

# FCC RADIO TEST REPORT

The device described below is tested by Dongguan Nore Testing Center Co., Ltd. to determine the maximum emission levels emanating from the device, the severe levels which the device can endure and E.U.T.'s performance criterion. The test results, data evaluation, test procedures, and equipment of configurations shown in this report were made in accordance with the procedures in ANSI C63.10(2013).

| Applicant                                           | : | Chongqing Jingranyouxu Technology Co., Ltd.                                                                                                                                      |  |  |
|-----------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Address                                             | : | No. 1th, 6/F, post Office building, Mercury Science and Technology<br>Building, No. 5th Huangshan Avenue, High-tech park, Chongqing City,<br>China                               |  |  |
| Manufacturer                                        | : | Chongqing Jingranyouxu Technology Co., Ltd.                                                                                                                                      |  |  |
| Address                                             | : | No. 1th, 6/F, post Office building, Mercury Science and Technology<br>Building, No. 5th Huangshan Avenue, High-tech park, Chongqing City,<br>China                               |  |  |
| Factory                                             | : | Chongqing Datiejiang Science and Technology Co., Ltd.                                                                                                                            |  |  |
| Address                                             | : | NO.368, BOE Avenue, Beibei District, Chongqing                                                                                                                                   |  |  |
| E.U.T.                                              | : | Label Printer                                                                                                                                                                    |  |  |
| Model No.                                           | : | D7, D1, D2, D3, D4, D5, D6, D8, D9, D10, CS18-1A, CS18-1B, CS18-1<br>CS18-1D, CS18-1E, CS18-1F, CS18-1G, CS18-1H, CS18-1I, CS18-1J<br>For model difference refer to section 1.1) |  |  |
| Brand Name                                          | : | MAKEID                                                                                                                                                                           |  |  |
| FCC ID                                              | : | 2AUMQ-D7                                                                                                                                                                         |  |  |
| Measurement Standard                                | : | FCC PART 15.247                                                                                                                                                                  |  |  |
| Date of Receiver                                    | : | September 05, 2019                                                                                                                                                               |  |  |
| Date of Test                                        | : | September 06, 2019 to September 30, 2019                                                                                                                                         |  |  |
| Date of Report                                      | : | October 10, 2019                                                                                                                                                                 |  |  |
| This Test Report is Issued Under the Authority of : |   |                                                                                                                                                                                  |  |  |

Prepared by

Evan Yang / Engineer

Approved & Authorized Signer

Ion Fan / Authorized Signatory

This test report is for the customer shown above and their specific product only. This report applies to above tested sample only and shall not be reproduced in part without written approval of Dongguan Nore Testing Center Co., Ltd.

TEL: +86-769-22022444 FAX: +86-769-22022799 Web: www.ntc-c.com Address: Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng District, Dongguan City, Guangdong Province, China



## **Table of Contents**

| 1. GENERAL INFORMATION                           | 5  |
|--------------------------------------------------|----|
| 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST | 5  |
| 1.2 RELATED SUBMITTAL(S) / GRANT (S)             | 7  |
| 1.3 TEST METHODOLOGY                             | 7  |
| 1.4 Equipment Modifications                      | 7  |
| 1.5 SUPPORT DEVICE                               | 7  |
| 1.6 TEST FACILITY AND LOCATION                   | 8  |
| 1.7 SUMMARY OF TEST RESULTS                      | 9  |
| 2. SYSTEM TEST CONFIGURATION                     |    |
| 2.1 EUT CONFIGURATION                            |    |
| 2.2 Special Accessories                          |    |
| 2.3 DESCRIPTION OF TEST MODES                    |    |
| 2.4 EUT EXERCISE                                 |    |
| 3. AC POWER LINE CONDUCTED EMISSIONS TEST        |    |
| 3.1 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) | 11 |
| 3.2 TEST CONDITION                               |    |
| 3.3 MEASUREMENT RESULTS                          | 11 |
| 4. MAX. CONDUCTED OUTPUT POWER                   | 14 |
| 4.1 MEASUREMENT PROCEDURE                        | 14 |
| 4.2 LIMIT                                        |    |
| 4.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) |    |
| 4.4 MEASUREMENT RESULTS                          | 14 |
| 5. 6DB BANDWIDTH                                 |    |
| 5.1 Measurement Procedure                        | 15 |
| 5.2 LIMIT                                        |    |
| 5.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) |    |
| 5.4 MEASUREMENT RESULTS                          |    |
| 6. POWER SPECTRAL DENSITY                        |    |
| 6.1 Measurement Procedure                        |    |
| 6.2 LIMIT                                        |    |
| 6.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) |    |
| 6.4 MEASUREMENT RESULTS                          |    |
| 7. BAND EDGE AND                                 |    |
| 7.1 Measurement Procedure                        | 21 |
| 7.2LIMIT                                         | 21 |



| 7.3Measurement Results                           | 21 |
|--------------------------------------------------|----|
| 8. CONDUCTED SPURIOUS EMISSIONS                  | 27 |
| 8.1 MEASUREMENT PROCEDURE                        |    |
| 8.2 LIMIT                                        |    |
| 8.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) |    |
| 8.4 Measurement Results                          | 27 |
| 9. RADIATED SPURIOUS EMISSIONS                   |    |
| 9.1 Test SET-UP (Block Diagram of Configuration) | 31 |
| 9.2 Measurement Procedure                        |    |
| 9.3 LIMIT                                        |    |
| 9.4 Measurement Results                          |    |
| 10. ANTENNA APPLICATION                          |    |
| 10.1 ANTENNA REQUIREMENT                         |    |
| 10.2 MEASUREMENT RESULTS                         |    |
| 11. TEST EQUIPMENT LIST                          |    |



## **Revision History of This Test Report**

| Report Number  | Description   | Issued Date |
|----------------|---------------|-------------|
| NTC1909144FV00 | Initial Issue | 2019-10-10  |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |
|                |               |             |



## **1. GENERAL INFORMATION**

#### **1.1 Product Description for Equipment under Test**

| Product Name     | : | Label Printer                                                                                                                                                                           |  |
|------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Model Name       | : | D7, D1, D2, D3, D4, D5, D6, D8, D9, D10, CS18-1A,<br>CS18-1B, CS18-1C, CS18-1D, CS18-1E, CS18-1F,<br>CS18-1G, CS18-1H, CS18-1I, CS18-1J                                                 |  |
| Model difference | : | We hereby state that these models are identical in<br>interior structure, electrical circuits and components,<br>just model name is different. Therefore only model D7<br>is for tests. |  |
| E.U.T. Type      | : | Class B                                                                                                                                                                                 |  |
| Rating           | : | DC 5V from USB Port<br>DC 7.4V from built-in battery                                                                                                                                    |  |

#### **Technical Specification:**

| BT Function<br>Version | : | V4.2 (BR/EDR + BLE)                               |
|------------------------|---|---------------------------------------------------|
| Frequency Range        | : | 2400-2483.5MHz                                    |
| Modulation Type        | : | GFSK for BLE<br>GFSK, π/4-DQPSK, 8DPSK for BR/EDR |
| Number of Channel      | : | 40 for BLE<br>79 for BR/EDR                       |
| Channel Space          | : | 2MHz for BLE<br>1MHz for BR/EDR                   |
| Antenna Type           | : | PCB on-board antenna                              |
| Antenna Gain           | : | 2 dBi                                             |

