

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TEST REPORT				
Report No. ·····:	CTC20232165E04			
FCC ID······:	2AUKMMTMAXPLUS			
Applicant·····:	Matco Tools			
Address······	4403 Allen Rd. Stow, OH 44224, USA			
Manufacturer:	Matco Tools			
Address······	4403 Allen Rd. Stow, OH 44224, USA			
Product Name······	Automotive Diagnostic Scan Tool			
Trade Mark······				
Model/Type reference······:	MAXIMUSPLUS			
Listed Model(s) ······:	/			
Standard:	FCC CFR Title 47 Part 15 Subpart C S	Section 15.247		
Date of receipt of test sample:	Nov. 17, 2023			
Date of testing	Nov. 17, 2023 ~ Dec. 11, 2023			
Date of issue	Dec. 12, 2023			
Result:	PASS			
Compiled by:		-T C		
(Printed name+signature)	Terry Su	Jerry Su		
Supervised by:		Tin shang		
(Printed name+signature)	Eric Zhang	Terry Su Zic zhang Johnas		
Approved by:		1 mas		
(Printed name+signature)	Totti Zhao	/ see		
Testing Laboratory Name:	CTC Laboratories, Inc.			
Address	1-2/F., Building 2, Jiaquan Building, Gu Shenzhen, Guangdong, China	anlan High-Tech Park,		
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will				

not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1. T	TEST SUMMARY	
1.1.	. Test Standards	3
1.2.	. Report version	3
1.3.	. Test Description	4
1.4.	. Test Facility	5
1.5.	. Measurement Uncertainty	5
1.6.	. Environmental conditions	6
2. G	GENERAL INFORMATION	7
2.1.	. CLIENT INFORMATION	7
2.2.	. GENERAL DESCRIPTION OF EUT	7
2.3.	ACCESSORY EQUIPMENT INFORMATION	8
2.4.	OPERATION STATE	9
2.5.	. Measurement Instruments List	
3. т	TEST ITEM AND RESULTS	12
3.1.	. Conducted Emission	
3.2.	. RADIATED EMISSION	
3.3.	. BAND EDGE EMISSIONS (RADIATED)	
3.4.		
3.5.		
3.6.		
3.7.		
3.8.		
3.9.	ANTENNA REQUIREMENT	97

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.247: Operation within the bands of 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz.

<u>RSS 247 Issue 3:</u> Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Dec. 09, 2023	Original

1.3. Test Description

FCC Part 15 Subpart C (15.247) / RSS 247 Issue 3					
Test Item	Standard Section		Result	Test	
rest item	FCC	IC	Result	Engineer	
Antenna Requirement	15.203	/	Pass	Alicia Liu	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Cecilia Luo	
Radiated Band Edge and Spurious Emissions	15.205&15.209& 15.247(d)	RSS 247 5.5	Pass	Alicia Liu	
Conducted Band Edge and Spurious Emissions	15.247(d)	RSS 247 5.5	Pass	Alicia Liu	
6dB Bandwidth	15.247(a)(2)	RSS 247 5.2 (a)	Pass	Alicia Liu	
Conducted Max Output Power	15.247(b)(3)	RSS 247 5.4 (d)	Pass	Alicia Liu	
Power Spectral Density	15.247(e)	RSS 247 5.2 (b)	Pass	Alicia Liu	
Transmitter Radiated Spurious	15.209&15.247(d)	RSS 247 5.5& RSS-Gen 8.9	Pass	Alicia Liu	

Note: The measurement uncertainty is not included in the test result.

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
DTS Bandwidth	±0.0196%	(1)
Maximum Conducted Output Power	±0.686 dB	(1)
Maximum Power Spectral Density Level	±0.743 dB	(1)
Band-edge Compliance	±1.328 dB	(1)
Unwanted Emissions In Non-restricted Freq Bands	9kHz-1GHz: ±0.746dB 1GHz-26GHz: ±1.328dB	(1)
Conducted Emissions 9kHz~30MHz	±3.08 dB	(1)
Radiated Emissions 30~1000MHz	±4.51 dB	(1)
Radiated Emissions 1~18GHz	±5.84 dB	(1)
Radiated Emissions 18~40GHz	±6.12 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C ~ 27°C
Relative Humidity:	40% ~ 60%
Air Pressure:	101kPa

EN

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Matco Tools
Address:	4403 Allen Rd. Stow, OH 44224, USA
Manufacturer:	Matco Tools
Address:	4403 Allen Rd. Stow, OH 44224, USA

2.2. General Description of EUT

Product Name:	Automotive Diagnostic Scan Tool		
Trade Mark:			
Model/Type reference:	MAXIMUSPLUS		
Listed Model(s):	/		
Power supply:	5Vdc/5A from AC/DC Adapter 7.6Vdc from 6300mAh Li-ion Battery		
Adapter Model:	XDJ361R-050500 Input: 100-240V~ 50/60Hz 0.9A Output: 5Vdc/5A		
Hardware version:	1		
Software version:	/		
WIFI 802.11b/ g/ n(HT20) / n(HT40)			
Modulation:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK, QPSK, 16QAM, 64QAM)		
Operation frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz		
Channel number:	802.11b/g/n(HT20):11channels 802.11n(HT40): 7channels		
Channel separation:	5MHz		
Antenna type:	FPC Antenna		
Antenna gain:	3.09dBi Max		

EN

2.3. Accessory Equipment information

Equipment Information				
Name	Model	S/N	Manufacturer	
1	1	1	1	
Cable Information				
Name	Shielded Type	Ferrite Core	Length	
1	1	1	1	
Test Software Information				
Name	Versions	1	1	
Engineering mode	1	1	1	

2.4. Operation state

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency List:

Channel	Frequency (MHz)
01	2412
02	2417
03	2422
04	2427
05	2432
06	2437
07	2442
08	2447
09	2452
10	2457
11	2462

Note: CH 01~CH 11 for 802.11b/g/n(HT20), CH 03~CH 09 for 802.11n(HT40).

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	HT-MCS0
802.11n(HT40)	HT-MCS0

Test mode

For RF test items: The engineering test program was provided and enabled to make EUT continuous transmit. For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

2.5. Measurement Instruments List

RF Test System					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14, 2024
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 16, 2023
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 16, 2023
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 16, 2023
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 16, 2023
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 16, 2023
10	Wideband Radio Communication Tester	R&S	CMW500	102257	May 25, 2024
11	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 16, 2023
12	High and low temperature test chamber	ESPEC	MT3035	1	Mar. 24, 2024
13	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024
14	Test Software	Tonscend	JS1120-3	V3.3.38	/

Radiate	d Emission (3m chamber 2	2)			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Dec. 07, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-648	Dec. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 16, 2023
4	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 14 2024
5	Pre-Amplifier	SONOMA	310	186194	Dec. 16, 2023
6	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 16, 2023
7	Test Receiver	R&S	ESCI7	100967	Dec. 16, 2023
8	3m chamber 2	Frankonia	EE025	1	Oct. 23, 2024
9	Test Software	FARA	EZ-EMC	FA-03A2	1

Radiated Emission (3m chamber 3)									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until				
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024				
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 01, 2024				
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 16, 2023				
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 16, 2023				
5	Mirowave Broadband	SCHWARZBECK	BBV9718C	111	Dec. 16, 2023				

CTC Laboratories, Inc.

	Amplifier				
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

Conduc	Conducted Emission									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until					
1	LISN	R&S	ENV216	101112	Dec. 16, 2023					
2	LISN	R&S	ENV216	101113	Dec. 16, 2023					
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 16, 2023					
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 16, 2023					
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 16, 2023					
6	Test Software	R&S	EMC32	6.10.10	1					

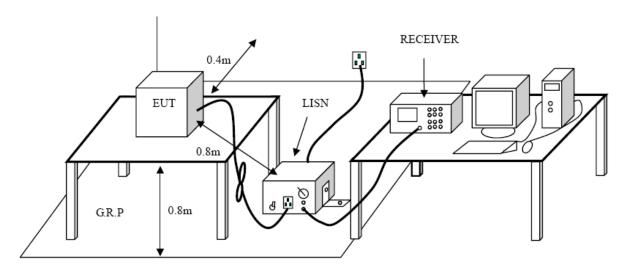
Note: 1. The Cal. Interval was one year.

2. The Cal. Interval was three year of the chamber

3. The cable loss has calculated in test result which connection between each test instruments.

3.TEST ITEM AND RESULTS

3.1. Conducted Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS - Gen 8.8:

	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

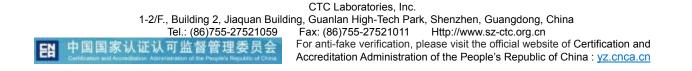
* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

1. The EUT was setup according to ANSI C63.10:2013 requirements.

2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.

