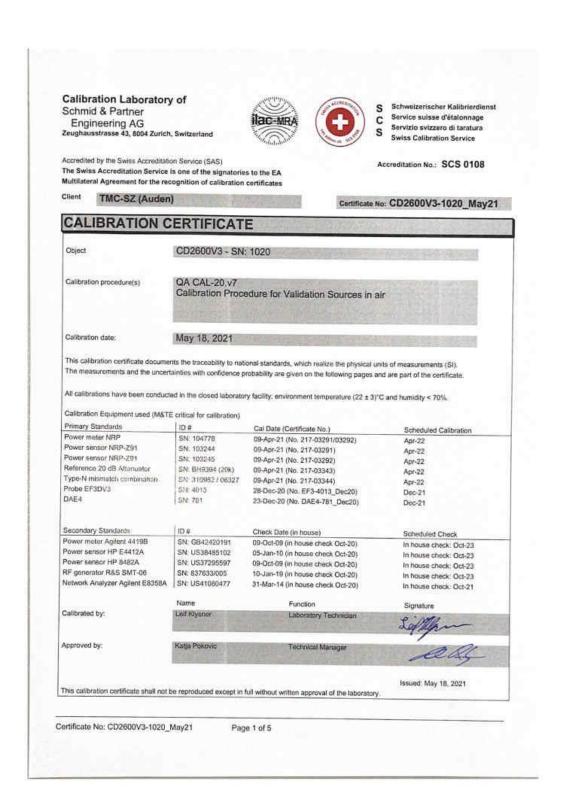
DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB=6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB=61nV, full range = -1....+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	403.864 ± 0.15% (k=2)	403.585 ± 0.15% (k=2)	403.806 ± 0.15% (k=2)
Low Range	3.95854 ± 0.7% (k=2)	3.98858 ± 0.7% (k=2)	3.96746 ± 0.7% (k=2)

Connector Angle


Connector Angle to be used in DASY system	224° ± 1 °

Certificate No: Z22-60003

Page 3 of 3

ANNEX E: Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

References

ANSI-C63.19-2011
 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms, z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms, x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASYS Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the
- Feed Point Impedance and Return Loss: These parameters are measured using a Vector Network Analyzer.
 The Impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward
 power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the
 dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms.
 Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one
 line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any nonparallelity to the measurement plane as well as the sensor displacement. The E-field value stated as
 calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD2600V3-1020_May21

Page 2 of 5

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	ANALIZATE 41.01
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	2600 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 2600 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	85.3 V/m = 38.62 dBV/m
Maximum measured above low end	100 mW input power	83.2 V/m = 38.40 dBV/m
Averaged maximum above arm	100 mW input power	84.3 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