Note: This report is applicable to BLE function.



| Channel | Frequency<br>MHz | Channel | Frequency<br>MHz | Channel | Frequency<br>MHz | Channel | Frequency<br>MHz |
|---------|------------------|---------|------------------|---------|------------------|---------|------------------|
| 1       | 2402             | 11      | 2422             | 21      | 2442             | 31      | 2462             |
| 2       | 2404             | 12      | 2424             | 22      | 2444             | 32      | 2464             |
| 3       | 2406             | 13      | 2426             | 23      | 2446             | 33      | 2466             |
| 4       | 2408             | 14      | 2428             | 24      | 2448             | 34      | 2468             |
| 5       | 2410             | 15      | 2430             | 25      | 2450             | 35      | 2470             |
| 6       | 2412             | 16      | 2432             | 26      | 2452             | 36      | 2472             |
| 7       | 2414             | 17      | 2434             | 27      | 2454             | 37      | 2474             |
| 8       | 2416             | 18      | 2436             | 28      | 2456             | 38      | 2476             |
| 9       | 2418             | 19      | 2438             | 29      | 2458             | 39      | 2478             |
| 10      | 2420             | 20      | 2440             | 30      | 2460             | 40      | 2480             |

#### Bluetooth (BLE) Channel List

**Note:** According to section 15.31(m), regards to the operating frequency range over 10MHz, the Lowest, Middle, and the Highest frequency of channel were selected to perform the test. The selected frequency see below:

| Channel | Frequency<br>(MHz) |
|---------|--------------------|
| 1       | 2402               |
| 20      | 2440               |
| 40      | 2480               |



#### 1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: 2AUMQ-D7 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rule.

#### **1.3 Test Methodology**

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Radiated emission measurement was performed in semi-anechoic chamber and conducted emission measurement, was performed in shield room. For radiated emission measurement, preliminary scans were performed in the semi-anechoic chamber only to determine the worst case modes. All radiated tests were performed at an antenna to EUT distance of 3 meters. All other measurements were made in accordance with the procedures in 47 CFR Part 2.

#### **1.4 Equipment Modifications**

Not available for this EUT intended for grant.

#### 1.5 Support Device

| Description   | Manufacturer | Model      | S/N           |
|---------------|--------------|------------|---------------|
| AC/DC Adapter | SAMSUNG      | ETA-U90CBC | RT4F629wS/B-E |

Note: The adapter is used for conducted emission tests



#### 1.6 Test Facility and Location

| Site Description<br>EMC Lab | <ul> <li>Listed by CNAS, August 13, 2018</li> <li>The certificate is valid until August 13, 2024</li> <li>The Laboratory has been assessed and proved to<br/>be in compliance with CNAS/CL01</li> <li>The Certificate Registration Number is L5795.</li> </ul> |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Listed by A2LA, November 01, 2017<br>The certificate is valid until December 31, 2019<br>The Laboratory has been assessed and proved to<br>be in compliance with ISO17025<br>The Certificate Registration Number is 4429.01                                    |
|                             | Listed by FCC, November 06, 2017<br>The Designation Number is CN1214<br>Test Firm Registration Number: 907417                                                                                                                                                  |
|                             | Listed by Industry Canada, June 08, 2017<br>The Certificate Registration Number. Is 46405-9743                                                                                                                                                                 |
| Name of Firm                | : Dongguan Nore Testing Center Co., Ltd.<br>(Dongguan NTC Co., Ltd.)                                                                                                                                                                                           |
| Site Location               | <ul> <li>Building D, Gaosheng Science and Technology<br/>Park, Hongtu Road, Nancheng District, Dongguan<br/>City, Guangdong Province, China</li> </ul>                                                                                                         |



#### 1.7 Summary of Test Results

| FCC Rules                      | Description Of Test                                 | Uncertainty               | Result    |
|--------------------------------|-----------------------------------------------------|---------------------------|-----------|
| §15.207 (a)                    | AC Power Line Conducted Emission                    | ±1.06dB                   | Compliant |
| §15.247(b)(3)                  | Max. Conducted Output Power                         | ±1.06dB                   | Compliant |
| §15.247(a)(2)                  | 6dB Bandwidth                                       | ±1.42 x10 <sup>-4</sup> % | Compliant |
| §15.247(e)                     | Power Spectral Density                              | ±1.06dB                   | Compliant |
| §15.247(d)                     | Band Edge                                           | ±1.70dB                   | Compliant |
| §15.247(d)                     | Conducted Spurious Emissions                        | ±1.70dB                   | Compliant |
| §15.247(d),§15.209,<br>§15.205 | Radiated Spurious Emissions and<br>Restricted Bands | ±3.70dB                   | Compliant |
| §15.203                        | Antenna Requirement                                 | N/A                       | Compliant |



## 2. SYSTEM TEST CONFIGURATION

#### 2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

#### 2.2 Special Accessories

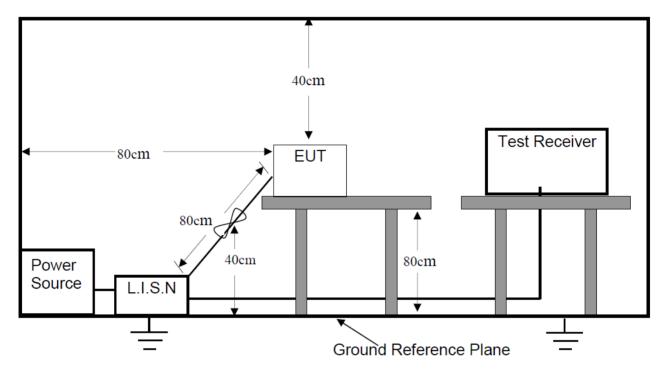
Not available for this EUT intended for grant.

#### 2.3 Description of test modes

The EUT has been tested under continuous operating condition (The duty cycle >98%). Test program used to control the EUT staying in continuous transmitting mode. The Lowest, Middle and highest channel were chosen for testing, and modulation type GFSK was tested, but only the worst case data is shown in this report.

| Test Item                                 | Software                | Description                                        |
|-------------------------------------------|-------------------------|----------------------------------------------------|
| Conducted RF Testing and Radiated testing | ESP_RF_test_tool_v1.1.0 | Set the EUT to different<br>modulation and channel |

Output power setting table:


| Test Mode | Set Tx Output Power | Data rate |
|-----------|---------------------|-----------|
| GFSK      | 0dBm                | 1M        |

#### 2.4 EUT Exercise

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.



