

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC168696 1 of 32 Page:

FCC Radio Test Report FCC ID: 2AUL7-02419

Report No. TB-FCC168696

LALIZAS ITALIA SRL **Applicant**

Equipment Under Test (EUT)

Radio Control Chain counter GALAXY 703/THETIS 7003 **EUT Name**

Model No. 02419 pcb for Radio Control Chain counter

Serial Model No. N/A

Brand Name Lofrans'

Receipt Date 2019-09-02

Test Date 2019-09-02 to 2019-09-29

Issue Date 2019-09-30

Standards FCC Part 15, Subpart C (15.231(a))

Test Method : ANSI C63.10:2013

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

Garen

The EUT technically complies with the FCC requirements

Galen **Test/Witness Engineer**

LVAN SU Lugli. **Engineer Supervisor** Ivan Su

Engineer Manager Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page: 2 of 32

Contents

COI	NIENIS	<u>2</u>
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	10
	4.1 Test Standard and Limit	11
	4.2 Test Setup	11
	4.3 Test Procedure	12
	4.4 Test Data	
5.	RADIATED EMISSION TEST	13
	5.1 Test Standard and Limit	13
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data	
6.	BANDWIDTH	
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	RELEASE TIME MEASUREMENT	18
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.6 Test Data	
8.	DUTY CYCLE	
1	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 EUT Operating Condition	

Page: 3 of 32

	8.6 Test Data	19
9.	ANTENNA REQUIREMENT	20
	9.1 Standard Requirement	20
	9.2 Antenna Connected Construction	
AT	FACHMENT A RADIATED EMISSION TEST DATA	21
AT1	FACHMENT BBANDWIDTH DATA	28
AT1	FACHMENT C RELEASE TIME MEASUREMENT DATA	29
	FACHMENT DDUTY CYCLE DATA	

Page: 4 of 32

Revision History

Report No.	Version	Description	Issued Date
TB-FCC168696	Rev.01	Initial issue of report	2019-09-30
(LOD)			MODE
THE PARTY OF THE P			NORTH
	3	TODA TODA	3 600
(1033	TOP:		6033
TO TO THE			TO TUDE
	Will Sales		
W C	TEN .	TODAY THE	53
anna i			
	100		

Page: 5 of 32

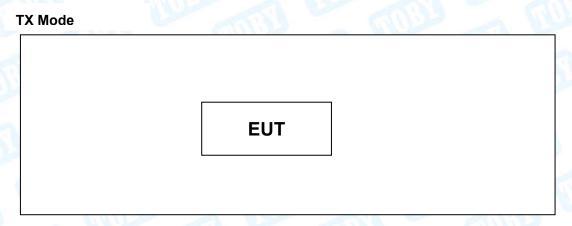
1. General Information about EUT

1.1 Client Information

Applicant	1	LALIZAS ITALIA SRL
Address	:	Via Fontanelle 22, Busalla, 16012, Italy
Manufacturer		LALIZAS Hellas
Address		3 Gounari 18531 Piraeus, Greece

1.2 General Description of EUT (Equipment Under Test)

EUT Name	1	Radio Control Chain counter GALAXY 703/THETIS 7003			
Models No.	:	02419 pcb for Radio Co	02419 pcb for Radio Control Chain counter		
Model Difference	:	N/A			
		Operation Frequency:	433.29 MHz		
Product Description		Out Power:	80.00dBuV/m (PK Max.) 68.79dBuV/m (AV Max.)		
		Antenna Gain:	Wire Antenna(0dBi)		
		Modulation Type:	ASK		
Power Rating		DC 3.7V by 500mAh Re	echargeable Li-ion Battery.		
Software Version	1	N/A			
Hardware Version	:	N/A			
Connecting I/O Port(S)):	Please refer to the Use	lease refer to the User's Manual		


Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 32

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

	Equipment Information			
Name	Model	FCC ID/VOC	Manufacturer	Used "√"
Adapter	HW-050100C1W	3 (1)	HUAWEI	√

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Items	Note
Conducted Emission	Charging + Continuously transmitting
Radiated Emission	Continuously transmitting
Bandwidth	Continuously transmitting
Duty Cycle	Continuously transmitting
Release Time	Normal Mode

Note:

- (1) During the testing procedure, the continuously transmitting mode was programmed by the customer.
- (2) The EUT is considered a portable unit, and it was pre-tested on the positioned of each 3 axis: X axis, Y axis and Z axis. The worst case was found positioned on Z-plane. There for only the test data of this Z-plane were used for radiated emission measurement test.