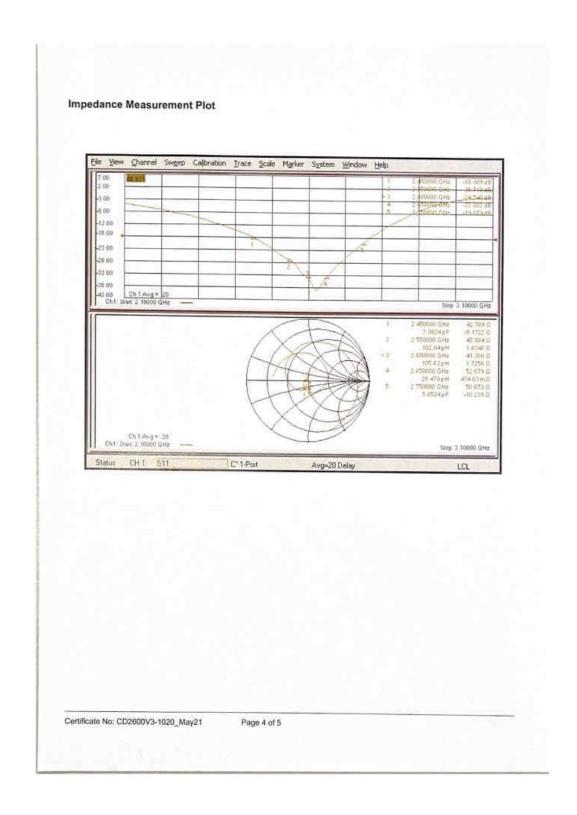
Antenna Parameters

Frequency	Return Loss	Impedance
2450 MHz	18.0 dB	42.7 Ω - 9.2 jΩ
2550 MHz	26.7 dB	45.9 Ω + 1.6 jΩ
2600 MHz	34.5 dB	49.3 Ω + 1.7 jΩ
2650 MHz	33.6 dB	52.1 Ω + 0.5 μΩ
2750 MHz	19.9 dB	50.7 Ω - 10.2 ΙΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the

enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD2600V3-1020_May21

Page 3 of 5

DASY5 E-field Result

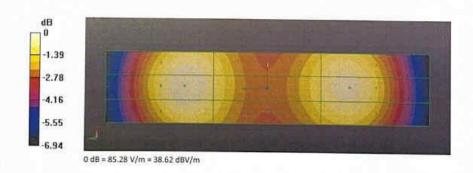
Date: 18.05.2021

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 2600 MHz; Type: CD2600V3; Serial: CD2600V3 - SN: 1020

Communication System: UID 0 - CW; Frequency; 2600 MHz Medium parameters used: σ = 0 S/m, ϵ_e = 1; ρ = 0 kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EF3DV3 SN4013; ConvF(1, 1, 1) @ 2600 MHz; Calibrated: 28.12.2020
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 23.12.2020
- Phantom: HAC Test Arch with AMCC; Type: SD HAC PO1 BA; Serial: 1070
- DASY52 52:10.4(1527); SEMCAD X 14.6.14(7483)

Dipole E-Field measurement @ 2600MHz/E-Scan - 2600MHz d=15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid; dx=0.5000 mm, dy=0.5000 mm Device Reference Point: 0,0,-6.3 mm Reference Value = 67.80 V/m; Power Drift = 0.00 dB

Applied MIF = 0.00 dB RF audio interference level = 38.62 dBV/m Emission category: M2

MIF scaled E-field

Grid 1 M2 38.28 dBV/m		Grid 3 M2 38.16 dBV/m
Grid 4 M2 37.79 dBV/m	Grid 5 M2 37.85 dBV/m	Grid 6 M2 37.68 dBV/m
THE PARTY OF THE P	Section of the section of	Grid 9 M2 38.37 dBV/m

Certificate No: CD2600V3-1020_May21

Page 5 of 5

ANNEX F: UID Specification

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Name: UMTS-FDD (WCDMA)

Group: WCDMA UID: 10011-CAB

PAR: 1 2.91 dB MIF: 2 -27.23 dB

Standard Reference: 3GPP TS 25.141 Annex A

FCC OET KDB 941225 D01 SAR test for 3G devices v02

Category: Random amplitude modulation

Modulation: QPSK

Frequency Band: Band 1, UTRA/FDD (1920.0-1980.0 MHz, 20000)

Band 2, UTRA/FDD (1850.0-1910.0 MHz, 20001) Band 3, UTRA/FDD (1710.0-1785.0 MHz, 20002) Band 4, UTRA/FDD (1710.0-1755.0 MHz, 20003) Band 5, UTRA/FDD (824.0-849.0 MHz, 20004) Band 6, UTRA/FDD (830.0-840.0 MHz, 20005) Band 7, UTRA/FDD (2500.0-2570.0 MHz, 20006) Band 8, UTRA/FDD (880.0-915.0 MHz, 20007) Band 9, UTRA/FDD (1749.9-1784.9 MHz, 20008) Band 10, UTRA/FDD (1710.0-1770.0 MHz, 20009) Band 11, UTRA/FDD (1427.9-1452.9 MHz, 20010) Band 12, UTRA/FDD (698.0-716.0 MHz, 20011) Band 13, UTRA/FDD (777.0-787.0 MHz, 20012) Band 14, UTRA/FDD (788.0-798.0 MHz, 20013) Band 19, UTRA/FDD (830.0-845.0 MHz, 20130) Band 20, UTRA/FDD (832.0-862.0 MHz, 20131) Band 21, UTRA/FDD (1447.9-1462.9 MHz, 20132)

