

Page 1 of 90

FCC TEST REPORT

Product Name: Trade Mark:

Model No.: C10 Test Result: PASS Date of Issue: July 20, 2020

Report Number: 200405001RFC-4 Test Standards: FCC 47 CFR Part 15 Subpart E FCC ID: 2AUOUC10

Prepared for:

Rhino Mobility LLC 8 The Green, Suite A, Dover, Delaware, 19901, USA

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:	Any m	Reviewed by:	6
	Hepry Lu	- (85)	Kevin Liang
	Team Leader		Assistant Manager
Approved by:	Billy Li	Date:	July 20, 2020

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China Fax: +86-755-28230886 E-mail: info@uttlab.com http://www.uttlab.com Tel: +86-755-28230888 UTTR-RF-FCCPART15.407-V1.0

Version

Version No.	Date	Description
V1.0	July 20, 2020	Original

Shenzhen UnionTrust Quality and Technology Co., Ltd.

CONTENTS

1.	GENE	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2		
		1.2.1 GENERAL DESCRIPTION OF EUT	
		1.2.2 DESCRIPTION OF ACCESSORIES.	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	OTHER INFORMATION	7
	1.5	DESCRIPTION OF SUPPORT UNITS	
	1.6	TEST LOCATION	
	1.7	TEST FACILITY	8
	1.8	DEVIATION FROM STANDARDS	8
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS	8
	1.10	OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
	1.11	MEASUREMENT UNCERTAINTY	8
2.	тгет	SUMMARY	٥
2. 3.	-	PMENT LIST	-
3. 4.		CONFIGURATION	
◄.			
	4.1	Environmental conditions for testing	
		4.1.1 NORMAL OR EXTREME TEST CONDITIONS	
		4.1.2 RECORD OF NORMAL ENVIRONMENT	
	4.2	TEST CHANNELS	
	4.3	EUT TEST STATUS	
	4.4	PRE-SCAN	
	4.5	TEST SETUP	
		4.5.1 FOR RADIATED EMISSIONS TEST SETUP	
		4.5.2 FOR CONDUCTED EMISSIONS TEST SETUP	
		4.5.3 FOR CONDUCTED RF TEST SETUP	
	4.6	SYSTEM TEST CONFIGURATION	
	4.7	DUTY CYCLE	18
5.	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION	20
	5.1	REFERENCE DOCUMENTS FOR TESTING	20
	5.2	ANTENNA REQUIREMENT	20
	5.3	26 dB Bandwidth	21
	5.4	6 dB Bandwidth	27
	5.5	MAXIMUM CONDUCTED OUTPUT POWER	30
	5.6	PEAK POWER SPECTRAL DENSITY	
	5.7	RADIATED EMISSIONS AND BAND EDGE MEASUREMENT	44
	5.8	DYNAMIC FREQUENCY SELECTION	
	5.9	AC Power Line Conducted Emission	87
	יחאס	X 1 PHOTOS OF TEST SETUP	٥٨
		X 1 PHOTOS OF TEST SETUP	

Shenzhen UnionTrust Quality and Technology Co., Ltd.

1. GENERAL INFORMATION

1.1 CLIENT INFORMATION

Applicant:	Rhino Mobility LLC
Address of Applicant:	8 The Green, Suite A, Dover, Delaware, 19901, USA
Manufacturer:	Rhino Mobility LLC
Address of Manufacturer:	8 The Green, Suite A, Dover, Delaware, 19901, USA

1.2EUT INFORMATION

1.2.1 General Description of EUT

Product Name:	Tablet					
Model No.:	C10					
Trade Mark:						
DUT Stage:	Identical Prototype					
	GSM Bands:	GSM850/1900				
	UTRA Bands:	Band II/ Band IV/ Band V				
	E-UTRA Bands:	FDD Band 2/ Band 4/ Band 5/ Band 7/ Band 12/ Ban 14/ Band 17/Band 25/ Band 26/ Band 30/Band 6 Band 71				
	TDD Band 41					
		IEEE 802.11b/g/n				
EUT Supports Function:	2.4 GHz ISM Band:	Bluetooth 5.0				
		5 150 MHz to 5 250 MHz	IEEE 802.11a/n			
	5 GHz U-NII Bands:	5 250 MHz to 5 350 MHz	IEEE 802.11a/n			
	5 GHZ U-INII Danus.	5 470 MHz to 5 725 MHz	IEEE 802.11a/n			
		5 725 MHz to 5 850 MHz	IEEE 802.11a/n			
	RNSS Bands:	1559 MHz to 1610 MHz GPS/ GNSS/ GLONAS BDS				
	NFC:	13.553 MHz to 13.567 MHz				
Sample Received Date:	April 5, 2020					
Sample Tested Date:	April 5, 2020 to June 30, 2020					

1.2.2 Description of Accessories

Adapter			
Model No.:	TPA-10120150UU		
Input:	100-240 V~50/60 Hz 0.6A Max		
Output:	3.6-6.0V == 3.0A 18.0W/6.0-9.0V == 2.0A 18.0W /9.0-12.0V == 1.5A		
DC Cable:	1.0 Meter, Unshielded without ferrite		
Manufacturer:	SHENZHEN TIANYIN ELECTRONICS CO., LTD		

Battery				
Model No.:	Model No.: BPC10			
Battery Type:	Battery Type: Lithium-ion Polymer Rechargeable Battery			
Rated Voltage: 3.8 Vdc				
Limited Charge Voltage: 4.35 Vdc				
Rated Capacity: 7500 mAh				
Manufacturer: SHENZHENKEHUAXINELECTRONICSCO.,LTD.				

Cable				
Description:	USB Type-C Plug Cable			
Cable Type: Unshielded without ferrite				
Length:	1.0 Meter			

Shenzhen UnionTrust Quality and Technology Co., Ltd.