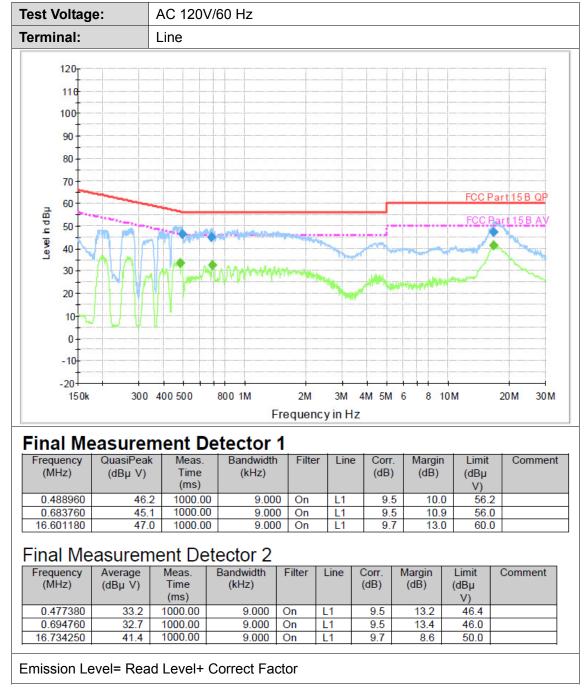

3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)

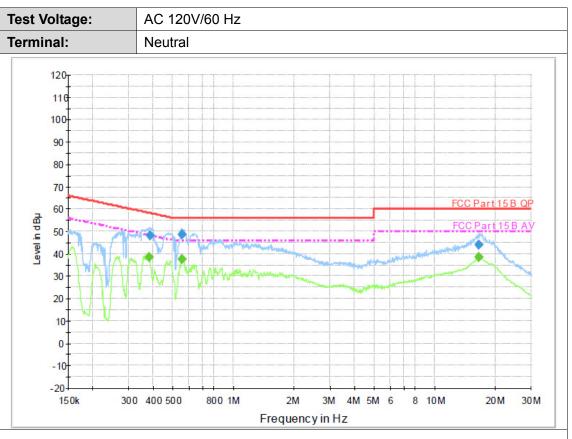
4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.

5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

7. During the above scans, the emissions were maximized by cable manipulation.




Test Mode:

Please refer to the clause 2.4.

Test Results

Final Measurement Detector 1

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
				TILLET	LINE		5		Comment
(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ	
		(ms)						V)	
0.384810	48.3	1000.00	9.000	On	N	9.4	9.9	58.2	
0.551170	48.5	1000.00	9.000	On	Ν	9.4	7.5	56.0	
16.469160	44.0	1000.00	9.000	On	Ν	9.5	16.0	60.0	

Final Measurement Detector 2

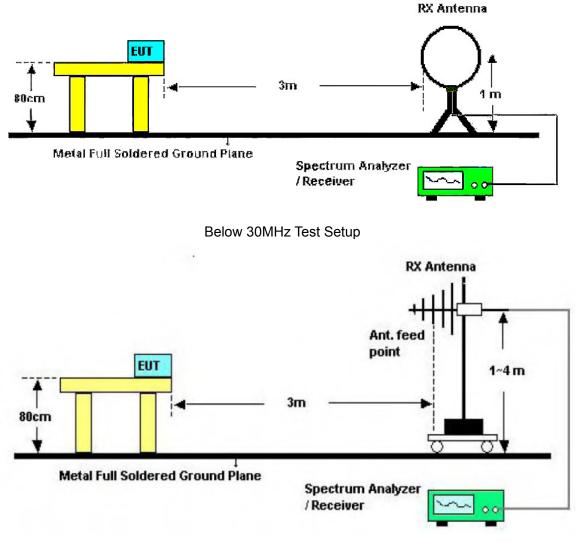
Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.378720	38.5	1000.00	9.000	On	N	9.4	9.8	48.3	
0.555580	37.5	1000.00	9.000	On	N	9.4	8.5	46.0	
16.535040	38.5	1000.00	9.000	On	Ν	9.5	11.5	50.0	

Emission Level= Read Level+ Correct Factor

3.2. Radiated Emission

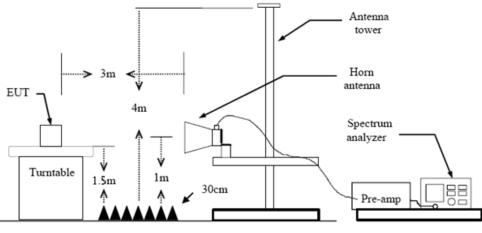
<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS – Gen 8.9:


Frequency	Limit (dBuV/m @3m)	Value		
30 MHz ~ 88 MHz	40.00	Quasi-peak		
88 MHz ~ 216 MHz	43.50	Quasi-peak		
216 MHz ~ 960 MHz	46.00	Quasi-peak		
960 MHz ~ 1 GHz	54.00	Quasi-peak		
Above 1 GHz	54.00	Average		
Above i Grz	74.00	Peak		

Note:

(1) The tighter limit applies at the band edges.


(2) Emission Level (dBuV/m)=20log Emission Level (uV/m).

Test Configuration

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013

2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.

5. Set to the maximum power setting and enable the EUT transmit continuously.

6. Use the following spectrum analyzer settings

(1) Span shall wide enough to fully capture the emission being measured

(2) Below 30 MHz:

9kHz – 150kHz, RBW=200Hz, VBW≥RBW, Sweep=auto, Detector function=peak, Trace=max hold; 150kHz – 30MHz, RBW=9kHz, VBW≥RBW, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the guasi-peak detector and reported.

(3) 30 MHz - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(4) From 1 GHz to 10^{th} harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW \geq 1/T Peak detector for Average value.

Note 1: For the 1/T& Duty Cycle please refer to clause 3.8 Duty Cycle.

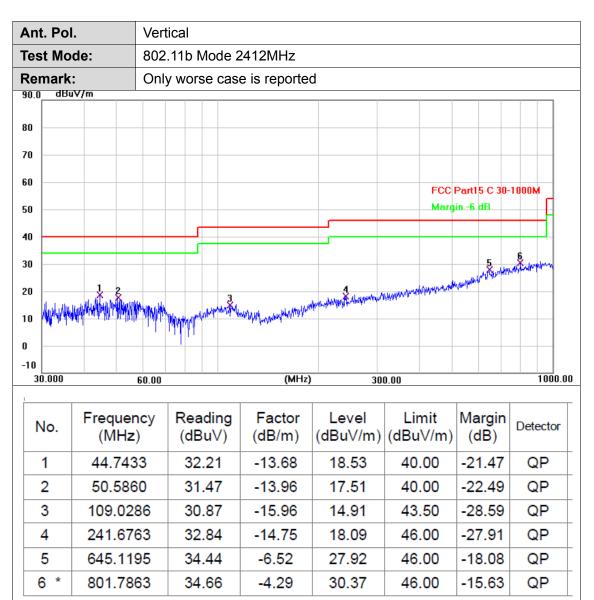
<u>Test Mode</u>

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS


Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

CTC Laboratories, Inc.

	I.	Hori	lorizontal							
est Mo	ode:	802.	11b Mode	2412MHz						
emark	:	Only	/ worse ca	se is reported	d					
0.0 dE	3uV/m									
o										
o										
o						FCC F	Part15 C 30-1	1000M		
o						Margi	n -6 dB			
o 🖵										
							5	6		
							wind the wind with	INTRA AND AND		
		ni hayanan ka	WHILL WITH MANY	William Million of Million	upper the second from	an the paper of the street in the	~~~·			
- M Aller	wywere and a second	^{ov h} typp y p	plyper portron bear the	helloch-opphilococcession	up with a second from	n Shrapen Nontra Carre				
o Willia	ang dalamati da	60.00	hyper and the star	hullhadi.gythjuder ^{agen} ty ^{riggh} (MHz)		р., 28-учу (Манука) 1.00		1000.		
	Freque (MHz	ncy	Reading (dBuV)	(MHz)		Limit	Margin	1000.		
0		ncy z)	Reading	(MHz)	Level	Limit	Margin	1000.		
0 10 30.000 No.	(MHz	ncy 2) 57	Reading (dBuV)	(MHz) Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	1000.		
0 10 30.000 No. 1	(MHz 39.57	ncy 2) 57 15	Reading (dBuV) 33.76	(MHz) Factor (dB/m) -14.50	300 Level (dBuV/m) 19.26	Limit (dBuV/m) 40.00	Margin (dB) -20.74	1000. Detector		
No.	(MHz 39.57 51.66	ncy 2) 57 15	Reading (dBuV) 33.76 31.62	(MHz) Factor (dB/m) -14.50 -14.03	300 Level (dBuV/m) 19.26 17.59	Limit (dBuV/m) 40.00 40.00	Margin (dB) -20.74 -22.41	Detector QP QP		
No.	(MHz 39.57 51.66 102.75	ncy 2) 57 15 500	Reading (dBuV) 33.76 31.62 31.72	(MHz) Factor (dB/m) -14.50 -14.03 -15.90	Level (dBuV/m) 19.26 17.59 15.82	Limit (dBuV/m) 40.00 40.00 43.50	Margin (dB) -20.74 -22.41 -27.68	Detector QP QP QP		

EN

Adobe 1GHz	Adobe	1GHz
------------	-------	------

EN

nt. Po	ol.	Horizontal TX 802.11b Mode 2412MHz							
est M	ode:								
emar	emark: No report for the emission which more than 10 dB below the prescribed limit.							!	
00.0 d	BuV/m								
0									
						FCC Part15 (C - Above 1	g pk	
0						FCC Part15 (C - Above 1	GAV	
0	2								
o	Š								
0	1 ×								
0	^								
o 📃									
0.0									
1000.0	00 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	0.00 23500	.00 26000	
No.	Freque (MHz		Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	4823.3	58	25.02	2.11	27.13	54.00	-26.87	AVG	
2	4823.4	96	41.10	2.11	43.21	74.00	-30.79	peak	
emar									

EN

An	t. Pol		Vertic	Vertical							
Tes	st Mo	de:	TX 80	2.11b Mod	de 2412MH	z					
Re	mark	:	No report for the emission which more than 10 dB below the prescribed limit.								
100.	0 dBu	dBuV/m									
90											
80							FCC Part15 (C - Above 1	G PK		
70											
60											
50							FCC Part15 (C - Above 1	<u>G AV</u>		
		ş									
40											
30		<u></u>									
20											
10											
0.0											
10	000.000	3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	0.00 23500	.00 26000.0		
		F			F (1.1				
1	No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level	Limit (dBuV/m)	Margin (dB)	Detector		
		`	·	. ,	` '						
_	1 *	4823.5		25.16	2.11	27.27	54.00	-26.73	AVG		
	2	4824.0	87	40.64	2.11	42.75	74.00	-31.25	peak		
-		_									
Rei	marks	S:						_			