Page: 7 of 32

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of transmitting mode.

RF Power Setting in Test SW:	DEF
------------------------------	-----

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 32

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 32

2. Test Summary

FCC Part 15 Subpart (15.231(a))			
Standard Section	-		
FCC	Test Item	Judgment	Remark
15.203	Antenna Requirement	PASS	N/A
15.207	Conducted Emission	PASS	N/A
15.209&15.231	Radiation Emission	PASS	N/A
WOTT .	Release Time	PASS	N/A
15.231	20 dB Bandwidth	PASS	N/A
	Duty Cycle	PASS	N/A

Page: 10 of 32

3. Test Equipment

Conducted Emissi					Cal. Due
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 13, 2019	Jul. 12, 2020
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 13, 2019	Jul. 12, 2020
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 13, 2019	Jul. 12, 2020
LISN	Rohde & Schwarz	ENV216	101131	Jul. 13, 2019	Jul. 12, 2020
Radiation Emissio	n Test			-	
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 13, 2019	Jul. 12, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jan. 27, 2019	Jan. 26, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 13, 2019	Jul. 12, 2020
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 13, 2019	Sep. 12, 2020
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 13, 2019	Sep. 12, 2020
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 13, 2019	Sep. 12, 2020
333	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 13, 2019	Sep. 12, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 13, 2019	Sep. 12, 2020
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 13, 2019	Sep. 12, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 13, 2019	Sep. 12, 2020

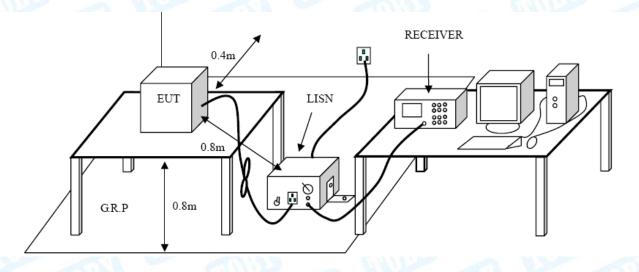
Page: 11 of 32

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

Eregueney	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

Page: 12 of 32

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

The EUT must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 Test Data

Please refer to the Attachment A.

Page: 13 of 32

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC 15.209&FCC 15.231

5.1.2 Test Limit

According to FCC 15.231(a) requirement:

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m	Field Strength of Spurious Emissions (microvolt/meter) at 3m		
40.66~40.70	2250	225		
70~130	1250	125		
130~174	1250 to 3750(**)	125 to 375(**)		
174~260	3750	375		
260~470	3750 to 12500(**)	375 to 1250(**)		
Above 470	12500	1250		

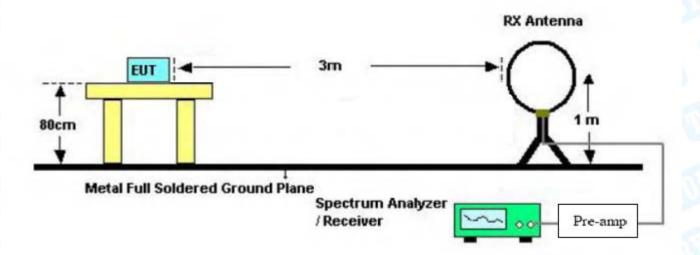
^{**} Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1) for the band 130~174 MHz, uV/m at 3 meters= 56.81818(F)-6136.3636;
- (2) for the band 260~470 MHz, uV/m at 3 meter= 41.6667(F)-7083.3333.
- (3) The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in FCC Part15.209.