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

	5150 MHz to 5250 MHz	(U-NII-1)				
Fraguanay Panda	5250 MHz to 5350 MHz (U-NII-2A)					
Frequency Bands:	5470 MHz to 5725 MHz (U-NII-2C)					
	5 725 MHz to 5 850 MHz	z (U-NII-3)				
	5180 MHz to 5240 MHz					
-	5260 MHz to 5320 MHz					
Frequency Ranges:	5500 MHz to 5700 MHz					
	5 745 MHz to 5 825 MHz	Z				
Support Standards:	IEEE 802.11a/n					
TPC Function:	Not Support					
DFS Operational mode:	Slave without radar Inter	ference detec	tion function			
	IEEE 802.11a: OFDM(64	4QAM, 16QAM	I, QPSK, BPS	SK)		
Type of Modulation:	IEEE 802.11n: OFDM(64	4QAM, 16QAN	A, QPSK, BPS	SK)		
Channel Spacing:	IEEE 802.11a/n-HT20: 2	20 MHz				
onamier opacitiy.	IEEE 802.11n-HT40: 40					
	IEEE 802.11a: Up to 54	· ·				
Data Rate:	IEEE 802.11n-HT20: Up					
	IEEE 802.11n-HT40: Up	to MCS7				
		5150 MHz to 5250 MHz:				
	4 for IEEE 802.					
	2 for IEEE 802.	· · · ·				
		5250 MHz to 5350 MHz:				
	4 for IEEE 802.11a/n-HT20 2 for IEEE 802.11n-HT40)					
Number of Channels:	5470 MHz to 5725 MHz:					
	11 for IEEE 802.11a/n-HT20					
	5 for IEEE 802.	11n-HT40				
	5725 MHz to 5850 MHz					
	5 for IEEE 802.					
	2 for IEEE 802.	11n-HT40				
Antenna Type:	FPCB Antenna					
	5150 MHz to 5250 MHz	3.4 dBi				
Antenna Gain:	5250 MHz to 5350 MHz 3.2 dBi					
		5470 MHz to 5725 MHz 3.5 dBi				
	5725 MHz to 5850 MHz	3.5 dBi				
		U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
Maximum conducted	IEEE 802.11a:	10.71	10.52	9.93	9.30	
output power (dBm):	IEEE 802.11n-HT20:	10.21	9.69	8.28	7.09	
	IEEE 802.11n-HT40:	9.83	8.25	7.22	5.98	
Normal Test Voltage:	3.8 Vdc					

Shenzhen UnionTrust Quality and Technology Co., Ltd.

1.40THER INFORMATION

Operation Frequency Each of Channel					
	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
IEEE 802.11a,			4n	f = 5000 + 5k, k = 145 + 4n	
IEEE 802.11n-HT20,	n = 1,, 4	n = 5,, 8	n = 17,, 27	n = 1,, 5	
IEEE 802.11n-HT40,	f = 5000 + 5k, k = 30 + 8n			f = 5000 + 5k, k = 143 + 8n	
	n = 1, 2	n = 1,, 5	n = 9,, 13	n = 1, 2	
Note:					
f is the operating frequency (MHz);					
k is the	k is the operating channel.				

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description	Manufacturer	Model No.	Serial Number	FCC ID	Supplied by
Notebook	Lenovo	E450	SL10G10780	N/A	UnionTrust
Wireless					
Home	SAGEMCOM	FAST5280	N/A	VW3FAST5280	UnionTrust
Router					

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by
1	Antenna Cable	SMA	0.30 Meter	UnionTrust

1.6TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109 Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

Page 8 of 90

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194 Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty
1	Conducted emission 9KHz-150KHz	±3.2 dB
2	Conducted emission 150KHz-30MHz	±2.7 dB
3	Radiated emission 9KHz-30MHz	± 4.7 dB
4	Radiated emission 30MHz-1GHz	± 4.6 dB
5	Radiated emission 1GHz-18GHz	± 4.4 dB
6	Radiated emission 18GHz-26GHz	± 4.6 dB
7	Radiated emission 26GHz-40GHz	± 4.6 dB

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart E Test Cases				
Test Item	Test Requirement	Test Method	Result	
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203 FCC 47 CFR Part 15 Subpart E Section 15.407(a)(1) (2)	N/A	PASS	
26 dB emission bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(2)(5)	KDB 789033 D02 v02r01 Section C.1	PASS	
6 dB bandwidth	FCC 47 CFR Part 15 Subpart E Section 15.407 (e)	KDB 789033 D02 v02r01 Section C.2	PASS	
Maximum conducted output power	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)	KDB 789033 D02 v02r01 Section E.3.a (Method PM)	PASS	
Peak Power Spectral Density	FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)	KDB 789033 D02 v02r01 Section F	PASS	
Radiated Emissions and Band Edge Measurement	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(1)(2)(3)(4)(6) FCC 47 CFR Part 15 Subpart C Section 15.209/205	KDB 789033 D02 v02r01 Section G.3, G.4, G.5, and G.6	PASS	
Dynamic Frequency Selection	FCC 47 CFR Part 15 Subpart E Section 15.407 (h)	KDB 905462 D03 Client Without DFS New Rules v01r02	PASS	
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart E Section 15.407 (b)(6) FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013, Section 6.2.	PASS	
Note: 1) N/A: In this whole rep	ort not applicable.			

For Dynamic Frequency Selection

Result
N/A ¹
N/A ¹
PASS
PASS
N/A ¹
N/A ¹

1) The EUT is slave, NA In this whole report not applicable.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
\boxtimes	3M Chamber & Accessory Equipment	ETS-LINDGREN	3M	N/A	Dec. 03, 2018	Dec. 03, 2021
\boxtimes	Receiver	R&S	ESIB26	100114	Nov. 24, 2019	Nov. 23, 2020
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2019	Nov. 23, 2020
\boxtimes	Loop Antenna	ETS-LINDGREN	6502	00202525	Nov. 16, 2019	Nov. 15, 2020
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	Nov. 16, 2019	Nov. 15, 2020
\boxtimes	6dB Attenuator	Talent	RA6A5-N- 18	18103001	Nov. 16, 2019	Nov. 15, 2020
\boxtimes	Preamplifier	HP	8447F	2805A02960	Nov. 24, 2019	Nov. 23, 2020
	Broadband Antenna (Pre-amplifier)	ETS-LINDGREN	3142E-PA	00201891	Nov. 24, 2019	Nov. 23, 2020
	6dB Attenuator	Talent	RA6A5-N- 18	18103002	Nov. 24, 2019	Nov. 23, 2020
	Horn Antenna	ETS-LINDGREN	3117	00164202	Nov. 16, 2019	Nov. 15, 2020
	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201874	May 30, 2020	May 29, 2021
	Horn Antenna	ETS-LINDGREN	3116C	00200180	Jun. 19, 2020	Jun. 18, <mark>2021</mark>
\boxtimes	Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	Nov. 16, 2019	Nov. 15, 20 <mark>20</mark>
\boxtimes	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A
\boxtimes	Test Software	Audix	e3	Sof	tware Version: 9.16	0323