Page 20 of 97

nt. Po	I.	Horiz	contal					
est Mo	ode:	-		de 2437MHz				
emark	K:	No re prese	eport for the cribed limit.	e emission v	vhich more t	han 10 dB t	pelow the	;
)0.0 dB	uV/m							
n								
'						FCC Part15	C - Above 1	G PK
)								
)								
, 📛						FCC Part15	C-Above I	GAV
, 📃	1×							
)	Š							
)								
)								
0.0	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	0.00 23500	.00 26000
				1				
No.	Freque (MHz		Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4874.2	270	41.06	2.18	43.24	74.00	-30.76	peak
2 *	4874.9	931	24.86	2.18	27.04	54.00	-26.96	AVG

Ant	. Pol.		Verti	cal								
Tes	t Mod	de:	TX 8	02.1 [′]	1b Mod	le 2437N	ЛНz	:				
Ren	nark:				for the d limit.	emissio	on w	/hich r	nore t	han 10 dB l	below the	!
100.0) dBu'	V/m										
90												
80							-			FCC Part15	C - Above 1	G PK
70												
60												
50										FCC Part15	C - Above 1	<u>G AV</u>
40		1×										
30		2										
		Š										
20												
10 0.0												
	00.000	3500.00 6	000.00	8500).00 11	000.00 (N	/Hz)	160	00.00 1	18500.00 2100	0.00 23500	.00 26000.0
	ا م.	Freque (MHz			ading 3uV)	Facto (dB/m			vel V/m)	Limit (dBuV/m)	Margin (dB)	Detector
-	1	4874.6	<i>.</i>	`).70	2.18	<u> </u>		.88	74.00	-31.12	peak
	2 *	4874.9			1.97	2.18			.00	54.00	-26.85	AVG
	narks										<u> </u>	I

Page 22 of 97

Remarks:

nt. P	ol.	Hori	zontal					
est N	lode:	TX 8	802.11b Mod	le 2462MHz	2			
lema	rk:		eport for the cribed limit.	emission v	vhich more t	han 10 dB t	pelow the	;
00. <u>0</u> d	lBuV/m	p.cc			1			
0								
						FCC Part15	C - Above 1	g PK
						FCC Part15	C - Above 1	GAV
) —								
o	1	:						
•	2							
)		-						
o								
0.0	000 3500.00	6000.00	8500.00 11	000.00 (MHz)				
1								
No.	Frequ (Mi		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4923	.732	39.61	2.26	41.87	74.00	-32.13	peak
2 '	* 4923	.917	24.34	2.26	26.60	54.00	-27.40	AVG
2 '	4923	.91/	24.34	2.26	20.60	54.00	-27.40	AVG

Ant. Pol	•	Verti	cal					
fest Mo	de:	TX 8	802.11b Mod	de 2462MHz	z			
Remark			eport for the cribed limit.	e emission v	vhich more t	han 10 dB b	elow the	
00.0 dBu	V/m	P						
10								
0								
						FCC Part15 0	C-Above 10) PK
0								
0						FCC Part15 C	C-Above 10	AV
0	1							
0	X							
0	ş							
0								
0								
0.0	3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	.00 23500.	00 26000.
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	4923.6	04	40.08	2.26	42.34	74.00	-31.66	peak
	4924.9	67	24.56	2.26	26.82	54.00	-27.18	AVG

Ant. Po	l	Horiz	zontal					
lest Mo	de:	TX 8	02.11g Mod	de 2412MH	Z			
Remark	:		eport for the cribed limit.		vhich more t	han 10 dB t	pelow the	;
00. <u>0</u> dBu	V/m	1						
)						FCC Part15 C	- Abovo 1G	DK
, ⊨						recranse		
)						FCC Part15 C	- Above 1G	AV
)								
, 📖	×							
)	ş							
)								
)								
0.0								
1000.000	3500.00 60	00.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	.00 23500.0	0 26000.0
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
4	4824.6	18	40.12	2.11	42.23	74.00	-31.77	peak
1		38	25.32	2.11	27.43	54.00	-26.57	AVG

EN

nt. Po	•	Verti	cal					
est Mo	de:	TX 8	302.11g Mod	de 2412MH	Z			
Remark	:	No r	eport for the cribed limit.	emission v	which more t	han 10 dB t	below the	<u>;</u>
00.0 dB	ıV/m							
0								
0						FCC Part15	C - Above 1	G PK
0							C-ADOVE I	
0								
						FCC Part15	C - Above 1	G AV
0	ş							
0	^							
0								
0								
o								
0.0								
1000.00	0 3500.00 0	6000.00	8500.00 11	1000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	0.00 26000
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.	•	:)						Detector

					go 27 of	07			opon		. 02020	
An	t. Pol.		Hori	zontal								
Tes	st Mod	de:	ТХ 8	802.11g M	ode 2437	7MHz						
Re	mark:			report for t scribed lim		ion w	hich more	e than 10) dB k	pelow the	Э	
100	.0 dBu\	//m										
90												
80								FCC F	art15 C	- Above 10	G PK	
70												
60								FCC F	Part15 C	- Above 10	GAV	
50		1										
40		×										
30		ş										
20												
10												
0.0 1		3500.00 6	000.00	8500.00	11000.00 ((MHz)	16000.00	18500.00	21000	.00 23500	.00 26000	.0
1												
	No.	Freque		Reading						Margin	Detecto	r

Page 27 of 97

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	4873.519	41.60	2.18	43.78	74.00	-30.22	peak	-
2 *	4874.883	24.88	2.18	27.06	54.00	-26.94	AVG	-

Remarks:

EN

Ant. Po	I.	Verti	cal					
Fest Mo	de:	TX 8	02.11g Mo	de 2437MH	z			
Remark			eport for the cribed limit.		which more t	han 10 dB t	pelow the	!
100.0 dB	uV/m	1						
90								
80						FCC Part15	C - Above 1	G PK
70								
60						FCC Part15	C - Above 1	GAV
50	ş							
10		_						
30	×							
20								
0.0								
1000.00	0 3500.00 6	000.00	8500.00 1	1000.00 (MHz)	16000.00 1	8500.00 2100	D.OO 23500	.00 26000.
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	4873.5	77	25.56	2.18	27.74	54.00	-26.26	AVG
2	4874.5	25	40.71	2.18	42.89	74.00	-31.11	peak

Page 28 of 97

Remarks:

le:	No re	eport	for the											
				e emissi	K 802.11g Mode 2462MHz or report for the emission which more than 10 dB below the									
	prescribed limit.									pelow the	е			
//m				1										
								FCC Pa	art15 (C-Above 1	G PK			
									_					
								FCC P	art15 (C-Above 1	GAV			
ş														
×														
									_					
									_					
2500.00		0500		000.00 4		100		0500.00	01000	00 00500	.00 26000.			
			-			1				Margin (dB)	Detector			
4924.8	71	24	.15	2.26	6	26	.41	54.0	0	-27.59	AVG			
4924.9	20	39	.79	2.26	5	42	.05	74.0	0	-31.95	peak			
	3500.00 6 Frequer (MHz 4924.8	*	1 1 3500.00 6000.00 8500 Frequency (MHz) Rea (dE 4924.871 24	1x 1 3500.00 6000.00 8500.00 11 Frequency (MHz) Reading (dBuV) 14924.871 24.15	Image: Non-state Image: Non-state<	Image: Non-State Image: Non-State Image: Non-State 1x 1x 1x 1x 3500.00 6000.00 8500.00 11000.00 (MHz) Frequency (MHz) Reading (dBuV) Factor (dB/m) 4924.871 24.15 2.26	Image: Second	Image: Non-State Image: Non-State Image: Non-State Image: Non-State 3500.00 6000.00 8500.00 11000.00 (MHz) 16000.00 1 3500.00 6000.00 8500.00 11000.00 (MHz) 16000.00 1 Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) 4924.871 24.15 2.26 26.41	Image: Second	Reading (MHz) Factor (dBuV) Level (dBuV) Limit (dBuV) 4924.871 24.15 2.26 26.41 54.00	Jx Jx <thjx< th=""> Jx Jx <thj< th=""></thj<></thjx<>			

EN

No re	302.11g Mod eport for the cribed limit.			FCC Part1 5 (C - Above 10	G PK
ğ pres		emission w	vhich more th	FCC Part15 (C - Above 10	G PK
ž.						
				FCC Part15 (C - Above 10	3 AV
				FCC Part15 (C - Above 10	<u>AV</u>
						<u>3 AV</u>
¥						
×						
00 000 00	9500.00 110		16000.00 1	9500.00 21000	0.00 22500	.00 26000
	Pooding	Fastar	Lovel	Limit	Morgin	
equency (MHz)	(dBuV)	(dB/m)				Detector
923.827	24.10	2.26	26.36	54.00	-27.64	AVG
924.716	40.10	2.26	42.36	74.00	-31.64	peak
e ()	23.827	equency MHz) Reading (dBuV) 23.827 24.10	equency Reading Factor MHz) (dBuV) (dB/m) 23.827 24.10 2.26	equency Reading Factor Level (dBuV) (dBuV) (dB/m) 23.827 24.10 2.26 26.36	equency Reading Factor Level Limit (dBuV) (dB/m) (dBuV/m) (dBuV/m) 23.827 24.10 2.26 26.36 54.00	equency Reading Factor Level Limit Margin (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 23.827 24.10 2.26 26.36 54.00 -27.64