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Page: 14 of 32

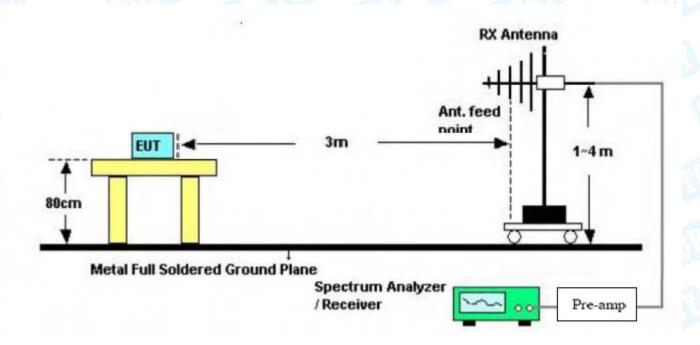
Note:

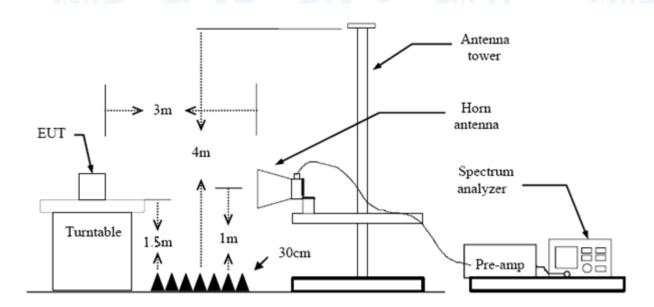

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

So the field strength of emission limits have been calculated in below table.

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m
433.29 MHz	80.8 (Average)
433.29 MHz	100.8 (Peak)


5.2 Test Setup


Below 30MHz Test Setup

Page: 15 of 32

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by

Page: 16 of 32

3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

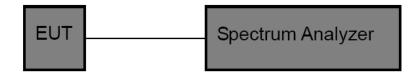
5.5 Test Data

Please refer to the Attachment B.

Page: 17 of 32

6. Bandwidth

6.1 Test Standard and Limit


6.1.1 Test Standard FCC 15.231

6.1.2 Test Limit

The 99%bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calculated in below table.

Fundamental Frequency	20 dB Bandwidth Limits (MHz)				
433.29 MHz	1.0832				

6.2 Test Setup

6.3 Test Procedure

- (1) Set Spectrum Analyzer Center Frequency= Fundamental Frequency, RBW=10 kHz, VBW= 30 kHz, Span= 500KHz.
- (2) Measured the spectrum width with power higher than 20 dB below carrier.

6.4 EUT Operating Condition

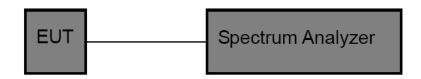
The Equipment Under Test was Programmed to be in continuously transmitting mode.

6.5 Test Data

Please refer to the Attachment C.

Page: 18 of 32

7. Release Time Measurement


7.1 Test Standard and Limit

7.1.1 Test Standard FCC 15.231

7.1.2 Test Limit

According to FCC 15.231a, A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

7.2 Test Setup

7.3 Test Procedure

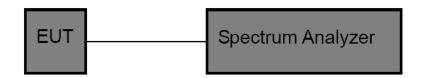
- (1) Setup the EUT as show in the block diagram above.
- (2) Set Spectrum Analyzer Centre Frequency= Fundamental Frequency, RBW=100 kHz, VBW= 300 kHz, Span= 0 Hz. Sweep Time= 5 Seconds.
- (3) Setup the EUT as normal operation and press Transmitter button.
- (4) Set Spectrum Analyzer View, Delta Mark time.

7.4 EUT Operating Condition

The EUT was set to work in transmitting mode.

7.6 Test Data

Please refer to the Attachment D.


Page: 19 of 32

8. Duty Cycle

8.1 Test Standard and Limit

5.1.1 Test Standard FCC 15.231

8.2 Test Setup

8.3 Test Procedure

- (1) Set EUT operating in continuous transmitting mode.
- (2) Set the Spectrum Analyzer to the transmitter carrier frequency, and set the spectrum analyzer resolution bandwidth (RBW) to 10 kHz and video bandwidth (VBW) to 10 kHz, Span was set to 0 Hz.
- (3) The Duty Cycle was measured and recorded.

8.4 EUT Operating Condition

The EUT was programmed to be in transmitting mode.

8.6 Test Data

Please refer to the Attachment E.