	Conducted Emission Test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
\boxtimes	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	Nov. 24, 2019	Nov. 23, 2020
\boxtimes	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Nov. 24, 2019	Nov. 23, 2020
\boxtimes	LISN	R&S	ESH2-Z5	860014/024	Nov. 24, 2019	Nov. 23, 2020
	LISN	ETS-Lindgren	3816/2SH	00201088	Nov. 24 <mark>, 201</mark> 9	Nov. 23, 2020
	Test Software	Audix	e3	Sof	tware Version: 9.16	0323

	Conducted RF test Equipment List					
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm dd, yyyy)	Cal. Due date (mm dd, yyyy)
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	Nov. 24, 2019	Nov. 23, 2020
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	Nov. 24, 2019	Nov. 23, 2020
	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	Nov. 24, 2019	Nov. 23, 2020
\boxtimes	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	Nov. 24, 2019	Nov. 23, 2020

Shenzhen UnionTrust Quality and Technology Co., Ltd.

4. TEST CONFIGURATION 4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests				
Test Condition	Ambient				
Test Condition	Temperature (°C) Voltage Relative H				
NT/NV	+15 to +35 3.8Vdc 20 to 75				
Remark: 1) NV: Normal Voltage; NT: Normal Temperature					

4.1.2 Record of Normal Environment

Test Item	Temperature (°C)	Relative Humidity (%)	Pressure (kPa)	Tested by
AC Power Line Conducted Emission	25.2	40	99.36	Bert Xiong
26 dB emission bandwidth	23.5	51	99.36	Swift Liu
Maximum conducted output power	23.5	51	99.36	Swift Liu
Peak Power Spectral Density	23.5	51	99.36	Swift Liu
6 dB bandwidth	23.5	51	99.36	Swift Liu
Dynamic Frequency Selection	23.5	51	99.36	Swift Liu
Radiated Emissions and Band Edge Measurement	25.2	52	100.02	Asia Yan

4.2TEST CHANNELS

Mode	de Tx/Rx Frequency		Test RF Channel Lists		
WICCE		Lowest(L)	Middle(M)	Highest(H)	
	5150 MHz to 5250 MHz	Channel 36	Channel 44	Channel 48	
	5150 WI 12 to 5250 WI 12	5180 MHz	5220 MHz	5240 MHz	
	5250 MHz to 5350 MHz	Channel 52	Channel 60	Channel 64	
IEEE 802.11a		5260 MHz	5300 MHz	5320 MHz	
IEEE 802.11n-HT20	5470 MHz to 5725 MHz	Channel 100	Channel 116	Channel 140	
	5470 MHZ 10 5725 MHZ	5500 MHz	5580 MHz	5700 MHz	
	5725 MHz to 5850 MHz	Channel 149	Channel 157	Channel 165	
		5745 MHz	5785 MHz	5825 MHz	
	5150 MHz to 5250 MHz	Channel 38		Channel 46	
		5190 MHz		5230 MHz	
	5250 MHz to 5350 MHz	Channel 54		Channel 62	
IEEE 802.11n-HT40		5270 MHz		5310 MHz	
	5470 MHz to 5725 MHz	Channel 102	Channel 110	Channel 134	
	5470 WI 12 10 5725 WI 12	5510 MHz	5550 MHz	5670 MHz	
	5725 MHz to 5850 MHz	Channel 151		Channel 159	
		5755 MHz		5795 MHz	

Shenzhen UnionTrust Quality and Technology Co., Ltd.

4.3EUT TEST STATUS

Mode	Tx/Rx Function	Description
IEEE 802.11a/n/ac	1Tx/1Rx	 Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

Power Setting					
	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
IEEE 802.11a	14	14	14	14	
IEEE 802.11n-HT20	14	14	14	14	
IEEE 802.11n-HT40	13	13	13	13	

Test Software

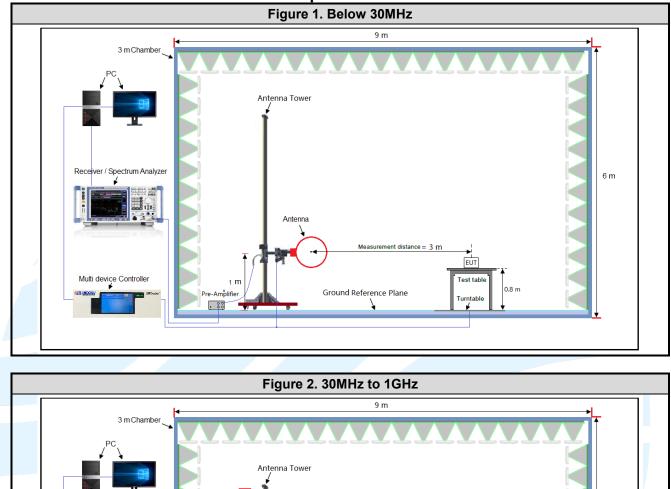
Test software name: Engineering mode*#*#3646633#*#*;

Shenzhen UnionTrust Quality and Technology Co., Ltd.

4.4PRE-SCAN

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and data rate. Following data rate was (were) selected for the final test as listed below

Mode	Worst-case data rates
IEEE 802.11a	6 Mbps
IEEE 802.11n-HT20	MCS0
IEEE 802.11n-HT40	MCS0



Shenzhen UnionTrust Quality and Technology Co., Ltd.