FCC Part15 C - Above 1G AV

Ant. Pol. **Test Mode:** Remark:

100.0 dBuV/m

ç

90

80

70 60

50

	Page	e 31 of 9		Report No.: CTC20					
Horizont	al								
TX 802.2	11n(HT2	0) Mode	e 2412M	Ηz					
No repor prescribe		emissio	n which	more th	an 10 dE	3 below	the		
	1	1							
					FCC Part	15 C - Abov	/e 1G PK		

4	0	~						
3	0	1						
2	o							
1	o							
	0.0							
	1000.00	0 3500.00 6000.00	8500.00 11	000.00 (MHz)	16000.00	8500.00 2100	0.00 23500	.00 26000.0
Ļ			1	1	1	1		
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1 *	4823.219	25.16	2.10	27.26	54.00	-26.74	AVG
	2	4824.611	39.83	2.11	41.94	74.00	-32.06	peak

Remarks:

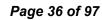
EN

Ant. Pol. Test Mode:		Vertical										
		TX 802.11n(HT20) Mode 2412MHz										
lemarl	K :		No report for the emission which more than 10 dB below the prescribed limit.									
00.0 dB	uV/m											
, 📖												
						FCC Part15 (C-Above 10	à PK				
0						FCC Part15 (AV					
	1											
·	1×											
ı	Ę											
ı												
0.0												
1000.00	0 3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	.00 23500.	00 26000				
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detecto				
1	4823.8	85	39.98	2.11	42.09	74.00	-31.91	peak				
2 *	4824.3	04	25.48	2.11	27.59	54.00	-26.41	AVG				
	1				1		1					

FN

nt. Pol. est Mode:		Horiz	Horizontal										
		TX 802.11n(HT20) Mode 2437MHz											
emark:	:		No report for the emission which more than 10 dB below the prescribed limit.										
0.0 dBu	V/m												
						-			FCC F	Part15	C - Above 1	G PK	
									FCC F	Part15	C - Above 1	GAV	
	2					-							
	Ę												
	×												
									_				
.0 1000.000	200.00 0	000.00	8500.0	0 11	000.00 (M	Hz)	100	00.00 1	8500.00	2100	0.00 23500	.00 26000	
No.		requency (MHz)				Factor (dB/m)		Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	Detector
1 *	4874.0	029 25.17		2.18		27	.35	54.0	00	-26.65	AVG		
2	4874.8	04	40.	29	2.18		42	.47	74.(00	-31.53	peak	

EN


Ant	. Pol		Vertic	al								
		TX 80	TX 802.11n(HT20) Mode 2437MHz									
Rer	nark:			port for the cribed limit.	e emission v	which more t	han 10 dB l	below the	;			
100.	0 dBu	V/m										
90												
80							FCC Part15	C - Above 1	G PK			
70												
60												
50							FCC Part15	C - Above 1	<u>G AV</u>			
40		ş										
30		×										
20												
10												
0.0 10		3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00	18500.00 2100	0.00 23500).00 26000.Q			
1						Γ			· · · · · · · · ·			
N	۱o.	Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
-	1 *	4873.6	09	25.16	2.18	27.34	54.00	-26.66	AVG			
	2	4874.9	83	39.85	2.18	42.03	74.00	-31.97	peak			
	marka											

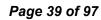
Page 34 of 97

Remarks:

nt. Pol. est Mode:		Horizontal										
est Mode: Remark:		TX 802.11n(HT20) Mode 2462MHz										
emarr	K:		No report for the emission which more than 10 dB below the prescribed limit.									
0.0 dB	uV/m	preo										
						-				-		
						-			FCC Pa	art15	C - Above 1	G PK
						-			500 D		o	
									FUU Pi	1115	C - Above 1	GAV
	ş											
	^					-						
	1									_		
	×											
.0												
1000.00	0 3500.00 6	000.00	8500.00	11	000.00 (M	IHz)	160	00.00 1	8500.00	2100	0.00 23500	.00 26000
No. Freque			Read (dBu	-	Facto (dB/m			vel iV/m)	Limi (dBuV		Margin (dB)	Detector
1 *	4924.8	91	23.6	9	2.26		25.95		54.0	0	-28.05	AVG
2	4924.9	43	40.07		2.26		42	.33	74.00 -31		-31.67	peak

nt. Po	Vertical												
est Mo	de:	TX 8	TX 802.11n(HT20) Mode 2462MHz										
emark			No report for the emission which more than 10 dB below the prescribed limit.										
00.0 dB	uV/m												
									FCC Part15	C - Above 1	G PK		
) 🕅													
									FCC Part15	C - Above 1	G AV		
)	1×												
0	×												
) —	ş												
,	×												
0.0 1000.00	0 3500.00 6	5000.00	850	0.00 11	000.00 (M	Hz)	160	00.00	18500.00 2100	0.00 23500	.00 26000		
No.	Frequer (MHz	-		ading BuV)	Factor (dB/m)			vel V/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1	4923.7	15	4(0.09	2.26		42	.35	74.00	-31.65	peak		
2 *	4924.8	74	24	4.12	2.26		26	.38	54.00	-27.62	AVG		

Ant	. Pol		Hori	zonta	al								
Tes	t Mo	de:			•	l0) Mod				_			_
Rer	nark	:			t for the ed limit.	emissi	on v	vhich	more	than 10 d	B below th	е	
100.) dBu	V/m	pres	CHDE									
	-												
90													
80							-			FCC Par	t15 C - Above	1G PK	
70													
60													
50							_			FCC Par	t15 C - Above	1G AV	
50		1×											
40													
30		Š					-						
20							_						
10							_						
0.0													
10	00.000	3500.00 6	000.00	850	0.00 11	000.00 (1	MHz)	160	00.00	18500.00 2	1000.00 2350	0.00 260	00.0
N	۱o.	Frequer (MHz			ading BuV)	Fact (dB/n			vel IV/m)	Limit (dBuV/r	Margin n) (dB)	Detecto	or
	1	4843.4	29	4(0.58	2.13	3	42	.71	74.00	-31.29	peak	:
2	2 *	4844.6	21	2	5.03	2.13	}	27	.16	54.00	-26.84	AVG	
										1			


Page 37 of 97

Remarks:

	No re			122MHz which more t	han 10 dB k	C-Above 10	3 PK
Š.				vhich more t	FCC Part15 (C-Above 10	3 PK
					FCC Part15 (C - Above 10	AV
					FCC Part1 5 (C-Above 10	AV .
×							
0.00 60	00.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	.00 23500.	00 26000.
	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
844.05	53	25.46	2.13	27.59	54.00	-26.41	AVG
844.58	39	41.00	2.13	43.13	74.00	-30.87	peak
	equen (MHz) 844.05	equency (MHz) 844.053 844.589	equency (MHz) Reading (dBuV) 844.053 25.46	equency (MHz) Reading Factor (dBuV) (dB/m) 844.053 25.46 2.13	equency (MHz) Reading (dBuV) Factor Level (dBuV/m) 844.053 25.46 2.13 27.59	equency Reading Factor Level Limit (dBuV) (dB/m) (dBuV/m) (dBuV/m) 844.053 25.46 2.13 27.59 54.00	equency Reading Factor Level Limit (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 344.053 25.46 2.13 27.59 54.00 -26.41

nt. Pol.		Horizo	ontal					
st Moo	de:	TX 80)2.11n(HT4	0) Mode 24	I37MHz			
emark:			port for the ribed limit.	emission v	vhich more t	han 10 dB t	pelow the	•
0.0 dBu\	V/m							
						FCC Part15	C - Above 1	g PK
						FCC Part15	C - Above 1	
						Teerants		
	1 X							
	Š							
0 1000.000	3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	0.00 23500	.00 26000.
	Fraguer		Pooding	Factor	Loval	Limit	Margin	
No.	(MHz		(dBuV)	(dB/m)	(dBuV/m)		(dB)	Detector
1	4873.5	57	40.25	2.18	42.43	74.00	-31.57	peak
2 *	4874.0	87	25.29	2.18	27.47	54.00	-26.53	AVG
1	4873.5) 57	40.25	2.18	42.43	74.00	-31.57	p

nt. Pol		Verti	cal					
est Mo	de:	TX 8	02.11n(HT4	40) Mode 24	37MHz			
emark:	:		eport for the cribed limit.		vhich more t	han 10 dB b	elow the	
)0.0 dBu\	√/m							
						FCC Part15 C	- Above 1G	i PK
						FCC Part15 C	- Above 1G	AV
	Š							
	1							
	×							
.0								
1000.000	3500.00 6	000.00	8500.00 11	000.00 (MHz)	16000.00 1	8500.00 21000	.00 23500.0	00 26000.
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	N N		-					
1 *	4873.6	648	25.14	2.18	27.32	54.00	-26.68	AVG

EN

Ant. Po	Ι.	Horiz	zontal					
est Mo	de:		•	40) Mode 24				
Remark			eport for the cribed limit		which more	than 10 dB l	below the	9
00.0 dBu	uV/m				1			
0								
0						FCC Part15	C - Ahove 1	G PK
, 🗖								
						FCC Part15	C - Above 1	GAV
0								
o	×							
0	Š							
o								
o								
0.0								
	0 3500.00 6	00.00	8500.00 1	1000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	.00 26000
No.	Frequer (MHz		Reading (dBuV)	Factor (dB/m)		Limit (dBuV/m)	Margin (dB)	Detector
1	`	, 	· · · · ·	· · ·		. ,		maak
	4904.7		40.05	2.22	42.27	74.00	-31.73	peak
2 *	4904.9	37	24.66	2.22	26.88	54.00	-27.12	AVG