Page: 20 of 32

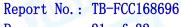
9. Antenna Requirement

9.1 Standard Requirement

9.1.1 Standard FCC Part 15.203

9.1.2 Requirement

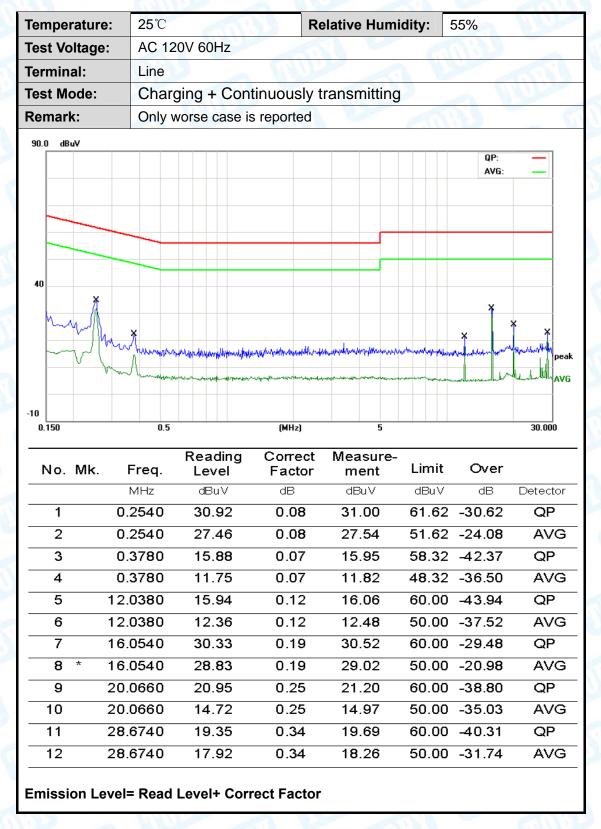
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

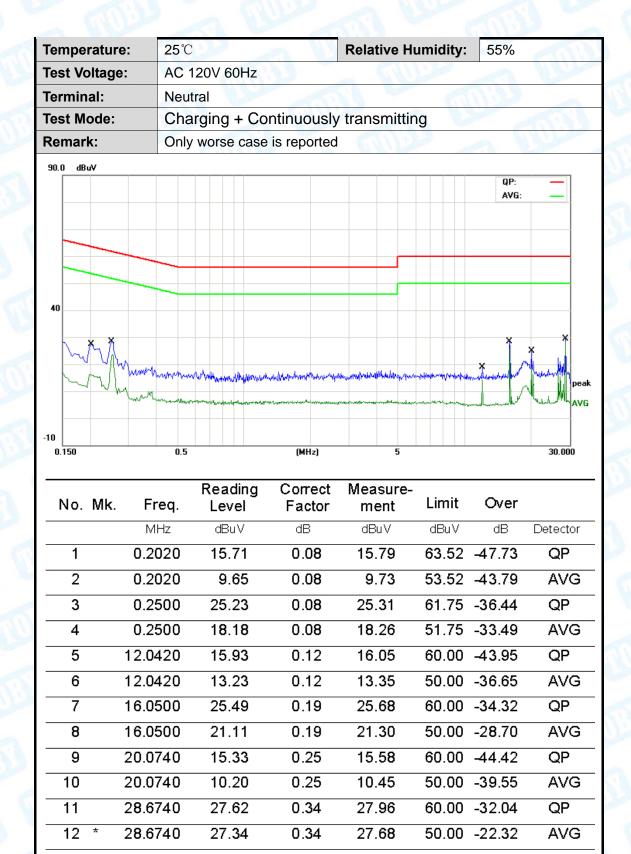

9.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 0dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

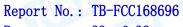
Result

The EUT antenna is a Wire Antenna. It complies with the standard requirement.