6 m

4.5TEST SETUP

4.5.1 For Radiated Emissions test setup

Broadband Antenna

Measurement distance = 3 m

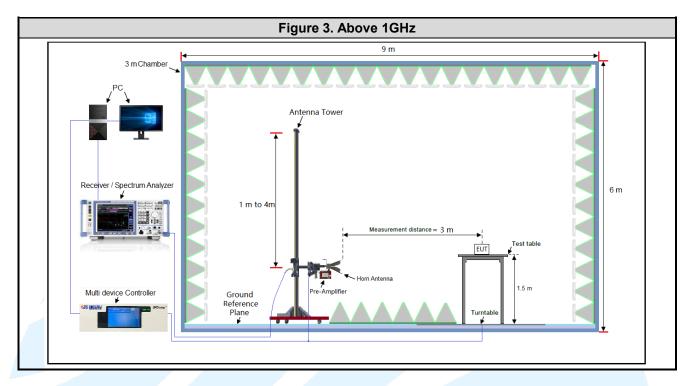
Ground Reference Plane

EUT

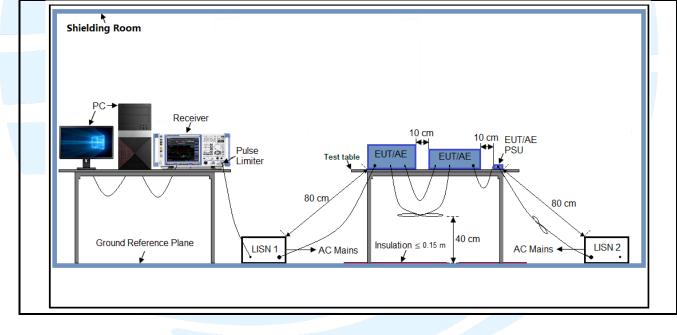
Test table

0.8 m

Shenzhen UnionTrust Quality and Technology Co., Ltd.

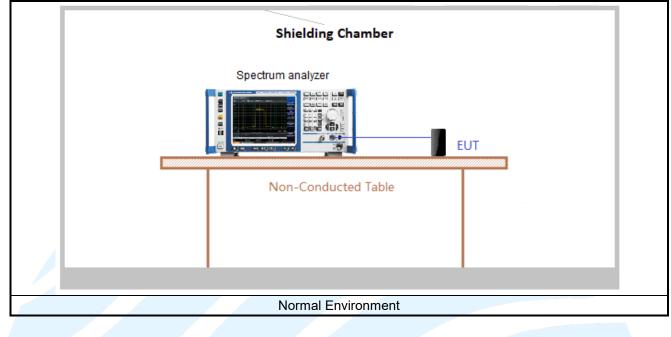

Receiver / Spectrum Analyzer

Multi device Controller


m to 4m

re-Amplifie

. 88


4.5.2 For Conducted Emissions test setup

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com <u>http://www.uttlab.com</u>

4.5.3 For Conducted RF test setup

Shenzhen UnionTrust Quality and Technology Co., Ltd.

4.6 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.8V battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency	ency Mode Antenna Port		Worst-case axis positioning	
Above 1GHz	1TX	Chain 0	Y axis	

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

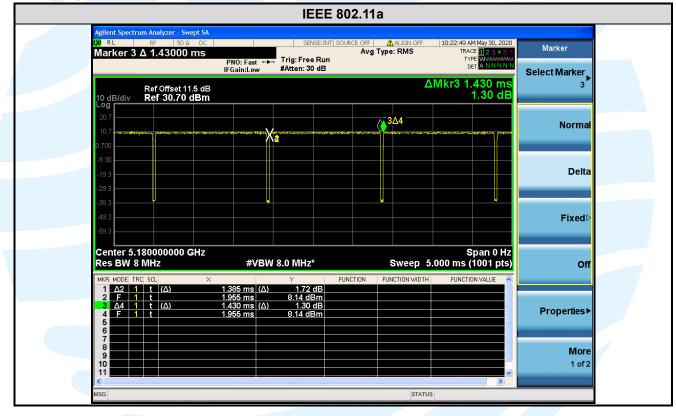
Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.7 DUTY CYCLE

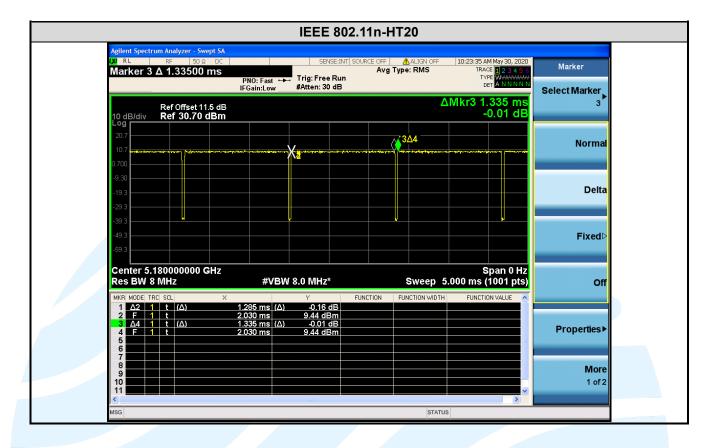
Test Procedure: ANSI C63.10-2013 Clause 12.2.

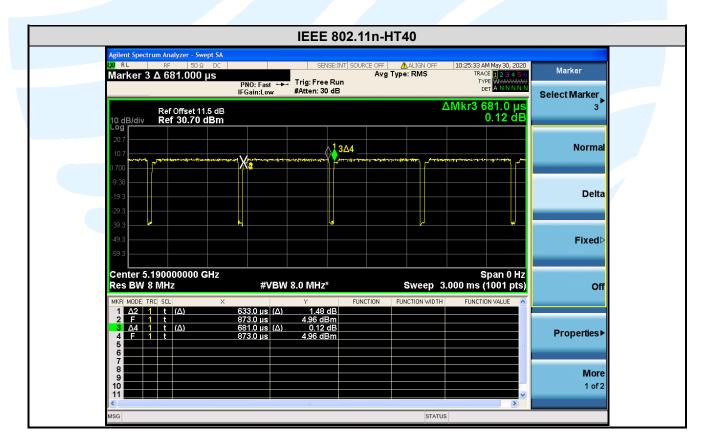
Test Results

Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)	Average Factor (dB)
IEEE 802.11a	6	1.3850	1.4300	0.97	96.85	0.14	0.72	-0.28
IEEE 802.11n-HT20	MCS0	1.2850	1.3350	0.96	96.25	0.17	0.78	-0.33
IEEE 802.11n-HT40	MCS0	0.6330	0.6810	0.93	92.95	0.32	1.58	-0.63


Remark:

1) Duty cycle= On Time/ Period;


2) Duty Cycle factor = 10 * log(1/ Duty cycle);


3) Average factor = 20 log₁₀ Duty Cycle.