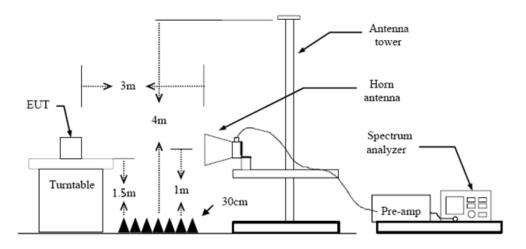
Page 41 of 97

nt. F	Pol.		Verti	cal					
	Mode	:		•	40) Mode 24				
ema	ark:			eport for the cribed limit.		vhich more t	han 10 dB b	elow the	
00.0	dBuV/⊧	m							
							FCC Part15	C - Above 1	G PK
							FCC Part15	C - Above 1	G AV
		1							
		X							
		ş							
		^							
.0									
1000	0.000 3!	500.00 6	000.00	8500.00 1	1000.00 (MHz)	16000.00	18500.00 2100	0.00 23500	.00 26000
		Frequer		Reading	Factor	Level	Limit	Margin	
				rteaung					Detector
No	D.	(MHz		(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
No 1	D .)	(dBuV) 39.97	(dB/m) 2.22	(dBuV/m) 42.19	(dBuV/m) 74.00	(dB) -31.81	peak

Page 42 of 97

Remarks:

EN


3.3. Band Edge Emissions (Radiated)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d)/ RSS 247 5.5:

Restricted Frequency Band	(dBuV/m	n)(at 3m)
(MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:
 - RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

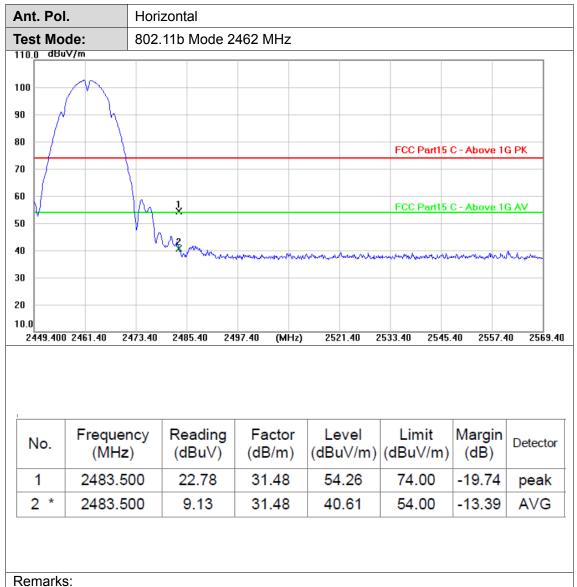
Test Mode

Please refer to the clause 2.4.

Test Results

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Ant	. Pol.		Horiz	cont	al											
Tes	t Mod	le:	802.2	11b	Mode 24	412N	/Hz									
110.	o dBu∖	//m														
100														M		
90														\bigwedge	h	
80											FC	C Part	15 (- Above 10) PK	
70													Π			
60													1			
50											1FC X	C Part	190	C-Above 10		
												N	Y		v	
40	mallann	-	manthmat	hined	when the second	motore	monard	watch	w.w.k.en	norman	- Ser	Sand a				
30													+			
20													-			
10.0	804.800	2210.00 2	328.80	024	10.80 23	52.80			0.0	76.80 2	388.8	0 04	0.0.1	80 2412.8	0 2424.80	
23	04.000	2310.00 2	320.00	234	10.00 23:	32.00	(MHz	9	231	0.00 2	300.0	0 24	00.1	00 2412.0	0 2424.00	
I																-
1	No.	Freque (MHz			eading dBuV)		actor B/m)			evel uV/m)		.imit 8uV/n	n)	Margin (dB)	Detector	
	1	2390.0	00	2	21.87	31	1.31	+	53	3.18	7	4.00		-20.82	peak	-
	2 *	2390.0	00		6.46	31	1.31	1	37	7.77	5	4.00		-16.23	AVG	-
																-
D -																
ĸer	narks				_		_									


Page 44 of 97

0 0 0 0 0 0 0 0 0 0 0 0 0 0		80	02.11b Mode	e 2412MF			FCC Part1 5 C		
No. Fre									
0 0 0 0 0 0 0 0 0 0 0 0 0 0									
0 0 0 0 0 0 0 0 0 0 0 0 0 0	meetrurketur	etransministramana							
0 0 0 0 0 0 0 0 0 0 0 0 0 0	مردر کرد. به راید	etrace and a second	entrenentuel week Madrur						
0 0 0 0 0 0 0 0 0 0 0 0 0 0	medanta	etranon abeter record							
0 0 0 0 0 0 0 0 2304.000 2316. No.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				werenew		ICC Part15 C	- Above 1G	
0 0 0 0 0 0 0 2304.000 2316. No.	- and an and a second	etranon destancianas		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			ECC Part15 C	- Above 1G	AV
No.	- and an	etmen determinent	er manan kan kan kan kan kan kan kan kan kan	antes and a second s	1000 - To		1		1 1
No.	- - - - - - - - - - - - - - - - - - -	etruritado terresponse	ernesennlisensen/histori	~Pufland-~~	wanne				
No.						water many	Burnan		V
No.									
No.									
No.									
2304.000 2316. No. Fre									
INO. (6.00 2	.00 2328.0	00 2340.00	2352.00 (MHz)	2376.00 23	88.00 2400.0	0 2412.00) 2424.0
1 23		equency MHz)	Readin (dBuV)	-		Level BuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	390.0	90.000	22.37	31.3	51	53.68	74.00	-20.32	peak
2 * 23	390.0	90.000	6.31	31.3	31	37.62	54.00	-16.38	AVG
emarks:			I						

Page 45 of 97

nt. Pol.		Verti	cal					
est Mod	le:	802.	11b Mode	2462 MHz				
00. <u>0</u> dBuV	//m							
	h					FCC Part15	C - Above 1	G PK
) 🖵								
			- <u>1</u>			FCC Part15	C - Above 1	G AV
		M	×					
		1 6	man	mature	mohenne	ungua have marked	nareteriterite	mann
0								
).0 2449.400	2461.40 24	173.40	2485.40 2	2497.40 (MHz)	2521.40	2533.40 2545	.40 2557.	40 2569
No.	Frequer (MHz		Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.5	00	21.27	31.48	52.75	74.00	-21.25	peak
2 *	2483.5	00	5.46	31.48	36.94	54.00	-17.06	AVG
2 *	2483.5	00	5.46	31.48	36.94	54.00	-17.06	AV

Page 47 of 97

2.Margin value = Level -Limit value

EN

EN

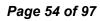
Ant	. Pol.		Horiz	zont	al								
Tes	t Moc	de:	802.	11g	Mode 2	412MI	Hz						
110.	0 dBu	V/m											
100													
90												\frown	
80										FCC Pa	rt15	C - Above 1	G PK
70											-/		
60										X FCC Pá	rt15 (C - Above 1	G AV
50										2			
40	herenature	naand the only in the second	Angerathers		erryanus and anno	man	aller Arter of	and the second	est-lating-area	-	_		
30													
20											_		
10.0 23		2316.80 2	328.80	234	10.80 23	52.80	(MHz)	237	6.80 2	2388.80 2	2400.	.80 2412.0	30 2424.80
N	lo.	Frequer (MHz			ading BuV)	Fac (dB/			vel V/m)	Limit (dBuV/		Margin (dB)	Detector
	1	2390.0	00	3	0.18	31.	31	61	.49	74.00)	-12.51	peak
2	2 *	2390.0	00	1	2.38	31.	31	43	.69	54.00)	-10.31	AVG
	narks	(dR/m) = l		_			<u> </u>					.	

Page 48 of 97

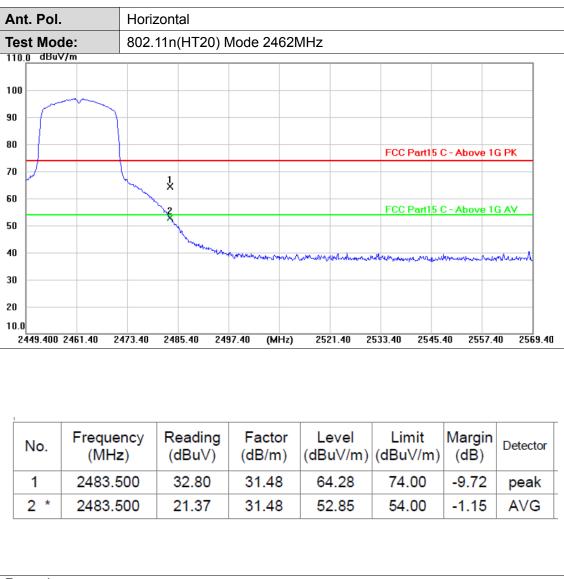
nt. Po	Ι.	Vert	ical					
est Mo	ode:	802	.11g Mode 2	2412MHz				
10.0 dBi	uV/m	-						
							~~	
						FCC Part15	(1) - 1	
						FCC Partis	C-ADOVE I	GPK
		_				FCC Part15	C - Above 1	GAV
		_				×		
						2.		
hunder	hter messeen and het laws	reallysourch	hand the second s	appression and the second	, and a second contraction and a	An and the second s		
.0								
2304.00	0 2316.00 2	2328.00	2340.00 23	852.00 (MHz)	2376.00	2388.00 2400	.00 2412.	00 2424.
No.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.0	00	21.06	31.31	52.37	74.00	-21.63	peak
2 *	2390.0	00	7.08	31.31	38.39	54.00	-15.61	AVG