Antenna Type					
UER	▼ Permanent attached antenna				
D m	□ Unique connector antenna				
	☐ Professional installation antenna				


Page: 21 of 32

Attachment A-- Conducted Emission Test Data



Page: 22 of 32

Emission Level= Read Level+ Correct Factor

Page: 23 of 32

Attachment B-- Radiated Emission Test Data

9 KHz to 30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz-1GHz

•	rature	:	25 °	C		GHULL	Relati	ive Hum	idity:	559	%
est Vo	oltage:		DC 3.7V								
Ant. Po	ol.		Hori	zonta			C.		0		5
Test M	ode:		Cor	ntinuc	ously tr	ansmitting	3	Miles		4	1 6
Remar	k:				for the d limit.	emission w	hich more tha	an 10 dE	below	the	
80.0 dB	uV/m										
								(RF)FCC	15C 3M Ra	diation	
									Ma	rgin -6 (dB [
30			+++	₩							
						5	6 X		manyon	mm	
win,	money				2 8	* * * * * * * * * * * * * * * * * * *	Musmum	and the second second			
	Market V	Mary Mark	walker.	mulm	mm	My My Mary MIT	di Mara				
20											
30.000	40	50	60 70	0 80		(MHz)	300	400	500 600	700	1000.00
	NAL-			₽△	adina	Correct	Mageura				
No.	IVIK.	Fre	eq.		ading evel	Correct Factor	Measure- ment	Limit	Ov	er	
No.	IVIK.	Fre		Le	ading evel ⊞u∀	Factor	Measure- ment	Limit dBuV/n		er B	Detect
		MH	łz	Le d	evel BuV	Factor dB/m	ment dBuV/m	dBuV/n	n d	В	
1		M⊦ 31.7	⊣z 313	33	evel BuV 3.48	Factor dB/m -14.31	ment dBuV/m 19.17	dBuV/r	n d	в 0. 83	QF
1 2		M⊦ 31.7: 112.1	313 305	33 34	BuV 3.48 4.33	Hactor dB/m -14.31 -22.41	ment dBuV/m 19.17 11.92	40.00 43.50	n d) -20) -31	B 0.83 1.58	QF QF
1		M⊦ 31.7	313 305	33 34	evel BuV 3.48	Factor dB/m -14.31	ment dBuV/m 19.17	dBuV/r	n d) -20) -31	в 0. 83	QF
1 2		M⊦ 31.7: 112.1	313 305 3348	33 34 38	BuV 3.48 4.33	Hactor dB/m -14.31 -22.41	ment dBuV/m 19.17 11.92	40.00 43.50	n d) -20) -31) -25	B 0.83 1.58	QF QF
1 2 3		M⊦ 31.73 112.1 144.3	313 305 3348 3456	33 34 33	BuV 3.48 4.33 9.82	Factor dB/m -14.31 -22.41 -22.03	ment dBuV/m 19.17 11.92 17.79	40.00 43.50 43.50	n d) -20) -31) -25) -25	D.83 1.58 5.71	QF QF

Page: 24 of 32

Tempera	ature:	25 ℃		TI	Relati	ve Humidity:	55%			
Test Vol	tage:	DC 3	3.7V	A V		133				
Ant. Pol	l.	Vertic	cal		Ja Milli		10			
Test Mo	de:	Cont	tinuously t	ransmitting	9	CHUT		1		
Remark	:		No report for the emission which more than 10 dB below the prescribed limit.							
80.0 dBu\	//m							_		
30 1 1 ×	2 X 40 50	60 70	3 ***	5 4 X X X X X X X X X X X X X X X X X X	300	(RF)FCC 15C 3M R	argin -6 dB	0.000		
No. I		eq.	Reading Level	Correct Factor	Measure- ment		ver			
	MH	Hz	dBuV	dB/m	dBuV/m	dBuV/m (dB Det	tect		
1 *	32.4	059	38.68	-14.81	23.87	40.00 -1	6.13	QP		
2	47.9	940	40.36	-22.57	17.79	40.00 -2	2.21	QΡ		
	1101	205	39.08	-22.41	16.67	43.50 -2	6.83	QP		
3	114.1	305								
3	160.3		41.23	-20.86	20.37	43.50 -2	3.13	QΡ		
		3456		-20.86 -19.97	20.37 25.51			QP QP		