## 3. AC POWER LINE CONDUCTED EMISSIONS TEST



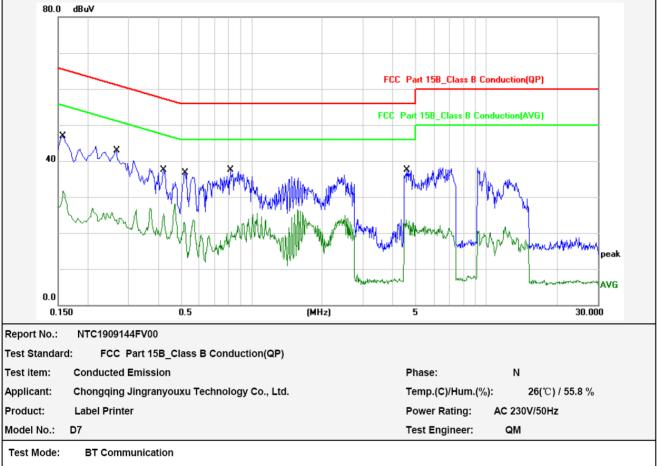
#### 3.1 Test SET-UP (Block Diagram of Configuration)

#### **3.2 Test Condition**

Test Requirement: FCC Part 15.207

Frequency Range: 150KHz ~ 30MHz

Detector: RBW 9KHz, VBW 30KHz

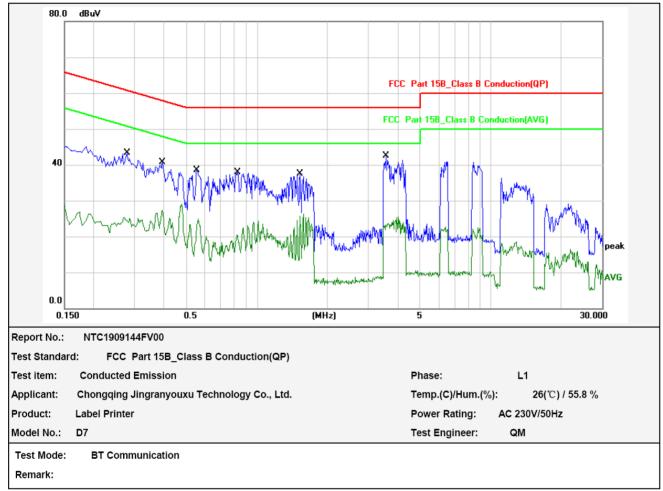

**Operation Mode: BT Communication** 

#### 3.3 Measurement Results

Please refer to following plots of the worst case



Test Time: 2019-09-11 20:01:39




Remark:

| No. | Frequency<br>(MHz) | Factor<br>(dB) | Reading<br>(dBuV) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|----------------|-------------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1   | 0.1580             | 6.62           | 38.86             | 45.48           | 65.56           | -20.08         | QP       | Ρ   |        |
| 2   | 0.1580             | 6.62           | 23.55             | 30.17           | 55.56           | -25.39         | AVG      | Ρ   |        |
| 3   | 0.2660             | 6.48           | 31.90             | 38.38           | 61.24           | -22.86         | QP       | Ρ   |        |
| 4   | 0.2660             | 6.48           | 16.04             | 22.52           | 51.24           | -28.72         | AVG      | Ρ   |        |
| 5   | 0.4219             | 6.51           | 28.98             | 35.49           | 57.41           | -21.92         | QP       | Ρ   |        |
| 6   | 0.4219             | 6.51           | 16.70             | 23.21           | 47.41           | -24.20         | AVG      | Ρ   |        |
| 7   | 0.5220             | 6.53           | 27.61             | 34.14           | 56.00           | -21.86         | QP       | Ρ   |        |
| 8   | 0.5220             | 6.53           | 13.79             | 20.32           | 46.00           | -25.68         | AVG      | Ρ   |        |
| 9   | 0.8139             | 6.49           | 28.55             | 35.04           | 56.00           | -20.96         | QP       | Ρ   |        |
| 10  | 0.8139             | 6.49           | 11.38             | 17.87           | 46.00           | -28.13         | AVG      | Ρ   |        |
| 11  | 4.5979             | 6.57           | 31.43             | 38.00           | 56.00           | -18.00         | QP       | Ρ   |        |
| 12  | 4.5979             | 6.57           | 12.64             | 19.21           | 46.00           | -26.79         | AVG      | Ρ   |        |



Test Time: 2019-09-11 19:59:57



| No. | Frequency<br>(MHz) | Factor<br>(dB) | Reading<br>(dBuV) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|----------------|-------------------|-----------------|-----------------|----------------|----------|-----|--------|
| 1   | 0.2779             | 6.49           | 33.74             | 40.23           | 60.88           | -20.65         | QP       | Ρ   |        |
| 2   | 0.2779             | 6.49           | 15.74             | 22.23           | 50.88           | -28.65         | AVG      | Ρ   |        |
| 3   | 0.3940             | 6.51           | 31.28             | 37.79           | 57.98           | -20.19         | QP       | Ρ   |        |
| 4   | 0.3940             | 6.51           | 17.84             | 24.35           | 47.98           | -23.63         | AVG      | Ρ   |        |
| 5   | 0.5540             | 6.51           | 28.94             | 35.45           | 56.00           | -20.55         | QP       | Ρ   |        |
| 6   | 0.5540             | 6.51           | 15.48             | 21.99           | 46.00           | -24.01         | AVG      | Ρ   |        |
| 7   | 0.8299             | 6.49           | 28.44             | 34.93           | 56.00           | -21.07         | QP       | Ρ   |        |
| 8   | 0.8299             | 6.49           | 11.08             | 17.57           | 46.00           | -28.43         | AVG      | Ρ   |        |
| 9   | 1.5339             | 6.50           | 26.49             | 32.99           | 56.00           | -23.01         | QP       | Ρ   |        |
| 10  | 1.5339             | 6.50           | 14.73             | 21.23           | 46.00           | -24.77         | AVG      | Ρ   |        |
| 11  | 3.5739             | 6.58           | 34.36             | 40.94           | 56.00           | -15.06         | QP       | Ρ   |        |
| 12  | 3.5739             | 6.58           | 10.64             | 17.22           | 46.00           | -28.78         | AVG      | Ρ   |        |



## 4. MAX. CONDUCTED OUTPUT POWER

#### 4.1 Measurement Procedure

Maximum Conducted Output power at Antenna Terminals, FCC Rules 15.247(b)(3):

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

#### 4.2 Limit

For systems using digital modulation in the 2400-2483.5MHz bands: 1 Watt.

#### 4.3 Test SET-UP (Block Diagram of Configuration)

| EUT |  | Low Loss Cable |  | Spectrum Analyzer |
|-----|--|----------------|--|-------------------|
|-----|--|----------------|--|-------------------|

#### **4.4 Measurement Results**

| Modulation:        | GFSK         |            |               |
|--------------------|--------------|------------|---------------|
| RBW:               | 1MHz         | VBW:       | 3MHz          |
| Spectrum Detector: | РК           | Test By:   | Sance         |
| Temperature:       | <b>24</b> °C | Humidity:  | 50 %          |
| Test Result:       | PASS         | Test Date: | Sep. 25, 2019 |

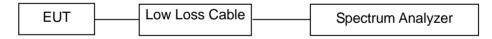
| Channel            | Test<br>Frequency<br>(MHz)       | Peak Output<br>Power<br>(dBm) | Peak Output<br>Power<br>(W) | Limit<br>(dBm/W) |  |  |  |  |  |
|--------------------|----------------------------------|-------------------------------|-----------------------------|------------------|--|--|--|--|--|
| Low                | 2402                             | -0.321                        | 0.0009                      | 30/1             |  |  |  |  |  |
| Middle             | 2440                             | -0.454                        | 0.0009                      | 30/1             |  |  |  |  |  |
| High               | 2480                             | -0.504                        | 0.0009                      | 30/1             |  |  |  |  |  |
| The signal of duty | The signal of duty cycle is ≥98% |                               |                             |                  |  |  |  |  |  |