The test plots as follows

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 <u>http://www.uttlab.com</u>

 UTTR-RF-FCCPART15.407-V1.0

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
4	KDB 789033 D02 General UNII Test Procedures New Rules v02r01	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15, subpart E
5	KDB 905462 D06 802.11 Channel Plans New Rules v02	Operation in U-NII bands -802.11 channel PLAN(§15.407)
6	KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02	Compliance measurement procedures for Unlicensed –National Information Infrastructure devices operates in the frequency bands 5250 MHz to 5350 MHz and 5470 MHz to 5725 MHz bands incorporating dynamic frequency selection
7	KDB 905462 D03 Client Without DFS New Rules v01r02	U-NII client devices without radar detection capability

5.2ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Antenna in the interior of the equipment and no consideration of replacement. The Max gain of the antenna is 3.5 dBi.

Page 21 of 90

5.326 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart E Section 15.407 (a) (2)(5) **Test Method:** KDB 789033 D02 v02r01 Section C.1 Limit:

None; for reporting purposes only.

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.

Spectrum analyzer according to the following Settings:

- a) Set RBW = approximately 1 % of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

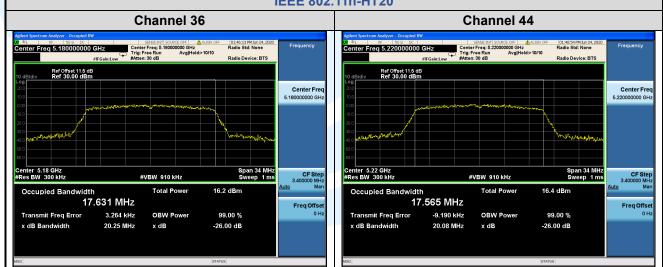
Test Setup:	Refer to section 4.5.3 for details.
Instruments Used:	Refer to section 3 for details
Test Results:	Pass

Mode	Channel	26 dB Bandwidth (MHz)	99% Bandwidth (MHz)
	36 (5 <mark>180</mark>)	19.66	16.462
	44 (5220)	19.99	16.530
	48 (5240)	19.77	16.482
	52 (5260)	19.70	16.543
IEEE 802.11a	60 (5300)	19.66	16.488
	64 (5320)	19.53	16.555
	100 (5500)	19.48	16.653
	116 (5580)	19.89	16.644
	140 (5700)	20.03	16.512
	36 (5180)	20.25	17.631
	44 (5220)	20.08	17.565
	48 (5240)	20.07	17.565
	52 (5260)	20.02	17.581
IEEE 802.11n-HT20	60 (5300)	20.38	17.588
	64 (5320)	20.19	17.571
	100 (5500)	20.11	17.582
	116 (5580)	20.43	17.603
	140 (5700)	20.28	17.603
	38 (5190)	40.35	35.952
	46 (5230)	40.38	35.993
Γ	54 (5270)	40.54	35.957
IEEE 802.11n-HT40	62 (5310)	40.23	35.902
	102 (5510)	40.22	36.000
	110 (5550)	40.46	35.931
	134 (5670)	40.33	36.039

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com http://www.uttlab.com UTTR-RF-FCCPART15.407-V1.0

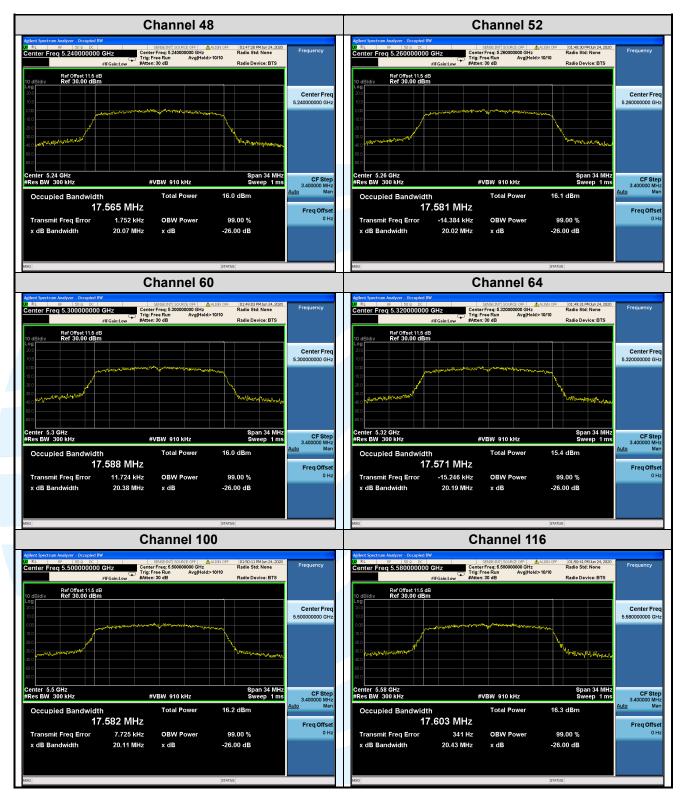
Shenzhen UnionTrust Quality and Technology Co., Ltd.