Page: 25 of 32

Fundamental and Harmonics emissions

Below 1G

Temperature:		25	5 °C		Relative I	Humidity:	55%	The same of	
Test Voltage:		D	OC 3.7V						
Test Mode:		T	(Mode	The same		1 00	600		
Freq.	Ant.Po	ol	Emission Level (dBuV/m)			it 3m ıV/m)	Margin(dB)		
(MHz)	H/V		PK	AV	PK	AV	PK	AV	
433.2900	Ι		77.86	60.17	100.8	80.8	-22.94	-13.75	
866.5600	Η		44.31	26.62	80.8	60.8	-36.49	-27.3	
433.2900	V		78.47	60.78	100.8	80.8	-22.33	-13.14	
866.5600	V		42.04	24.35	80.8	60.8	-38.76	-29.57	
Average Valu	ue=Peak	(Va	alue-10.81						
Margin=Emi	ssion Le	eve	l-Limit						

Note:

- (1) All Readings are Peak Value.
- (2) Emission Level= Reading Level+ Probe Factor +Cable Loss
- (3) The QP measurement was not performed when the peak measured data under the limit of QP detection.

Page: 26 of 32

Above 1G

channel: 43	3.29N	1Hz								
Temperatur					Relative Humidity: 55%					
Test Voltage	e:	DC 3.7V								
Frequency	Ant. Pol.	Peak	AV reading	Correction	Peak	n Level AV	Peak limit	AV limit	Peak	AV
(MHz)	H/V	reading	(dBuV)	Factor	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Margin	Margin
,	1 1/ 🗸	(dBµV)		(dB/m)			, ,	, ,	(dB)	(dB)
1299.87	Н	37.14	26.33	11.37	48.51	37.7	74	54	-25.49	-16.30
1733.16	Η	35.60	24.79	14.55	50.15	39.34	74	54	-23.85	-14.66
V	Н	1		11/2-3		Ultra.		A Trans		
- GH	1112				1300	Contract of the last			CAL	
1299.87	V	36.29	25.48	11.37	47.66	36.85	74	54	-26.34	-17.15
1733.16	V	35.01	24.2	14.55	49.56	38.75	74	54	-24.44	-15.25
	V		(2 <u>17</u> /7)		2////			6	10-10)

Emission Level= Read Level+ Correct Factor

Average Value=Peak Value-10.81

Remark: No report for the emission which more than 30 dB below the prescribed limit.

Page: 27 of 32

Note:

(1) All Readings are Peak Value and AV. And AV is calculated by the following: Testing frequency range below 1GHz the measuring instrument use RBW=100 KHz and VBW=300 KHz with Quasi-peak detection.

Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values.

Average Values=Peak Values+20log (Duty Cycle)

- (2) Emission Level= Reading Level + Probe Factor +Cable Loss
- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

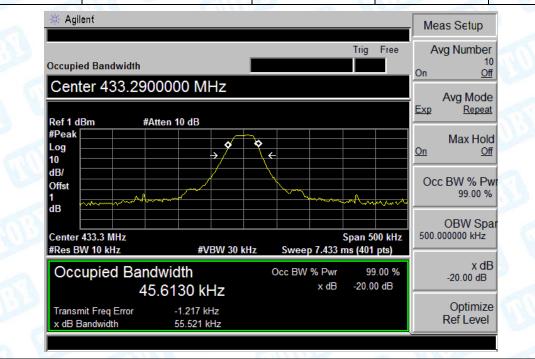
Pulse Desensitization Correction Factor

Note:

(1)The Smallest Pulse Width (PW)=0.5ms

(2) 2/PW=2/0.5(ms)= 4kHz<100 kHz

Because 2/PW<RBW, so the PDCF is not needed.



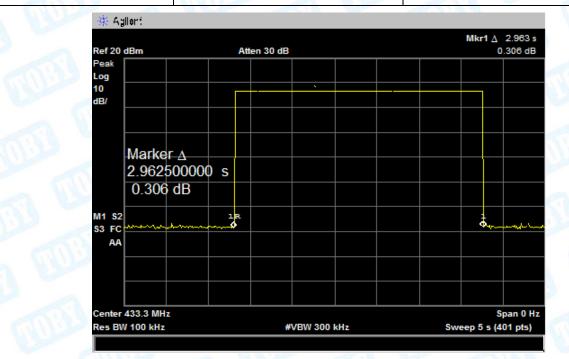
Page: 28 of 32

Attachment C--Bandwidth Data

Temperature	:	25 ℃
Relative Humidity	ż	65 %
Pressure		1010 hPa
Test Power		DC 3.7V