### 5. 6DB BANDWIDTH

#### 5.1 Measurement Procedure

DTS 6dB Channel Bandwidth, FCC Rule 15.247(a)(2):


The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074(v03r05):

- 1. For 6dB bandwidth, Set the RBW = 100KHz.
- 2. Set the VBW  $\ge$  3 x RBW
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### 5.2 Limit

Systems using digital modulation techniques may operate in the 2400-2483.5MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

#### 5.3 Test SET-UP (Block Diagram of Configuration)



#### **5.4 Measurement Results**

| RBW:               | 100kHz      | VBW:       | 300kHz        |
|--------------------|-------------|------------|---------------|
| Spectrum Detector: | PK          | Test By:   | Sance         |
| Temperature:       | <b>24</b> ℃ | Humidity:  | 50 %          |
| Test Result:       | PASS        | Test Date: | Sep. 25, 2019 |

| Channel | Test Frequency<br>(MHz) | 6dB Bandwidth<br>(kHz) | Limit<br>(kHz) |
|---------|-------------------------|------------------------|----------------|
| Low     | 2402                    | 651.7                  | >500           |
| Middle  | 2440                    | 651.4                  | >500           |
| High    | 2480                    | 652.2                  | >500           |



#### Low Channel



#### Middle Channel





#### **High Channel**

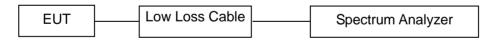




## 6. POWER SPECTRAL DENSITY

#### 6.1 Measurement Procedure

The power spectral density, FCC Rule 15.247(e):


The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC KDB558074 (v05):

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz≤RBW≤100KHz
- 4. Set the VBW  $\geq$  3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

#### 6.2 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

#### 6.3 Test SET-UP (Block Diagram of Configuration)



#### 6.4 Measurement Results

| Temperature: | <b>24</b> °C | Humidity:  | 50 %          |
|--------------|--------------|------------|---------------|
| Test By:     | Sance        | Test Date: | Sep. 25, 2019 |
| Test Result: | PASS         |            |               |

| Channel | Test Frequency<br>(MHz) | PSD<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) |
|---------|-------------------------|-------------------|---------------------|
| Low     | 2402                    | -16.534           | 8                   |
| Middle  | 2440                    | -16.352           | 8                   |
| High    | 2480                    | -16.179           | 8                   |



#### Low Channel

|                  | ectrum Analyzer - Swep  |               |                        | 1                       |              | 1                  |                          |           |                                        |             |                             |
|------------------|-------------------------|---------------|------------------------|-------------------------|--------------|--------------------|--------------------------|-----------|----------------------------------------|-------------|-----------------------------|
| Center F         | RF 50 Ω<br>req 2.402000 | AC<br>0000 GH | z                      |                         | NSE:INT SOUR | Avg Type           | ALIGN AUTO<br>e: Log-Pwr | TRAC      | 4 Sep 25, 2019<br>E <b>1 2 3 4 5 6</b> | F           | requency                    |
| 10 dB/div<br>Log | Ref 10.00 dl            | PN<br>IFC     | IO: Wide 😱<br>Sain:Low | Trig: Free<br>Atten: 20 |              | AvgHold            |                          | .402 00   | 0 0 GHz<br>34 dBm                      |             | Auto Tune                   |
| 0.00             |                         |               |                        |                         |              |                    |                          |           |                                        |             | Center Freq<br>02000000 GHz |
| -10.0            | w MM May                | MMmmM         | ppthon                 |                         | 1<br>\1/mAba | <b>ᡶ</b> ᠬᡥᢩᡘᡔᢂᡝᠺᡢ | Mirmyrn                  | man       |                                        | 2.4         | Start Fred<br>01511225 GHz  |
| -30.0 //**       |                         |               |                        |                         |              |                    |                          | т — 4 Ц ¥ | ᡅᠬᡃᢇᡘ                                  | 2.4         | Stop Fred<br>02488775 GHz   |
| -50.0            |                         |               |                        |                         |              |                    |                          |           |                                        | <u>Auto</u> | CF Step<br>97.755 kH<br>Mar |
| -70.0            |                         |               |                        |                         |              |                    |                          |           |                                        |             | Freq Offse<br>0 H           |
|                  |                         |               |                        |                         |              |                    |                          |           |                                        |             | Scale Type                  |
|                  | 4020000 GHz             |               |                        |                         |              |                    |                          | Span 9    | 977.6 kHz                              | Log         | Lir                         |
| #Res BW          | 3.0 KHz                 |               | #VBW                   | 10 kHz                  |              |                    |                          | 1         | 1001 pts)                              |             |                             |
| MSG              |                         |               |                        |                         |              |                    | STATUS                   |           |                                        |             |                             |

#### **Middle Channel**





#### **High Channel**

| Keysight Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |                         |            |                                               |                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------|------------|-----------------------------------------------|----------------------------------------|
| RF 50 Ω AC<br>Center Freq 2.480000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GHz                                         |                         | ALIGN AUTO | 05:16:50 PM Sep 25, 2019<br>TRACE 1 2 3 4 5 6 | Frequency                              |
| 10 dB/div <b>Ref 10.00 dBm</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PNO: Wide Trig: Fre<br>IFGain:Low Atten: 20 |                         | d:>100/100 | 479 999 0 GHz<br>-16.179 dBm                  | Auto Tune                              |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                         |            |                                               | Center Free<br>2.480000000 GH:         |
| -10.0<br>-20.0<br>-30.0 photomatic and a state of the state of |                                             | 1<br>Amananger Maranger | Monday     | MALADA                                        | Start Free<br>2.479510850 GH           |
| -30.0 <b>//<sup>1/2</sup>/////</b> //////////////////////////////                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |                         |            | - a k a h h h have J h                        | <b>Stop Free</b><br>2.480489150 GH:    |
| 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                         |            |                                               | CF Stej<br>97.830 kH<br><u>Auto</u> Ma |
| 70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                         |            |                                               | Freq Offse<br>0 H                      |
| Center 2.4800000 GHz<br>#Res BW 3.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | #VBW 10 kHz                                 |                         | Sweep -10  | Span 978.3 kHz<br>3.2 ms (1001 pts)           |                                        |
| ANG DIN ON THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                         | STATUS     |                                               |                                        |



## 7. BAND EDGE AND

#### 7.1 Measurement Procedure

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below.