 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 <u>http://www.uttlab.com</u>

 UTTR-RF-FCCPART15.407-V1.0

Page 23 of 90

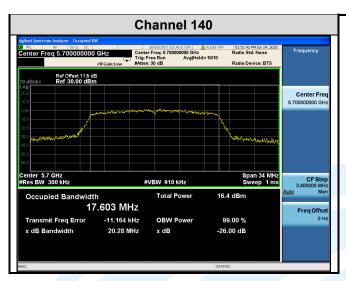

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 <u>http://www.uttlab.com</u>

 UTTR-RF-FCCPART15.407-V1.0

Page 24 of 90



Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-RF-FCCPART15.407-V1.0
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-RF-FCCPART15.407-V1.0
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

Page 26 of 90

Channel 102	Channel 110
Agliort Spectrum Analyzer - Occapied BW A La Conterr Freq 5.510000000 GHz Center Freq 5.510000000 GHz Will GaintLow Ref 0 offset 115 dB 10 dB/dly Ref 30.00 dBm	Applient Spectrum Analyser Decupied BW Frequency Frequency
Log 200 100 100 100 100 100 100 100	Log Center Freq 00
Center 5.51 GHz Span 60 MHz CF Step #Res BW 510 kHz #VBW 1.6 MHz Sweep 1 ms 6.00000 MHz	Center 5.55 GHz Span 60 MHz CF Step #Res BW 510 kHz #VBW 1.6 MHz Sweep 1 ms 6.00000 MHz
Occupied Bandwidth Total Power 14.4 dBm Auto Man 36.000 MHz Freq offset	Occupied Bandwidth Total Power 15.5 dBm Auto Man 35.931 MHz Freq Offset
Transmit Freq Error -5.250 kHz OBW Power 99.00 % 0 Hz 0 Hz <td>Transmit Freq Error 45.269 kHz OBW Power 99.00 % 0 Hz x dB x dB -26.00 dB 0 Hz x dB</td>	Transmit Freq Error 45.269 kHz OBW Power 99.00 % 0 Hz x dB x dB -26.00 dB 0 Hz x dB
	MSG STATUS
Channel 134	
Adjent System Analyser - Occupied BW 19 Revealed System Analyser - December 2019 - 20	
Ref 076set 115 dB 10 dB/div Log 200 Center Freq	
000 5.67000000 GHz	
Center 5.67 GHz Span 60 MHz	
Center 3.07 Gn2 Span 00 mn2 CF Step #Res BW 510 kHz #VBW 1.6 MHz Sweep 1 ms CF Step Occupied Bandwidth Total Power 14.7 dBm Auto Man	
36.039 MHz Freq Offset	
Transmit Freq Error -1.463 kHz OBW Power 99.00 % OHz x dB Bandwidth 40.33 MHz x dB -26.00 dB	
INSQ STATUS	

Shenzhen UnionTrust Quality and Technology Co., Ltd.

5.46 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.407 (e)

Test Method: KDB 789033 D02 v02r01Section C.2

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure:

Limit:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \geq 3 * RBW.

c) Detector = Peak.

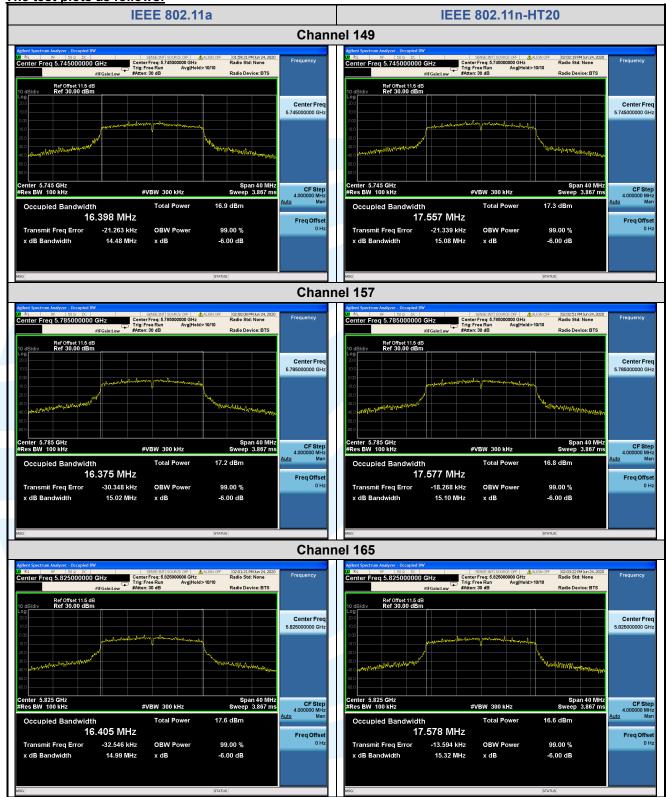
d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.


Test Setup:	Refer to section 4.5.3 for details.						
Instruments Used:	Refer to section 3 for details						
Test Mode:	Transmitter mode						
Test Results:	Pass						
Test Data:							

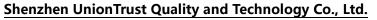
Mode	Channel/ Frequency (MHz)	6 dB Bandwidth (MHz)	99% Bandwidth (MHz)	6 dB Bandwidth Limit	Pass / Fail
	149 (5745)	14.48	16.398	> 500 kHz	Pass
IEEE 802.11a	157 (5785)	15.02	16.375	> 500 kHz	Pass
	165 (5825)	14.99	16.405	> 500 kHz	Pass
	149 (5745)	15.08	17.557	> 500 kHz	Pass
IEEE 802.11n-HT20	157 (5785)	15.10	17.577	> 500 kHz	Pass
	165 (5825)	15.32	17.578	> 500 kHz	Pass
IEEE 802.11n-HT40	151 (5755)	33.92	35.954	> 500 kHz	Pass
IEEE 002.1111-1140	159 (5795)	35.11	35.908	> 500 kHz	Pass

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China Tel: +86-755-28230888 Fax: +86-755-28230886 E-mail: info@uttlab.com <u>http://www.uttlab.com</u> <u>UTTR-RF-FCCPART15.407-V1.0</u>

The test plots as follows:

Shenzhen UnionTrust Quality and Technology Co., Ltd.