Band 22, UTRA/FDD (3410.0-3490.0 MHz, 20217) Band 25, UTRA/FDD (1850.0-1915.0 MHz, 20218)

Band 26, UTRA/FDD (814.0-849.0 MHz, 20219)
Detailed Specification: Dedicated Channel Type: RMC

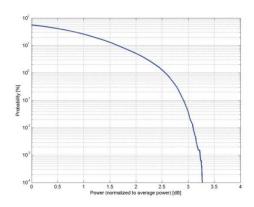
Bitrate: 12.2 kbps
DPDCH: 60 kbps
DPCCH: 15 kbps

DPCCH/DPDCH power ratio: -5.46 dB

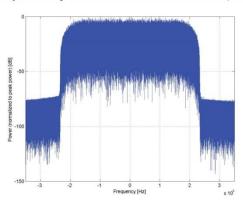
Bandwidth: 5.0 MHz Integration Time: 100.0 ms

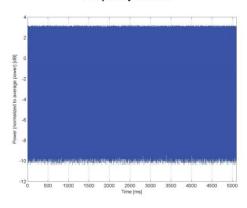
UID Specification Sheet

UID 10011-CAB page 1/2


16.01.2014

PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"


Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).


Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10011-CAB page 2/2

16.01.2014

Calibration Laboratory of

Schmid & Partner

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) Name:

Group: UID: LTE-FDD

6.52dB PAR: 1

3GPP / ETSI TS 136.101 V8.4.0 3GPP / ETSI TS 136.213 V8.4.0 Standard Reference:

FCC OET KDB 941225 D05 SAR for LTE Devices v01 Random amplitude modulation

Category:

16-QAM Band 1, E-UTRA/FDD (1920.0 - 1980.0 MHz) Frequency Band:

Band 2, E-UTRA/FDD (1850.0 - 1910.0 MHz) Band 3, E-UTRA/FDD (1710.0 - 1785.0 MHz) Band 4, E-UTRA/FDD (1710.0 - 1755.0 MHz) Band 5, E-UTRA/FDD (824.0 - 849.0 MHz) Band 6, E-UTRA/FDD (830.0 - 840.0 MHz) Band 7, E-UTRA/FDD (2500.0 - 2570.0 MHz) Band 8, E-UTRA/FDD (880.0 - 915.0 MHz) Band 9, E-UTRA/FDD (1749.9 - 1784.9 MHz) Band 10, E-UTRA/FDD (1710.0 - 1770.0 MHz) Band 11, E-UTRA/FDD (1427.9 - 1447.9 MHz)

Band 12, E-UTRA/FDD (699.0 - 716.0 MHz) Band 13, E-UTRA/FDD (777.0 - 787.0 MHz) Band 14, E-UTRA/FDD (77.0. 78.0 MHz) Band 14, E-UTRA/FDD (704.0 - 716.0 MHz) Band 18, E-UTRA/FDD (815.0 - 830.0 MHz) Band 19, E-UTRA/FDD (815.0 - 845.0 MHz) Band 19, E-UTRA/FDD (832.0 - 862.0 MHz) Band 21, E-UTRA/FDD (1447.9 - 1462.9 MHz) Band 22, E-UTRA/FDD (3410.0 - 3490.0 MHz) Band 23, E-UTRA/FDD (2000.0 - 2020.0 MHz) Band 24, E-UTRA/FDD (1626.5 - 1660.5 MHz) Band 25, E-UTRA/FDD (1850.0 - 1915.0 MHz) Band 26 E-UTRA/FDD (814.0 - 849.0 MHz) Band 27 E-UTRA/FDD (807.0 - 824.0 MHz) Band 28 E-UTRA/FDD (703.0 - 748.0 MHz) Band 30, E-UTRA/FDD (2305.0 - 2315.0 MHz)