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW  $\geq$  300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

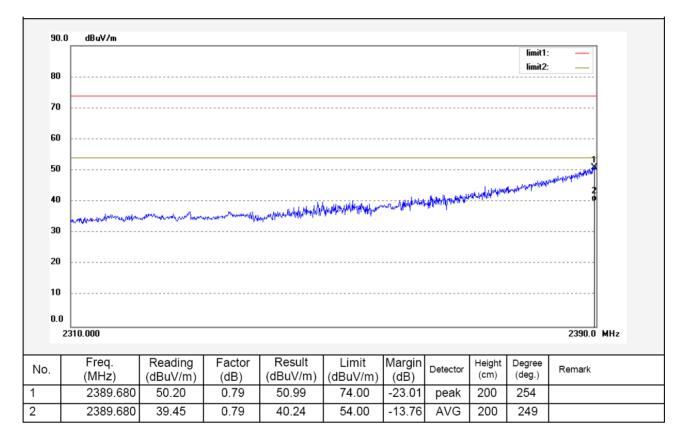
7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

#### MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

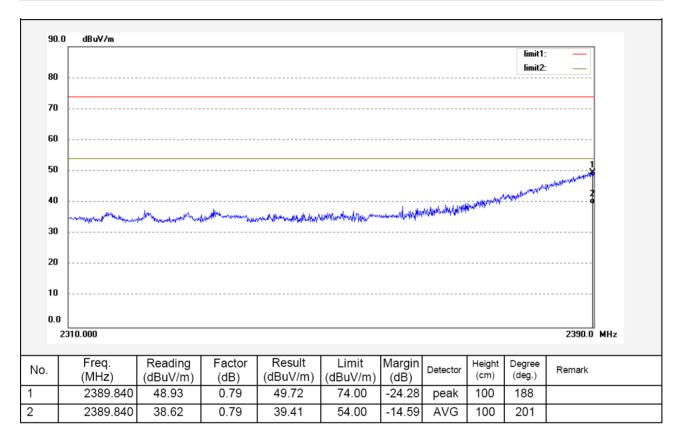
#### 7.2 Limit

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


#### 7.3 Measurement Results

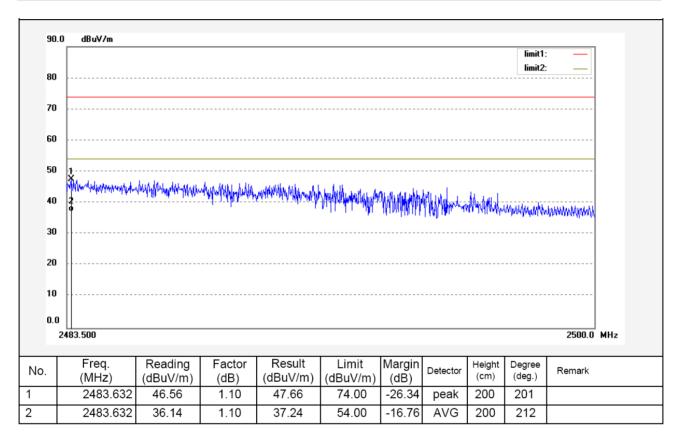
Please see below test table and plots.




#### For Radiated restricted band:

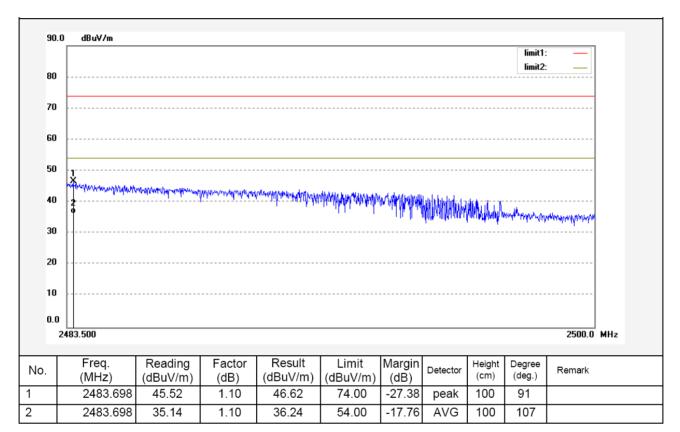
| Temperature:       | <b>25</b> ℃ | Humidity:          | 64 %               |
|--------------------|-------------|--------------------|--------------------|
| Test By:           | Sance       | Test Date:         | September 25, 2019 |
| Measured Distance: | 3m          | Test Result:       | PASS               |
| Test Mode:         | TX 2402MHz  | Ant. Polarization: | Horizontal         |






| Temperature:       | <b>25</b> ℃ | Humidity:          | 64 %               |
|--------------------|-------------|--------------------|--------------------|
| Test By:           | Sance       | Test Date:         | September 25, 2019 |
| Measured Distance: | 3m          | Test Result:       | PASS               |
| Test Mode:         | TX 2402MHz  | Ant. Polarization: | Vertical           |






| Temperature:       | <b>25</b> ℃ | Humidity:          | 64 %               |
|--------------------|-------------|--------------------|--------------------|
| Test By:           | Sance       | Test Date:         | September 25, 2019 |
| Measured Distance: | 3m          | Test Result:       | PASS               |
| Test Mode:         | TX 2480MHz  | Ant. Polarization: | Horizontal         |





| Temperature:       | <b>25</b> ℃        | Humidity:          | 64 %               |
|--------------------|--------------------|--------------------|--------------------|
| Test By:           | Sance              | Test Date:         | September 25, 2019 |
| Measured Distance: | 3m                 | Test Result:       | PASS               |
| Test Mode:         | TX 2480MHz (8DPSK) | Ant. Polarization: | Vertical           |



**Note:** (1) Result= Reading + Factor

- (2) Factor= Antenna Gain + Cable Loss Amplifier Gain
- (3) Horn antenna used for the emission over 1000MHz.



For RF Conducted restricted band:

Low Channel Keysight Spectrum Analyzer - Swept SA 05:18:25 PM Sep 25, 2019 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N AVG Type: Log-Pwr Avg|Hold:>100/100 Marker 2 2.399220000000 GHz PNO: Wide P IFGain:Low Marker Trig: Free Run Atten: 20 dB Select Marker Mkr2 2.399 22 GHz -53.816 dBm 2 Ref 10.00 dBm 10 dB/div Log  $\Diamond$ Normal Delta <mark>▲</mark>2 **Fixed** Center 2.400000 GHz #Res BW 100 kHz Span 10.00 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz Off FUNCTION FUNCTION WIDTH FUNCTION 2.402 24 GHz 2.399 22 GHz -1.397 dBm -53.816 dBm N 1 f **Properties**► More 1 of 2 STATUS

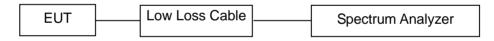
#### **High Channel**

| Keysight Spectrum Analyzer - Swept SA          |                                                     |                                        |                                                              |                               |
|------------------------------------------------|-----------------------------------------------------|----------------------------------------|--------------------------------------------------------------|-------------------------------|
| X RF 50 Ω AC<br>Display Line -21.02 dBm        | SENSE:INT SC                                        | AVG Type: Log-Pwr<br>Avg Hold:>100/100 | 05:19:04 PM Sep 25, 2019<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW | Display                       |
|                                                | PNO: Wide Trig: Free Run<br>IFGain:Low Atten: 20 dB | Avg Hold:>100/100                      | DET                                                          |                               |
| 10 dB/div Ref 10.00 dBm                        |                                                     | Mkrź                                   | 2 2.485 23 GHz<br>-54.752 dBm                                | Annotation                    |
| -10.0                                          |                                                     |                                        | -21.02 dBm                                                   | Title                         |
| -20.0                                          |                                                     |                                        |                                                              | Graticul                      |
| -50.0                                          |                                                     | 2                                      |                                                              | Display Lin<br>-21.02 dBr     |
| 80.0<br>Center 2.483500 GHz<br>#Res BW 100 kHz | #VBW 300 kHz                                        | Sween 1                                | Span 10.00 MHz<br>000 ms (1001 pts)                          | <u>n</u> 0                    |
| MKR MODE TRC SCL X                             |                                                     | JNCTION FUNCTION WIDTH                 | FUNCTION VALUE                                               |                               |
|                                                | 55 23 GHz -54.752 dBm                               |                                        | =                                                            | System<br>Display<br>Settings |
| 7                                              |                                                     |                                        |                                                              |                               |
| 11                                             |                                                     |                                        |                                                              |                               |