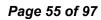
802	.11g Mode 2				C - Above 1	
	1×					
	1×					
	1× ×					
	1× 					
	*					
	*					
	1× ×			FCC Part15	<u>C - Above 1</u>	<u>G AV</u>
	2 martine	and a second and a		FCC Part15	C - Above 1	<u>G AV</u>
		nunenge Martine mutar politice				
	. www.where	many Mallon and a sold with a				
			monormanita	water	whenter	Lanny
2473.40	2485.40 24	197.40 (MHz)	2521.40	2533.40 2545	5.40 2557.4	40 2569.4
quency /IHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
3.500	32.54	31.48	64.02	74.00	-9.98	peak
3 500	20.83	31.48	52.31	54.00	-1.69	AVG
8	lHz)	IHz) (dBu∨) 3.500 32.54	IHz) (dBuV) (dB/m) 3.500 32.54 31.48	IHz) (dBuV) (dB/m) (dBuV/m) 3.500 32.54 31.48 64.02	IHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 3.500 32.54 31.48 64.02 74.00	IHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 3.500 32.54 31.48 64.02 74.00 -9.98

ΠC	. Pol.		Vert	ical								
es	t Mod	le:	802	11g N	Node 2	2462MI	Hz					
00.0) dBu∖	/m										
0		~~~										
0	ſ									FCC Pa	t15 C - Above	1G PK
0												
0				1×						FCC Par	t15 C - Above	1G AV
o												
0				¥.	mound	and the second second	mehan	hand	Yee, Wayner Ma	herebenner	normantani	www.
0												
0												
0												
0.0 24	49.400	2461.40 2	473.40	2485	.40 2 /	497.40	(MHz)	252	1.40	2533.40 2	545.40 255	7.40 2569.
				_								
N	lo.	Freque (MHz			ading 3u∨)	Fac (dB/	ctor /m)		vel V/m)	Limit (dBuV/r		Detector
	lo. 1		:)	(dE			/m)	(dBu			m) (dB)	Delector


Ant.	Pol.		Hori	zonta	al								
Test	Mod	de:	802.	11n(HT20)	Mode	2412	ИНz					
110.) dBu	V/m											
100													
90												\frown	
80										FCC	Part15	C - Above 10	G PK
70													- L
60										↓ ¥ <mark>FCC</mark>	Part15	C - Above 1	GAV
50										3			
40		unter months with	manun	week-come	and and a second state	Kneen	mandlehre	Lundmahn	والمعراب ليعطر وروادهم	and a second			
30										_			
20										_			
10.0	04 800	2316.80 2	328.80	234	10.80 2	352.80	(MHz)	237	6.80 2	2388.80	2400.	80 2412.8	0 2424.80
						1		1					
N	o.	Frequer (MHz			ading BuV)		ctor 8/m)		vel iV/m)	Lin (dBu)		Margin (dB)	Detector
1		2390.0	00	2	7.06	31	.31	58	.37	74.	00	-15.63	peak
2	*	2390.0	00	14	4.28	31	.31	45	.59	54.	00	-8.41	AVG
	narks	: (dD/ma) = /				(م ه /						fier Feet	

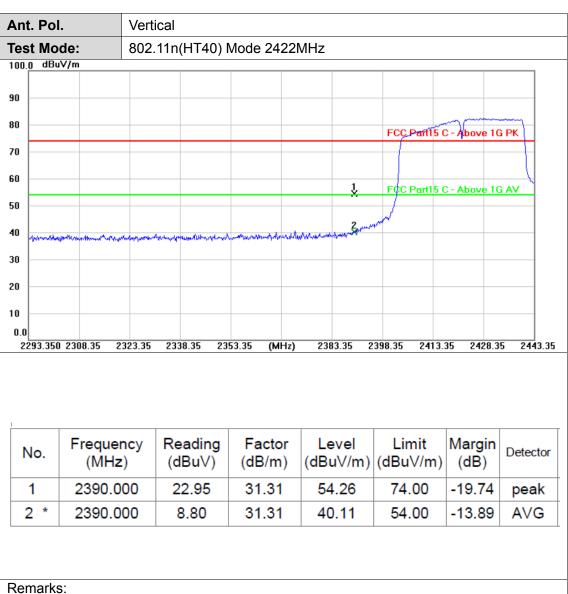
Page 52 of 97




EN

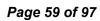
Ant. Pol.			Verti	cal					
es	t Mo	de:	802.	11n(HT20) l	Mode 2412	MHz			
00.0) dBu	V/m							
0									
0							FCC Part15 (- Ahove 1(3 PK
0									
0							CC Part15	C-Above 10	SAV
0									
0							2		
	R. Mar Mar	mangeneration	and the second	an a	www.alline.com.allin	algen and the second and the	www.		
0									
0									
0									
0.0									
23	04.000	2316.00 2	328.00	2340.00 23	52.00 (MHz)	2376.00 2	388.00 2400.	00 2412.0	0 2424.0
N	10.	Freque (MHz		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	2390.0	00	23.88	31.31	55.19	74.00	-18.81	peak
2	2 *	2390.0	00	6.90	31.31	38.21	54.00	-15.79	AVG

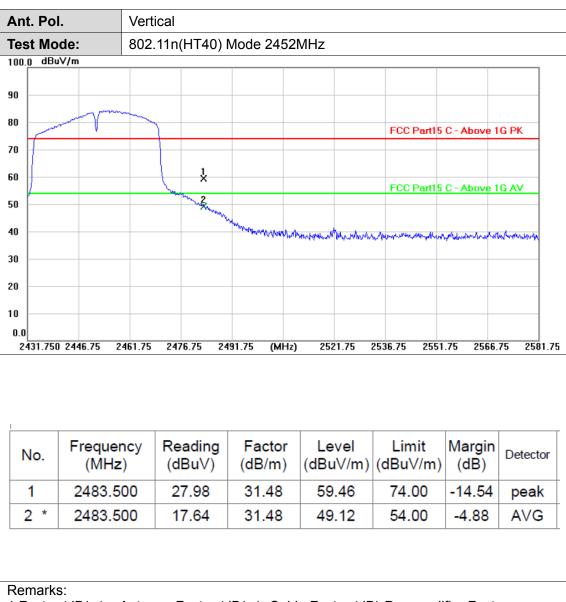
nt. Po	I.	Verti	cal					
est Mo	ode:	802.	11n(HT20)	Mode 2462	MHz			
0.0 dB	uV/m							
\square						FCC Part15	C - Above 1	G PK
		L	1×			FCC Part15	C - Above 1	GAV
		- No	Lu					
			₹.					
			March and and	umanue Malahana	Mar Mar and a second and a second	maruhanahanah	manun	en and the second
.0								
	0 2461.40 2	473.40	2485.40 2	497.40 (MHz)	2521.40	2533.40 2545	.40 2557.	40 2569.
No.	Freque (MHz	-	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.5	00	24.70	31.48	56.18	74.00	-17.82	peak
	2483.5	00	11.33	31.48	42.81	54.00	-11.19	AVG
2 *								
2 *								


2.Margin value = Level -Limit value

EN

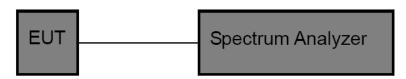
nt. Po	I.	Horiz	zontal					
est Mo	de:	802.	11n(HT40)	Mode 2422	MHz			
0.0 dB	uV/m		,					
00								
ı							~~~	
ı						FCC Part15	C. About 1	C DK
, ⊨						FGC Partis	C-ADOVE I	
					1			1
)					×	FCC Part15	C - Above 1	G AV
)					3mm			
)	Mandar Marchar Marchart	1000 maria	when have been the of the owned	sh malada and an a far and a second	+ Langer and Longer			
,								
).0								
	0 2308.75	2323.75	2338.75 23	53.75 (MHz)	2383.75	2398.75 2413	.75 2428.	75 2443.
No.	Freque (MH:		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.0	000	27.95	31.31	59.26	74.00	-14.74	peak
2 *	2390.0	000	15.27	31.31	46.58	54.00	-7.42	AVG





nt. Po	I.	Horiz	ontal						
est Mo	ode:	802.1	1n(H	Γ40) I	Mode 2452	2MHz			
10. <u>0</u> dB	uV/m					1			
00									
			7						
) -							FCC Part15	C - Above 1	G PK
				ł					
)			L.	~			FCC Part15	C - Above 1	GAV
· Ě				- Aler	v,				
ı					mar and sugar	-	water and a state of the state	drama na mana ang ka	handbortoman
ı									
).0	0 2444.50 2	459.50	2474.5		189.50 (MHz) 2519.50			
No.	Frequer (MHz		Read (dBu		Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2483.5	00	34.3	33	31.48	65.81	74.00	-8.19	peak
2 *	2483.5	00	19.9	93	31.48	51.41	54.00	-2.59	AVG

Page 58 of 97



3.4. Band edge and Spurious Emissions (Conducted)

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings: RBW = 100 kHz, VBW ≥ RBW, scan up through 10th harmonic. Sweep = auto, Detector function = peak, Trace = max hold
- Measure and record the results in the test report.

Test Mode

Please refer to the clause 2.4.