Band 65, E-UTRA/FDD (1920.0 - 2010.0 MHz) Band 66, E-UTRA/FDD (1710.0 - 1780.0 MHz) Band 68, E-UTRA/FDD (698.0 - 728.0 MHz) Band 70, E-UTRA/FDD (1695.0 - 1710.0 MHz) Band 71, E-UTRA/FDD (663.0 - 698.0 MHz) Validation band (0.0 - 6000.0 MHz)

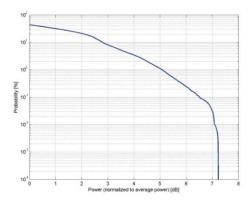
Detailed Specification:

Modulation Scheme: SC-FDMA Number of PUSCHs: 1 Number of PUSCHS: 1 Settings for Subframe #0 to #9: Modulation Scheme: QPSK Data Type: UL-SCH Number RB: 1 Transport Block Size: 256 TBS Index: 14 MCS Index: 15

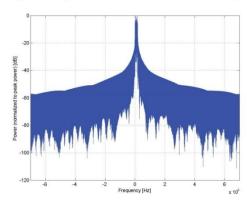
Data Type: PN9 10.0 MHz Bandwidth: Integration Time:

UID Specification Sheet

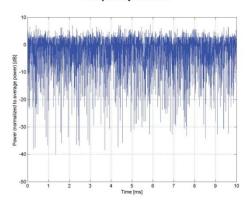
UID 10176-CAE page 1/2


PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"

Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).



Calibration Laboratory of


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10176-CAE page 2/2

Calibration Laboratory of

Schmid & Partner

Name:

Bandwidth: Integration Time:

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)

LTE-FDD 10170-CAD Group: UID:

PAR: 1 MIF: 2 6.52dB -9.76 dB

Standard Reference: 3GPP / ETSI TS 136.101 V8.4.0

3GPP / ETSI TS 136.213 V8.4.0 FCC OET KDB 941225 D05 SAR for LTE Devices v01 Random amplitude modulation

Category: Modulation: 16-QAM Frequency Band:

Random amplitude modulation
16-QAM
Band 1, E-UTRA/FDD (1920.0 - 1980.0 MHz)
Band 2, E-UTRA/FDD (1950.0 - 1910.0 MHz)
Band 3, E-UTRA/FDD (1950.0 - 1910.0 MHz)
Band 3, E-UTRA/FDD (1710.0 - 1785.0 MHz)
Band 4, E-UTRA/FDD (1710.0 - 1755.0 MHz)
Band 7, E-UTRA/FDD (1710.0 - 1775.0 MHz)
Band 9, E-UTRA/FDD (1740.9 - 1784.9 MHz)
Band 10, E-UTRA/FDD (1740.0 - 1770.0 MHz)
Band 20, E-UTRA/FDD (3810.0 - 862.0 MHz)
Band 22, E-UTRA/FDD (3810.0 - 3890.0 MHz)
Band 23, E-UTRA/FDD (2000.0 - 2020.0 MHz)
Band 25, E-UTRA/FDD (1850.0 - 1915.0 MHz)
Band 26, E-UTRA/FDD (1920.0 - 2010.0 MHz)
Band 65, E-UTRA/FDD (1710.0 - 1780.0 MHz)
Band 66, E-UTRA/FDD (1920.0 - 2010.0 MHz)
Band 67, E-UTRA/FDD (683.0 - 698.0 MHz)
Band 70, E-UTRA/FDD (663.0 - 698.0 MHz)
Validation band (0.0 - 6000.0 MHz)

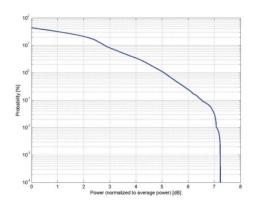
Detailed Specification:

Modulation Scheme: SC-FDMA Number of PUSCHs: 1 Settings for Subframe #0 to #9: Modulation Scheme: 16QAM
Data Type: UL-SCH
Number RB: 1
Transport Block Size: 256

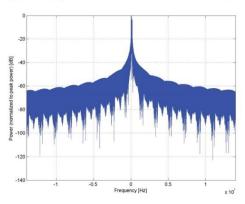
TBS Index: 14 MCS Index: 15 Data Type: PN9 20.0 MHz 10.0 ms

UID Specification Sheet

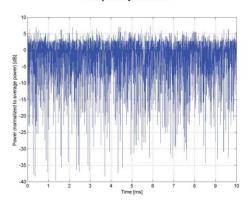
UID 10170-CAD page 1/2


PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"

Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).