## 8. CONDUCTED SPURIOUS EMISSIONS

#### 8.1 Measurement Procedure


Out of Band Conducted Spurious Emissions, FCC Rule 15.247(d):

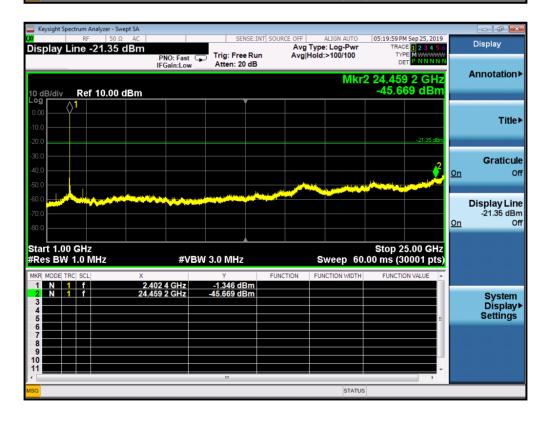
The transmitter output is connected to spectrum analyzer. All spurious emission and up tp the tenth harmonic was measured and they were found to be at least 20dB below the highest level of the desired power in the passband.

#### 8.2 Limit

In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### 8.3 Test SET-UP (Block Diagram of Configuration)

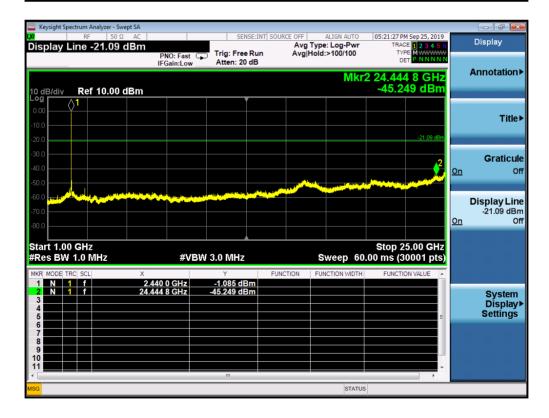



#### 8.4 Measurement Results

Please refer to following plots



| Low ( | Channel |
|-------|---------|
|-------|---------|


| Keysight Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                                                      |                          |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|--------------------------|---------------|
| Reysight Spectrum Analyzer - Swept SA<br>RF 50 Ω AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SENSE-TR                                                                   | IT SOURCE OFF ALIGN AUTO                             | 05:20:20 PM Sep 25, 2019 |               |
| arker 1 800.665000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            | Avg Type: Log-Pwr                                    | TRACE 1 2 3 4 5 6        | Peak Search   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PNO: Fast 😱 Trig: Free Rur                                                 | Avg Hold:>100/100                                    |                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IFGain:Low Atten: 20 dB                                                    |                                                      | DET                      | NextPea       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            | M                                                    | kr1 800.67 MHz           | NextPea       |
| 0 dB/div Ref 10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                                      | -43.906 dBm              |               |
| .og                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |                                                      |                          |               |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                      |                          | Next Dis Disc |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                      |                          | Next Pk Rig   |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                      | -21.35 dBm               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                      |                          |               |
| 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                      | 1                        |               |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                      | <u>.</u>                 | Next Pk Le    |
| 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                      |                          |               |
| 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |                                                      |                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                      |                          |               |
| 70.0 <b>The state of the state of</b> | n erste styl in der ett litere erstelning is anti-datikteter stranstelster | and a sport of the sublim and build in the dimension |                          | Marker Del    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | فيتقدما الالافتاقا فاختلافان الألافط التخاف وعنستان                        |                                                      |                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                      |                          |               |
| Start 0.0300 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |                                                      | Stop 1.0000 GHz          |               |
| Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #VBW 300 kHz                                                               | Sweep 94                                             | .00 ms (30001 pts)       | Mkr→C         |
| MKR MODE TRC SCL X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y                                                                          | FUNCTION FUNCTION WIDTH                              | FUNCTION VALUE           |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300.67 MHz -43.906 dBm                                                     |                                                      |                          |               |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                      |                          |               |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                      |                          | Mkr→RefL      |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                      | =                        |               |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                      |                          |               |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                      |                          | Мо            |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |                                                      |                          | 1 0           |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                                                      |                          | 10            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | III                                                                        |                                                      | Þ                        |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                      |                          |               |





#### **Middle Channel**

| Keysight Spectrum Analyzer - Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                  |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|--------------------|
| RF 50 Ω AC<br>arker 1 813.3073333333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MHz                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e: Log-Pwr            | 21:52 PM Sep 25, 2019<br>TRACE 1 2 3 4 5 6       | Peak Search        |
| 0 dB/div Ref 10.00 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PNO: Fast Trig: Free<br>IFGain:Low Atten: 20                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l:>100/100<br>Mkr1 -2 | 813.31 MHz<br>2.316 dBm                          | Next Peal          |
| 0.00<br>.00<br>.00<br>.00<br>.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -21.09 dBm                                       | Next Pk Righ       |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                  | Next Pk Lef        |
| 50.0<br>70.0<br>70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | na na 1949. Il laggine met da mara ten la companya part da glara ya<br>1940 - Angel Santa angel<br>1941 - Santa angel Santa a | t the poly over any angle poly over the poly and poly over the poly of the pol |                       |                                                  | Marker Delt        |
| tart 0.0300 GHz<br>Res BW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #VBW 300 kHz                                                                                                                                                                                                                                                                                          | FUNCTION FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | weep 94.00 n          | p 1.0000 GHz<br>ns (30001 pts)<br>FUNCTION VALUE | Mkr→C              |
| 1         N         1         f         8'           2         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - | 13.31 MHz -42.316 dB                                                                                                                                                                                                                                                                                  | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | Ξ                                                | Mkr→RefLv          |
| 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -                                                | <b>Mor</b><br>1 of |
| G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS                |                                                  |                    |