Test Results

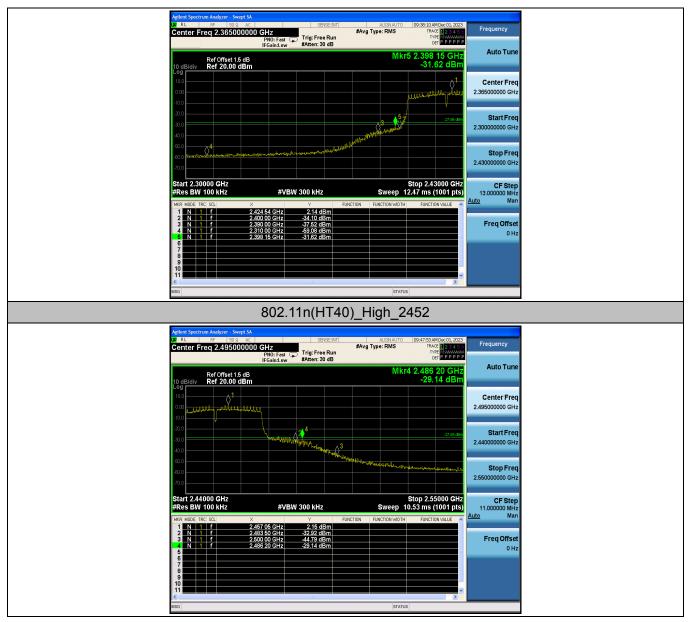
EN

(1) Band edge Conducted Test

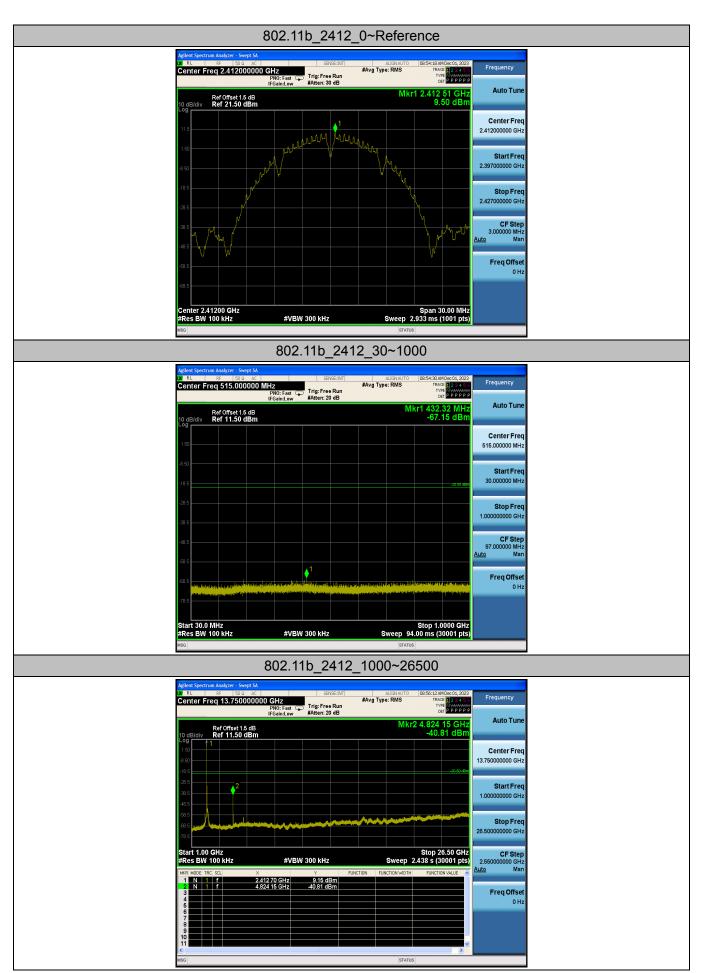
Test Mode	Test Frequency	Ref Level[dBm]	Result[dBm]	Limit[dBm]	Verdict
902 11b	2412	9.38	-38.17	≤-20.62	PASS
802.11b	2462	8.75	-51.83	≤-21.25	PASS
902 11 a	2412	6.05	-26.36	≤-23.95	PASS
802.11g	2462	5.99	-32.28	≤-24.02	PASS
902 11p(UT20)	2412	5.97	-27.33	≤-24.03	PASS
802.11n(HT20)	2462	5.49	-35.66	≤-24.51	PASS
902 11p(UT40)	2422	2.14	-31.62	≤-27.86	PASS
802.11n(HT40)	2452	2.15	-29.14	≤-27.85	PASS

EN

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Http://www.sz-ctc.org.cn Fax: (86)755-27521011 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn



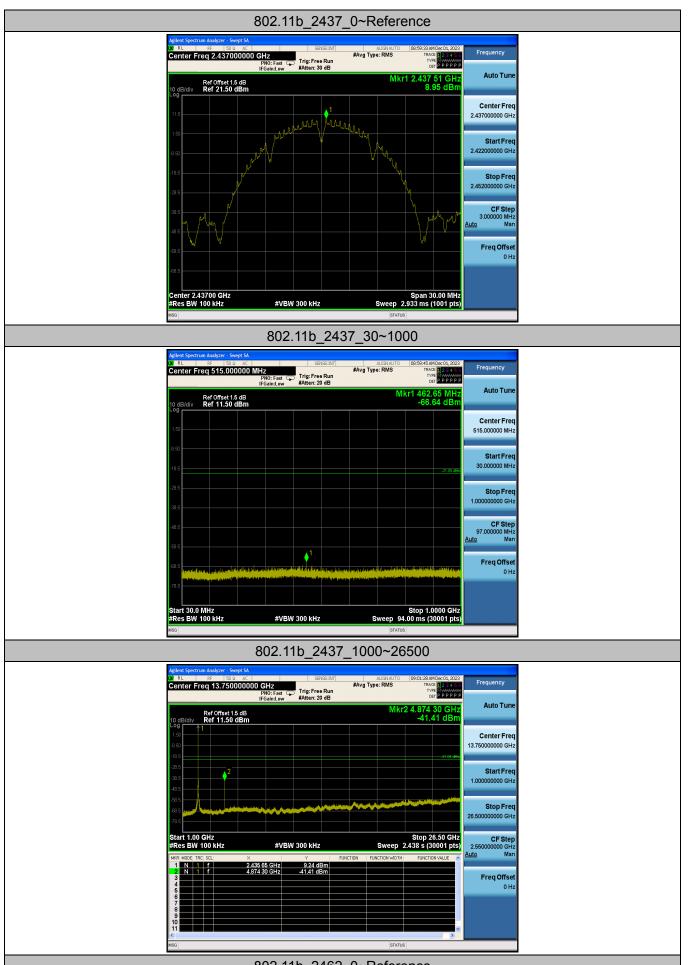
1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn



EN

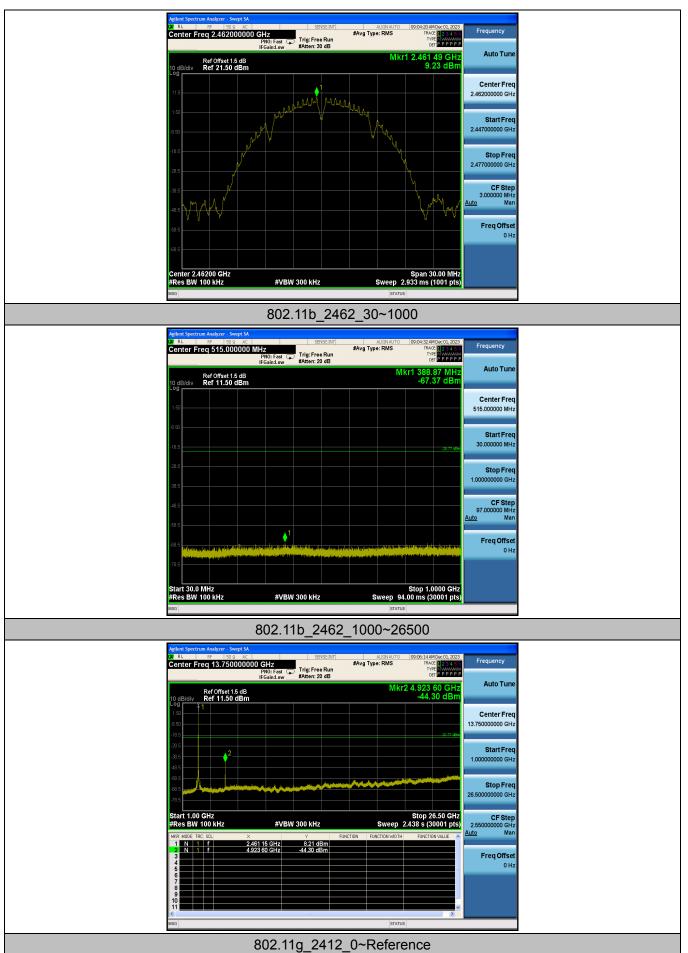
(2) Conducted Spurious Emissions Test

Test Mode	Frequency[MHz]	Freq Range [Mhz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
		Reference	9.50	9.50		PASS
	2412	30~1000	9.50	-67.15	≤-20.5	PASS
		1000~26500	9.50	-40.81	≤-20.5	PASS
		Reference	8.95	8.95		PASS
802.11b	2437	30~1000	8.95	-66.64	≤-21.05	PASS
		1000~26500	8.95	-41.41	≤-21.05	PASS
		Reference	9.23	9.23		PASS
	2462	30~1000	9.23	-67.37	≤-20.77	PASS
		1000~26500	9.23	-44.3	≤-20.77	PASS
		Reference	6.08	6.08		PASS
	2412	30~1000	6.08	-67.38	≤-23.92	PASS
		1000~26500	6.08	-51.09	≤-23.92	PASS
		Reference	6.31	6.31		PASS
802.11g	2437	30~1000	6.31 6.31 $$ 6.31 -67.16 ≤ -23.6 6.31 -53.37 ≤ -23.6 5.57 5.57 $$ 5.57 -67.74 ≤ -24.6	≤-23.69	PASS	
		1000~26500	6.31	-53.37	≤-23.69	PASS
		Reference	5.57	5.57		PASS
	2462	30~1000	5.57	-67.74	≤-24.43	PASS
		1000~26500	5.57	-54.89	≤-24.43	PASS
		Reference			PASS	
	2412	30~1000	6.08	-67.59	≤-23.92	PASS
		1000~26500	6.08	-51.95	≤-23.92	PASS
		Reference	5.73	5.73		PASS
802.11n(HT20)	2437	30~1000	5.73	-68.02	≤-24.27	PASS
		1000~26500	5.73	-55.1	≤-24.27	PASS
		Reference	5.86	5.86		PASS
	2462	30~1000	5.86	-67.67	≤-24.14	PASS
		1000~26500	5.86	-54.83	≤-24.14	PASS
		Reference	2.00	2.00		PASS
	2422	30~1000	2.00	-68.34	≤-28	PASS
		1000~26500	2.00	-55.07	≤-28	PASS
		Reference	1.98	1.98		PASS
802.11n(HT40)	2437	30~1000	1.98	-68.41	≤-28.02	PASS
		1000~26500	1.98	-54.52	≤-28.02	PASS
		Reference	2.14	2.14		PASS
	2452	30~1000	2.14	-67.05	≤-27.86	PASS
		1000~26500	2.14	-55.19	≤-27.86	PASS