Frequency (MHz)	20 dBc Bandwidth (kHz)	99% OBW (kHz)	Limit (kHz)	Result	
433.29	55.521	45.6130	1083.225	PASS	

Note: Limit=0.25%* center frequency=0.25%*433.29MHz=1.083225MHz



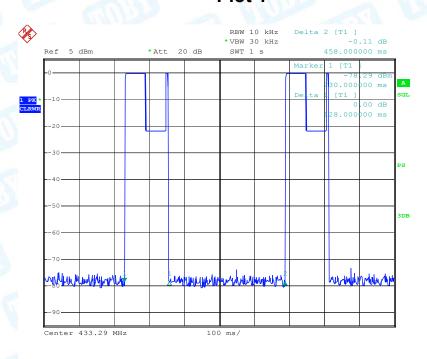
Attachment D-- Release Time Measurement Data

Temperature	:	25 ℃
Relative Humidity	ä	65 %
Pressure	1:1	1010 hPa
Test Power		DC 3.7V
CHINE STREET		

Release Time(s)	Limit (s)	Result
2.963	5	PASS

Page: 30 of 32

Attachment E--Duty Cycle Data

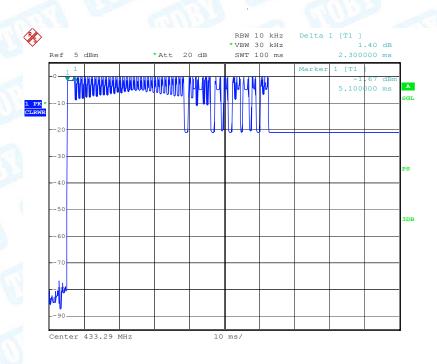

Please refer the following pages:

Duty Cycle=ON/Total=(2.3+0.5*35+1.5*3+0.9*5)ms/100ms=28.8%

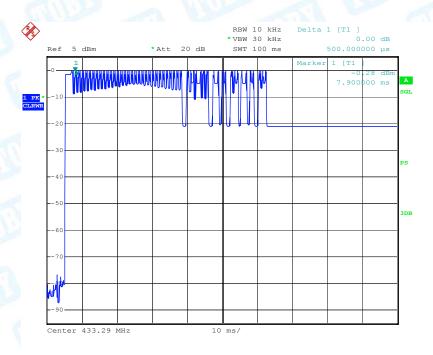
20 log(Duty Cycle)=-10.81

Average=Peak Value+ 20log(Duty Cycle), AV=PK-10.81

Plot 1



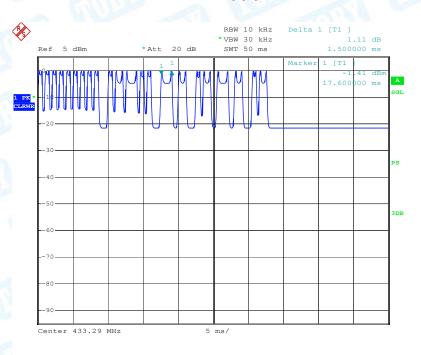
Date: 26.DEC.2019 14:54:08


Page: 31 of 32

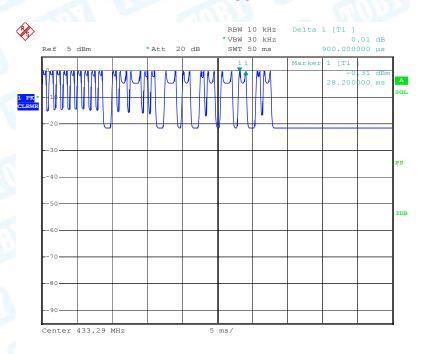
Plot 2

Date: 26.DEC.2019 15:08:09

Plot 3



Date: 26.DEC.2019 15:08:57


Page: 32 of 32

Plot 3

Date: 26.DEC.2019 15:16:20

Plot 4

Date: 26.DEC.2019 15:16:48

----END OF REPORT----