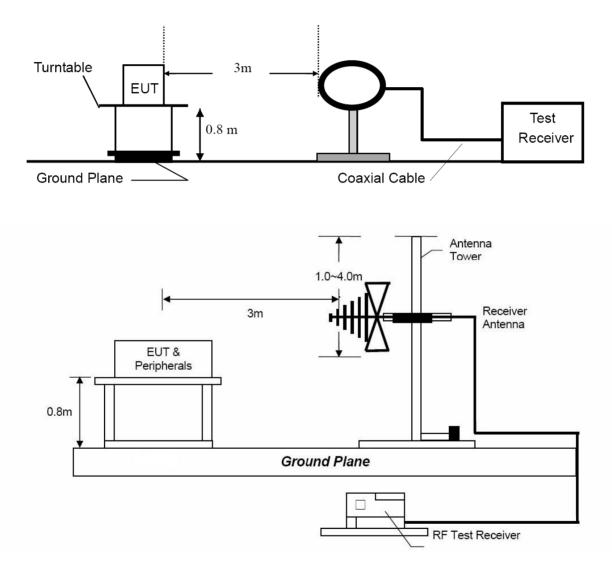




#### **High Channel**

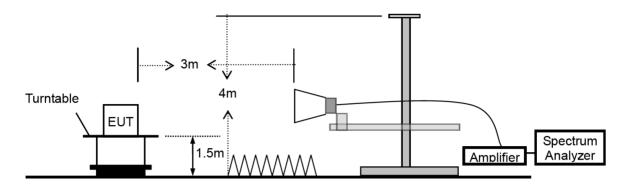
| Keysight Spectrum Analyzer - Swept SA |                                                                                                                                                                                                                                   |                                                                                                                 |                                          |                              |               |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------|---------------|
| Marker 1 826.91966666                 | 67 MHz                                                                                                                                                                                                                            | Avg Type                                                                                                        | : Log-Pwr TRA                            |                              | eak Search    |
| 10 dB/div Ref 10.00 dBr               | PNO: Fast Trig: Free<br>IFGain:Low Atten: 20                                                                                                                                                                                      |                                                                                                                 | Mkr1 826                                 | .92 MHz<br>30 dBm            | Next Peak     |
| -10.0                                 |                                                                                                                                                                                                                                   |                                                                                                                 |                                          | N                            | ext Pk Righ   |
| -30.0                                 |                                                                                                                                                                                                                                   |                                                                                                                 | 1                                        |                              | Next Pk Lef   |
| -60.0<br>-70.0<br>-80.0               | er per per meneret på å dyge skonset formal filtelski ben på det skonset formalet i ben på skonset skonset sko<br>Skonset skonset | e for first of the second s | an a | T na mana ang kang panang pa | Marker Delta  |
|                                       | #VBW 300 kHz                                                                                                                                                                                                                      | FUNCTION FUN                                                                                                    | weep 94.00 ms (                          | 0000 GHz<br>30001 pts)       | Mkr→CF        |
| 1 N 1 f<br>2 3<br>3 4<br>5 5<br>6     | 826.92 MHz -42.730 dB                                                                                                                                                                                                             |                                                                                                                 |                                          |                              | Mkr→RefLv     |
| 7<br>8<br>9<br>10<br>11               |                                                                                                                                                                                                                                   |                                                                                                                 |                                          |                              | Mor<br>1 of 2 |
| MSG                                   |                                                                                                                                                                                                                                   |                                                                                                                 | STATUS                                   |                              |               |




Note: Sweep points=30001pts



## 9. RADIATED SPURIOUS EMISSIONS


#### 9.1 Test SET-UP (Block Diagram of Configuration)

9.1.1 Radiated Emission Test Set-Up, Frequency below 30MHz





9.1.2 Radiated Emission Test Set-Up, Frequency above 1GHz



#### 9.2 Measurement Procedure

- a. Blow 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:
- The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.



During the radiated emission test, the spectrum analyzer was set with the following configurations:

| Frequency Band<br>(MHz) | Level   | Resolution Bandwidth | Video Bandwidth |
|-------------------------|---------|----------------------|-----------------|
| 30 to 1000              | QP      | 120 kHz              | 300 kHz         |
| Above 1000              | Peak    | 1 MHz                | 3 MHz           |
|                         | Average | 1 MHz                | 10 Hz           |

#### 9.3 Limit

| Frequency range | Distance Meters | Field Strengths Limit (15.209) |
|-----------------|-----------------|--------------------------------|
| MHz             |                 | μV/m                           |
| 0.009 ~ 0.490   | 300             | 2400/F(kHz)                    |
| 0.490 ~ 1.705   | 30              | 24000/F(kHz)                   |
| 1.705 ~ 30      | 30              | 30                             |
| 30 ~ 88         | 3               | 100                            |
| 88 ~ 216        | 3               | 150                            |
| 216 ~ 960       | 3               | 200                            |
| Above 960       | 3               | 500                            |

Remark : (1) Emission level (dB) $\mu$ V = 20 log Emission level  $\mu$ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.
- (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.

#### 9.4 Measurement Results

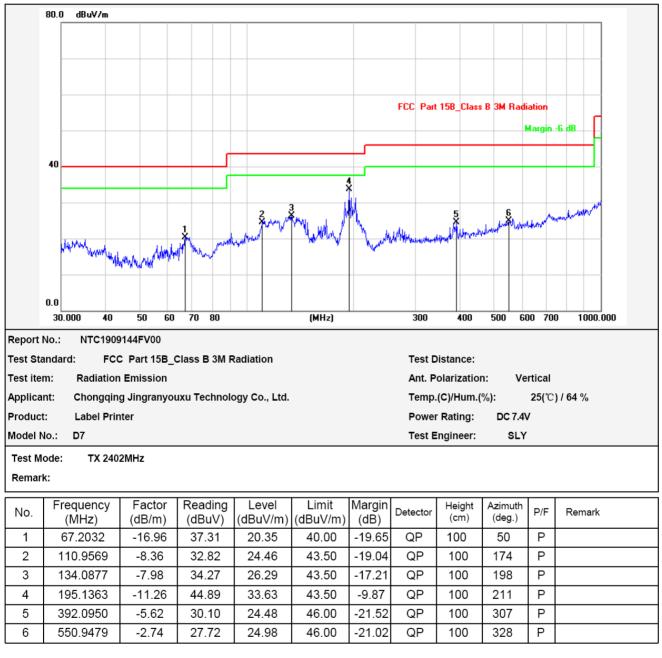
Please refer to following plots of the worst case: Low channel.

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit. Therefore, 9kHz-30MHz data were not recorded.

80.0

dBu¥/m




Test Time: 2019/9/18 20:42:36



| No. | Frequency<br>(MHz) | Factor<br>(dB/m) | Reading<br>(dBuV) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | Height<br>(cm) | Azimuth<br>(deg.) | P/F | Remark |
|-----|--------------------|------------------|-------------------|-------------------|-------------------|----------------|----------|----------------|-------------------|-----|--------|
| 1   | 34.5172            | -7.22            | 27.26             | 20.04             | 40.00             | -19.96         | QP       | 200            | 277               | Ρ   |        |
| 2   | 110.9569           | -8.36            | 32.79             | 24.43             | 43.50             | -19.07         | QP       | 200            | 56                | Ρ   |        |
| 3   | 133.1510           | -7.94            | 36.72             | 28.78             | 43.50             | -14.72         | QP       | 200            | 131               | Ρ   |        |
| 4   | 203.5226           | -11.21           | 35.77             | 24.56             | 43.50             | -18.94         | QP       | 200            | 124               | Ρ   |        |
| 5   | 260.1444           | -7.32            | 31.91             | 24.59             | 46.00             | -21.41         | QP       | 200            | 266               | Ρ   |        |
| 6   | 827.4932           | 1.17             | 28.70             | 29.87             | 46.00             | -16.13         | QP       | 200            | 301               | Ρ   |        |