Calibration Laboratory of


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10170-CAD page 2/2

Calibration Laboratory of

Schmid & Partner

Name:

Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)

Group: UID: 10173-CAD PAR: 1 MIF: 2 9.48 dB -1.44 dB

Standard Reference: 3GPP / ETSI TS 136.101 V8.4.0

3GPP / ETSI TS 136.213 V8.4.0 FCC OET KDB 941225 D05 SAR for LTE Devices v02 Random amplitude modulation

Category:

16-QAM Band 33, E-UTRA/TDD (1900.0 - 1920.0 MHz) Frequency Band:

Band 35, E-UTRA/TDD (1850.0 - 1910.0 MHz) Band 36, E-UTRA/TDD (1930.0 - 1990.0 MHz) Band 37, E-UTRA/TDD (1910.0 - 1930.0 MHz) Band 38, E-UTRA/TDD (2570.0 - 2620.0 MHz) Band 39, E-UTRA/TDD (1880.0 - 1920.0 MHz) Band 40, E-UTRA/TDD (2300.0 - 2400.0 MHz) Band 41, E-UTRA/TDD (2496.0 - 2690.0 MHz) Band 42, E-UTRA/TDD (3490.0 - 3690.0 MHz)
Band 43, E-UTRA/TDD (3600.0 - 3600.0 MHz)
Band 44, E-UTRA/TDD (703.0 - 803.0 MHz)
Band 44, E-UTRA/TDD (703.0 - 803.0 MHz) Band 45, E-UTRA/FDD (1447.0 1497.0 MHz) Band 46, E-UTRA/FDD (5150.0 - 5925.0 MHz) Band 47, E-UTRA/TDD (5855.0 - 5925.0 MHz) Band 48, E-UTRA/TDD (3550.0 - 3700.0 MHz) Validation band (0.0 - 6000.0 MHz)

Modulation Scheme: SC-FDMA Uplink-downlink configuration: 1

Special Subframe configuration: 4 Number of Frames: 1

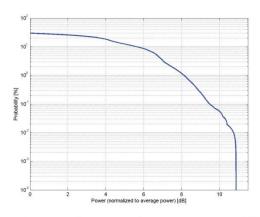
Settings for UL Subframe 2,3,7,8: Number of PUSCHs: 1 Modulation Scheme: 16QAM Allocated RB: 1 Start Number of RB: 50 Data Type: PN9fix 20.0 MHz

Bandwidth:

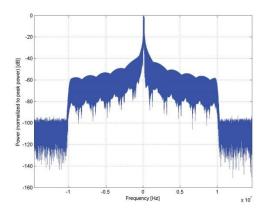
Detailed Specification:

UID Specification Sheet

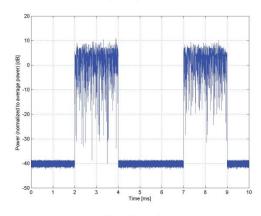
UID 10173-CAD page 1/2


PAR (0.1%) in accordance with FCC KDB 971168, Section 6.0 "Measurement of the Peak-to-Average Power Ratio (PAPR)"

Modulation Interference Factor (MIF) value valid only in conjunction with advanced probe response linearization calibration for the same communication system (same UID and version).



Calibration Laboratory of


Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Complementary Cumulative Distribution Function (CCDF)

Frequency Domain

Time Domain

UID Specification Sheet

UID 10173-CAD page 2/2

27.07.2017

END OF REPORT