 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 <u>http://www.uttlab.com</u>

 UTTR-RF-FCCPART15.407-V1.0

Page 29 of 90

IEEE 802.11n-HT40									
	Ch	annel 15	1			C	hannel 15	9	
Agilent Spectrum Analyzer - Occupied B 0 RL RF 50.9 DC Center Freq 5.755000000 Ref Offset 11.5 d 10 dB/div Ref Offset 30.00 dBr) GHz Center #IFGain:Low #Atten:	ERVSE:INT SOURCE OFF Freq: 5.755000000 GHz 'ee Run Avg Hold:> 30 dB	Radio Std: None	Frequency	Aglent Spectrum Analyzer - Occupied II DB RL RF ISO 0 DC Center Freq 5.7950000000 Ref Offset 11.5 d Ref 0.00 dBr Ref 30.00 dBr	GHz Cento #IFGain:Low #Atte	SENSE:INT SOURCE OFF A PrFreq: 5.795000000 GHz Free Run Avg Hold: n: 30 dB	Radio Std: None	20 Frequency
				Center Freq 5.755000000 GHz					Center Freq 5.795000000 GHz
-10 0 -20 0 -30 0 -40 0 -50 0 -50 0 -50 0			ali		-10.0 20.0 -00.0 -00.0 -00.0 -00.0	A de la d	han probablish an handrik ha	with a start of the start of th	
Center 5.755 GHz #Res BW 100 kHz	#\	/BW 300 kHz	Span 80 MHz Sweep 7.667 ms	CF Step 8.000000 MHz	Center 5.795 GHz #Res BW 100 kHz	#	fVBW 300 kHz	Span 80 M Sweep 7.667 r	IZ ns 8,00000 MHz
Occupied Bandwidt	^h 5.954 MHz	Total Power	15.8 dBm	Auto Man Freq Offset	Occupied Bandwidt	^{.h} 5.908 MHz	Total Power	16.0 dBm	Auto Man Freq Offset
Transmit Freq Error x dB Bandwidth	-34.163 kHz 33.92 MHz	OBW Power x dB	99.00 % -6.00 dB	0 Hz	Transmit Freq Error x dB Bandwidth	-18.479 kHz 35.11 MHz	OBW Power x dB	99.00 % -6.00 dB	0 Hz
MSG			STATUS		MSG			STATUS	

Page 30 of 90

5.5 MAXIMUM CONDUCTED OUTPUT POWER

Test Requirement:FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)Test Method:KDB 789033 D02 v02r01 Section E.3.a(Method PM)Limits:

1. For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-RF-FCCPART15.407-V1.0

Test Procedure:

- 1. Connected the EUT's antenna port to measure device by 10dB attenuator.
- 2. Method PM is used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of Tx on burst.

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup:	Refer to section 4.5.3 for details.
Instruments Used:	Refer to section 3 for details
Test Mode:	Transmitter mode
Test Results:	Pass
Test Data:	

Antenna gain and the maximum output power limit.

Frequency Band	Antenna Gain (dBi))	Peak Power Limits (dBm)		
U-NII-1	3.40	24.00		
U-NII-2A	3.20	24.00		
U-NII-2C	3.50	24.00		
U-NII-3	3.50	30.00		

For U-NII-1 Band:

 Mode	Channel/ Frequency		ducted output (dBm)	Limit	Pass / Fail	
	(MHz)	Meas Power	Corr'd Power	(dBm)		
	36 (5180)	10.57	10.71	24	Pass	
IEEE 802.11a	44 (5220)	10.46	10.60	24	Pass	
	<u>48 (5240)</u>	9.76	9.90	24	Pass	
	36 (5180)	10.04	10.21	24	Pass	
IEEE 802.11n- HT20	44 (5220)	9.75	9.92	24	Pass	
11120	48 (5240)	9.66	9.83	24	Pass	
IEEE 802.11n-	38 (5190)	8.77	9.09	24	Pass	
HT40	46 (5230)	8.54	8.86	24	Pass	

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

For U-NII-2A Band:

Mode	Channel/ Frequency	Maximum conducted output power (dBm)		Limit	Pass / Fail
	(MHz)	Meas Power	Corr'd Power	(dBm)	
	52 (5260)	10.38	10.52	23.91	Pass
IEEE 802.11a	60 (5300)	10.26	10.40	23.91	Pass
	64 (5320)	9.98	10.12	23.91	Pass
	52 (5260)	9.52	9.69	23.91	Pass
IEEE 802.11n- HT20	60 (5300)	9.21	9.38	23.91	Pass
	64 (5320)	8.88	9.05	23.91	Pass
IEEE 802.11n- HT40	54 (5270)	7.93	8.25	23.91	Pass
	62 (5310)	6.81	7.13	23.91	Pass

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

Note:

For IEEE 802.11 a/n/ac, the minimum 26 dB emission bandwidth is 19.53MHz 11 dBm + $10\log_{10}(19.53) = 23.91$ dBm <24 dBm (250mW) So the 23.91 dB limit applicable

For U-NII-2C Band:

	Mode	Channel/ Frequency	Maximum conducted output power (dBm)		Limit (dBm)	Pass / Fail
		(MHz)	Meas Power	Corr'd Power	(ubili)	
		100 (5500)	9.56	9.70	23.90	Pass
	IEEE 802.11a	116 (5580)	8.96	9.10	23.90	Pass
_		140 (5700)	9.79	9.93	23.90	Pass
		100 (5500)	7.92	8.09	23.90	Pass
	IEEE 802.11n- HT20	116 (5580)	8.11	8.28	23.90	Pass
_	11120	140 (5700)	7.75	7.92	23.90	Pass
	IEEE 802.11n- HT40	102 (5510)	6.81	7.13	23.90	Pass
		110 (5550)	6.71	7.03	23.90	Pass
	11140	134 (5670)	6.90	7.22	23.90	Pass

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

Note:

For IEEE 802.11 a/n/ac, the minimum 26 dB emission bandwidth is 19.48 MHz 11 dBm + $10\log_{10}(19.48) = 23.90 \text{ dBm} < 24 \text{ dBm} (250\text{mW})$ So the 23.90 dB limit applicable

For U-NII-3 Band:

Mode	Channel/ Frequency		onducted output er (dBm)		Pass / Fail
	(MHz)	Meas Power	Corr'd Power	(dBm)	
	149 (5745)	9.16	9.30	30	Pass
IEEE 802.11a	157 (5785)	8.54	8.68	30	Pass
	165 (5825)	7.57	7.71	30	Pass
IEEE 802.11n- HT20	149 (5745)	6.92	7.09	30	Pass
	157 (5785)	6.39	6.56	30	Pass
	165 (5825)	5.81	5.98	30	Pass
IEEE 802.11n- HT40	151 (5755)	5.61	5.93	30	Pass
	159 (5795)	4.98	5.30	30	Pass