Test Time: 2019/9/18 20:40:47





| Modulation:        | GFSK    |               |                    |
|--------------------|---------|---------------|--------------------|
| Frequency Range:   | 1-25GHz | Test Date:    | September 26, 2019 |
| Test Result:       | PASS    | Temperature:  | <b>25</b> °C       |
| Measured Distance: | 3m      | Humidity:     | 64 %               |
| Test By:           | Sance   | Test Results: | PASS               |

| Freq.<br>(MHz) | Ant.Pol.<br>(H/V)              | Reading<br>Level(dBuV) |       | Factor<br>(dB/m) | Emission Level<br>(dBuV) |       | Limit 3m<br>(dBuV/m) |       | Margin<br>(dB) |        |
|----------------|--------------------------------|------------------------|-------|------------------|--------------------------|-------|----------------------|-------|----------------|--------|
|                |                                | PK                     | AV    | (ub/iii)         | PK                       | AV    | PK                   | AV    | PK             | AV     |
|                | Operation Mode: TX Mode (Low)  |                        |       |                  |                          |       |                      |       |                |        |
| 4804           | Н                              | 47.31                  | 33.91 | 4.07             | 51.38                    | 37.98 | 74.00                | 54.00 | -22.62         | -16.02 |
| 7206           | Н                              | 46.12                  | 33.37 | 10.27            | 56.39                    | 43.64 | 74.00                | 54.00 | -17.61         | -10.36 |
|                |                                |                        |       |                  |                          |       |                      |       |                |        |
| 4804           | V                              | 47.87                  | 35.10 | 4.07             | 51.94                    | 39.17 | 74.00                | 54.00 | -22.06         | -14.83 |
| 7206           | V                              | 45.71                  | 30.54 | 10.27            | 55.98                    | 40.81 | 74.00                | 54.00 | -18.02         | -13.19 |
|                |                                |                        |       |                  |                          |       |                      |       |                |        |
|                | Operation Mode: TX Mode (Mid)  |                        |       |                  |                          |       |                      |       |                |        |
| 4880           | Н                              | 47.69                  | 33.96 | 4.56             | 52.25                    | 38.52 | 74.00                | 54.00 | -21.75         | -15.48 |
| 7320           | Н                              | 46.08                  | 31.06 | 10.05            | 56.13                    | 41.11 | 74.00                | 54.00 | -17.87         | -12.89 |
|                |                                |                        |       |                  |                          |       |                      |       |                |        |
| 4880           | V                              | 47.57                  | 33.19 | 4.56             | 52.13                    | 37.75 | 74.00                | 54.00 | -21.87         | -16.25 |
| 7320           | V                              | 46.95                  | 31.13 | 10.05            | 57.00                    | 41.18 | 74.00                | 54.00 | -17.00         | -12.82 |
|                |                                |                        |       |                  |                          |       |                      |       |                |        |
|                | Operation Mode: TX Mode (High) |                        |       |                  |                          |       |                      |       |                |        |
| 4960           | Н                              | 46.75                  | 33.80 | 5.05             | 51.80                    | 38.85 | 74.00                | 54.00 | -22.20         | -15.15 |
| 7440           | Н                              | 46.35                  | 31.31 | 9.76             | 56.11                    | 41.07 | 74.00                | 54.00 | -17.89         | -12.93 |
|                |                                |                        |       |                  |                          |       |                      |       |                |        |
| 4960           | V                              | 47.33                  | 34.93 | 5.05             | 52.38                    | 39.98 | 74.00                | 54.00 | -21.62         | -14.02 |
| 7440           | V                              | 46.81                  | 31.33 | 9.76             | 56.57                    | 41.09 | 74.00                | 54.00 | -17.43         | -12.91 |
|                |                                |                        |       |                  |                          |       |                      |       |                |        |

#### Other harmonics emissions are lower than 10dB below the allowable limit.

- **Note:** (1) All Readings are Peak Value and AV.
  - (2) Emission Level= Reading Level + Factor
  - (3) Factor= Antenna Gain + Cable Loss Amplifier Gain
  - (4) Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits.
  - (5) Measurement uncertainty: ±3.7dB.
  - (6) Horn antenna used for the emission over 1000MHz.



## **10. ANTENNA APPLICATION**

#### 10.1 Antenna requirement

According to of FCC part 15C section 15.203 and 15.240:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

#### **10.2 Measurement Results**

The antenna is PCB on-board antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 2dBi, So, the antenna is consider meet the requirement.



## **11. TEST EQUIPMENT LIST**

| Description                          | Manufacturer    | Model Number | Serial<br>Number  | Characteristics  | Calibration<br>Date | Calibration<br>Due Date |
|--------------------------------------|-----------------|--------------|-------------------|------------------|---------------------|-------------------------|
| Test Receiver                        | Rohde & Schwarz | ESCI7        | 100837            | 9KHz~7GHz        | Mar. 14, 2019       | 1 year                  |
| Antenna                              | Schwarzbeck     | VULB9162     | 9162-010          | 30MHz~7GHz       | Mar. 23, 2019       | 1 year                  |
| Spectrum<br>Analyzer                 | Rohde & Schwarz | FSU26        | 200409/026        | 20Hz~26.5GHz     | Mar. 14, 2019       | 1 year                  |
| Spectrum<br>Analyzer                 | Keysight        | N9020A       | MY54200831        | 20Hz~26.5GHz     | Apr. 24, 2019       | 1 year                  |
| Spectrum<br>Analyzer                 | Rohde & Schwarz | FSV40        | 101003            | 10Hz~40GHz       | Apr. 24, 2019       | 1 year                  |
| Horn Antenna                         | Schwarzbeck     | BBHA9170     | 9170-372          | 15GHz~40GHz      | Mar. 23, 2019       | 1 year                  |
| Pre-Amplifier                        | EMCI            | EMC 184045   | 980102            | 18GHz~40GHz      | Apr. 24, 2019       | 1 year                  |
| Power Sensor                         | DARE            | RPR3006W     | 15I00041SN<br>O64 | 100MHz~6GHz      | Mar. 14, 2019       | 1 year                  |
| Communication<br>Tester              | Rohde & Schwarz | CMW500       | 149004            | 70MHz~6GHz       | Mar. 14, 2019       | 1 year                  |
| Horn Antenna                         | COM-Power       | AH-118       | 071078            | 500MHz~18GHz     | Mar. 23, 2019       | 1 year                  |
| Pre-Amplifier                        | HP              | HP 8449B     | 3008A00964        | 1GHz~26.5GHz     | Mar. 14, 2019       | 1 year                  |
| Pre-Amplifier                        | HP              | HP 8447D     | 1145A00203        | 100KHz~1.3GHz    | Mar. 14, 2019       | 1 year                  |
| Loop Antenna                         | Schwarzbeck     | FMZB 1513    | 1513-272          | 9KHz~30MHz       | Apr. 24, 2019       | 1 year                  |
| Temperature &<br>Humidity<br>Chamber | REMAFEE         | SYHR225L     | N/A               | <b>-40~150</b> ℃ | Apr. 24, 2019       | 1 year                  |
| DC Source                            | MY              | MY8811       | N/A               | 0~30V            | N/A                 | N/A                     |
| Temporary<br>antenna<br>connector    | TESCOM          | SS402        | N/A               | 9KHz~25GHz       | N/A                 | N/A                     |
| Power Meter                          | Anritsu         | ML2495A      | 1139001           | 100k-65GHz       | Apr. 24, 2019       | 1 year                  |
| Power Sensor                         | Anritsu         | MA2411B      | 100345            | 300M-40GHz       | Apr. 24, 2019       | 1 year                  |
| Test Software                        | EZ              | EZ_EMC       | N/A               | N/A              | N/A                 | N/A                     |

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.