Remark:

1. Corr'd Power = Meas Power + Duty Cycle Factor

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Page 34 of 90

5.6 PEAK POWER SPECTRAL DENSITY

Test Requirement:FCC 47 CFR Part 15 Subpart E Section 15.407 (a)(1)(2)(3)Test Method:KDB 789033 D02 v02r01 Section FLimits:

1. For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Shenzhen UnionTrust Quality and Technology Co., Ltd.

 Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

 Tel: +86-755-28230888
 Fax: +86-755-28230886
 E-mail: info@uttlab.com
 http://www.uttlab.com

 UTTR-RF-FCCPART15.407-V1.0

Test Procedure:

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer.

Spectrum analyzer according to the following Settings:

1. For U-NII-1, U-NII-2A, U-NII-2C band:

Using method SA-2

a) Set span to encompass the entire emission bandwidth (EBW) of the signal.

b) Set RBW = 1 MHz, Set VBW ≥ 3 RBW, Detector = RMS

c) Sweep time = auto, trigger set to "free run".

d) Trace average at least 100 traces in power averaging mode.

- e) Record the max value and add 10 log (1/duty cycle)
- 2. For U-NII-3 band:

a) Set span to encompass the entire emission bandwidth (EBW) of the signal.

b) Set RBW = 500 kHz, Set VBW ≥ 3 RBW, Detector = RMS

c) Use the peak marker function to determine the maximum power level in any 500 kHz band segment within the fundamental EBW.

d) Sweep time = auto, trigger set to "free run".

e) Trace average at least 100 traces in power averaging mode.

f) Record the max value and add 10 log (1/duty cycle)

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

Test Setup:	Refer to section 4.5.3 for details				
Instruments Used:	Refer to section 3 for details				
Test Mode:	Transmitter mode				
Test Results:	Pass				
Test Data:					

Antenna gain and the maximum output power limit.

Frequency Band	Antenna Gain (dBi))	PSD Limits (dBm/MHz or dBm/500kHz)	
U-NII-1	3.40	11.00	
U-NII-2A	3.20	11.00	
U-NII-2C	3.50	11.00	
U-NII-3	3.50	30.00	

For U-NII-1 Band:

Mode	Channel/ Frequency	Power spectral density (dBm/MHz)		Limit	Pass / Fail
	(MHz)	Meas PSD	Corr'd PSD	(dBm/MHz)	
	36 (5180)	0.042	0.18	11	Pass
IEEE 802.11a	44 (5220)	0.005	0.14	11	Pass
	48 (5240)	-0.220	-0.08	11	Pass
IEEE 802.11n- HT20	36 (5180)	-0.241	-0.08	11	Pass
	44 (5220)	-0.630	-0.46	11	Pass
	48 (5240)	-0.541	-0.38	11	Pass
IEEE 802.11n- HT40	38 (5190)	-3.437	-3.12	11	Pass
	46 (5230)	-3.931	-3.61	11	Pass

Remark:

1. Corr'd PSD = Meas PSD + Duty Cycle Factor

For U-NII-2A Band:

Mode	Channel/ Frequency	Power spectral density (dBm/MHz)		Limit (dBm/MU) Pass	Pass / Fail
	(MHz)	Meas PSD	Meas PSD	(dBm/MHz)	
	52 (5260)	-0.763	-0.62	11	Pass
IEEE 802.11a IEEE 802.11n- HT20	60 (5300)	-0.314	-0.18	11	Pass
	64 (5320)	-0.236	-0.10	11	Pass
	52 (5260)	-0.318	-0.15	11	Pass
	60 (5300)	-0.567	-0.40	11	Pass
11120	64 (5320)	-0.364	-0.20	11	Pass
IEEE 802.11n-	54 (5270)	-4.274	-3.96	11	Pass
HT40	62 (5310)	-4.396	-4.08	11	Pass

Remark:

1. Corr'd PSD = Meas PSD + Duty Cycle Factor

For U-NII-2C Band:

Mode	Channel/ Frequency	Power spectral density (dBm/MHz)		Limit (dBm/MHz)	Pass / Fail
	(MHz)	Meas PSD	Meas PSD		
	100 (5500)	0.748	0.89	11	Pass
IEEE 802.11a	116 (5580)	1.298	1.44	11	Pass
	140 (5700)	1.148	1.29	11	Pass
	100 (5500)	0.506	0.67	11	Pass
IEEE 802.11n- HT20	116 (5580)	0.359	0.52	11	Pass
11120	140 (5700)	1.104	1.27	11	Pass
IEEE 802.11n- HT40	102 (5510)	-4.410	-4.09	11	Pass
	118 (5590)	-4.152	-3.83	11	Pass
	134 (5670)	-4.062	-3.74	11	Pass

Remark:

Corr'd PSD = Meas PSD + Duty Cycle Factor 1.

For U-NII-3 Band:

Mode	Channel/ Frequency	Power spectral density (dBm/500KHz)		Limit (dBm/500KHz)	Pass / Fail
	(MHz)	Meas PSD	Meas PSD	(UBIII/500KHZ)	
	149 (5745)	-2.476	-2.43	30	Pass
IEEE 802.11a	157 (5785)	-2.102	-2.05	30	Pass
	165 (5825)	-1.930	-1.88	30	Pass
	149 (5745)	-2.361	-2.29	30	Pass
IEEE 802.11n- HT20	157 (5785)	-2.882	-2.81	30	Pass
	165 (5825)	-2.452	-2.38	30	Pass
IEEE 802.11n-	151 (5755)	-7.029	- 6.80	30	Pass
HT40	159 (5795)	-6.398	-6.17	30	Pass

Remark:

- 1.
- Corr'd PSD = Meas PSD + Duty Cycle Factor+ RBW Factor RBW Factor= 10 log (500 kHz/RBW) Note: See 789033 D02 General U-NII Test Procedures New Rules v02r01 F.5.C 2.