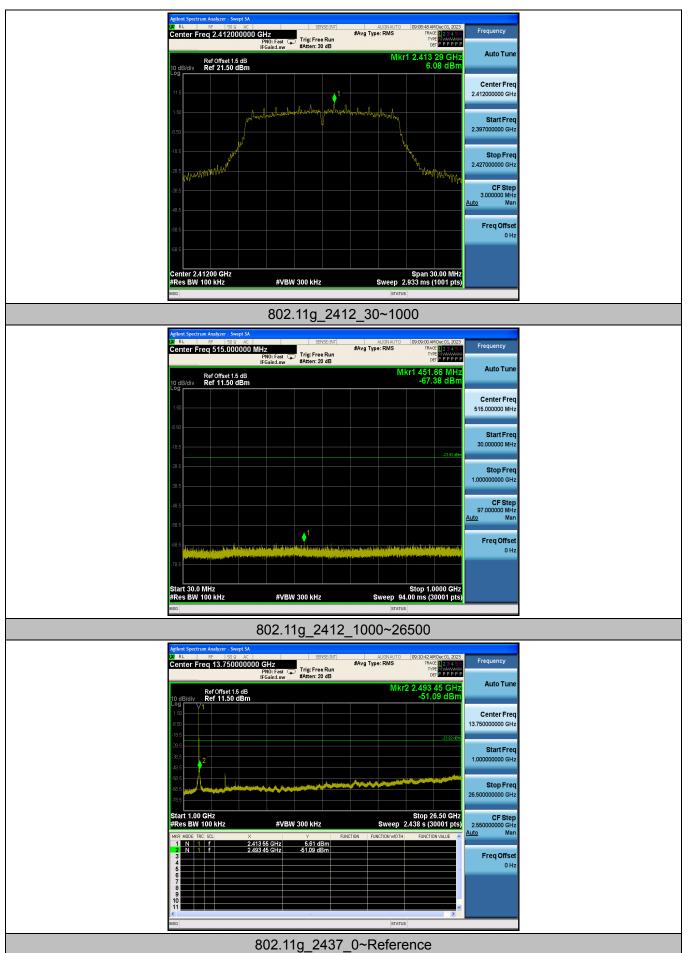
EN

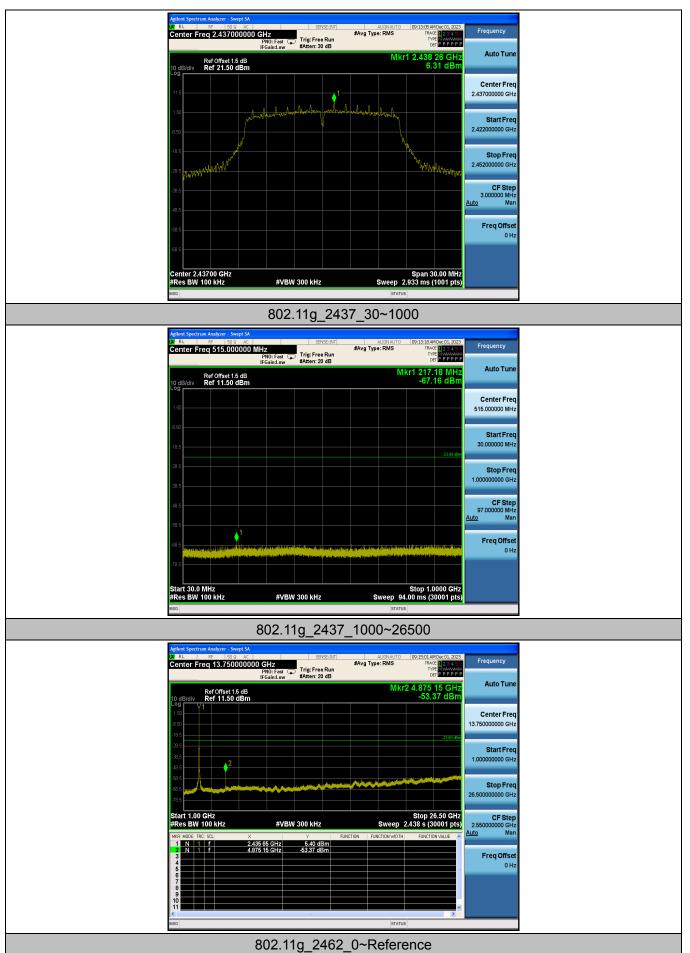
1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

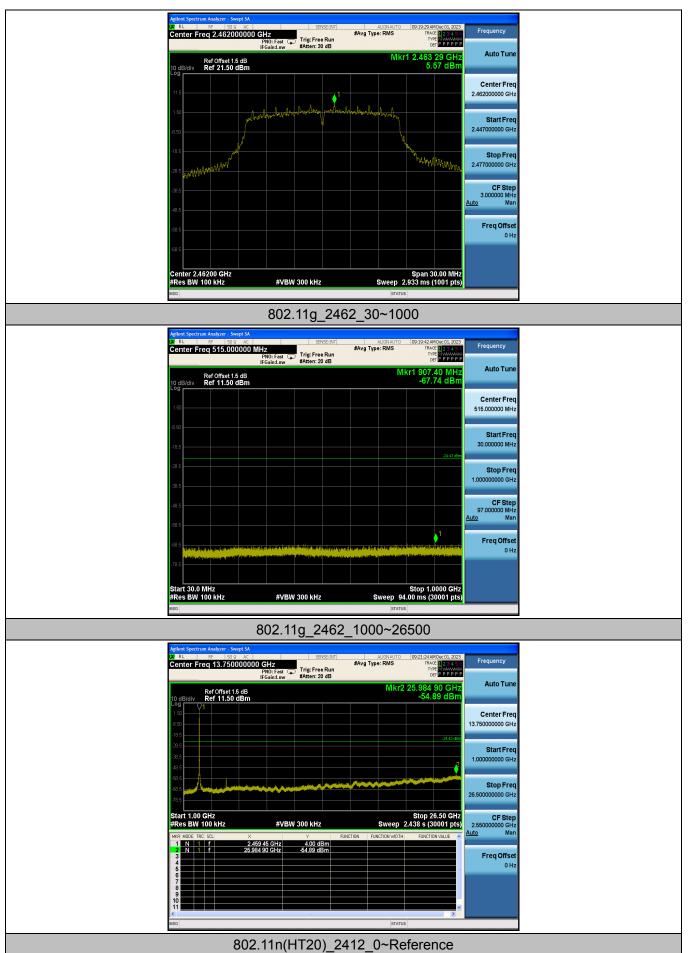


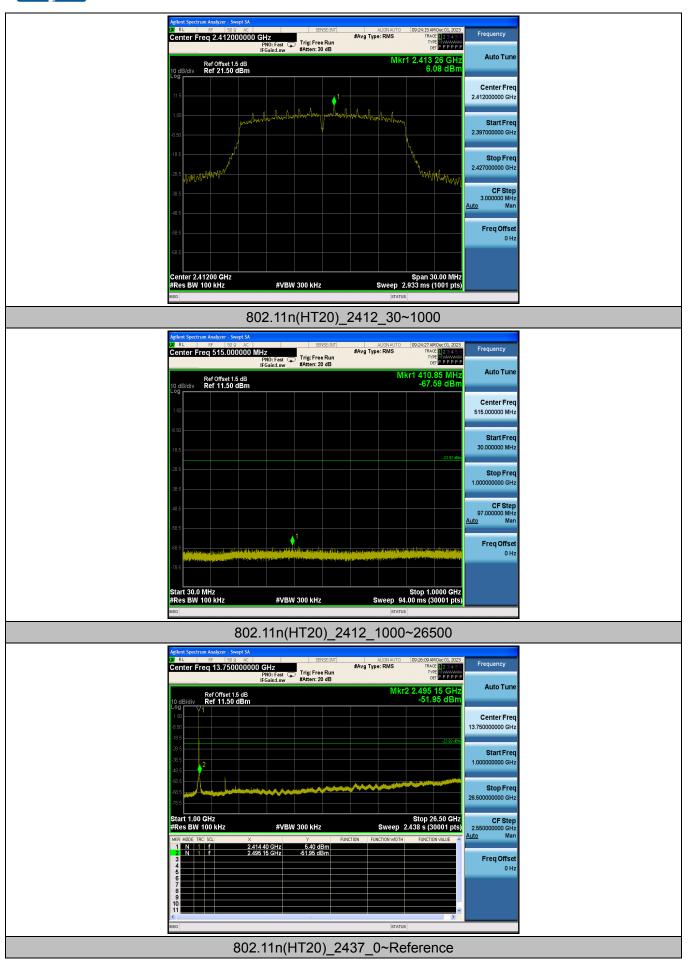
802.11b_2462_0~Reference

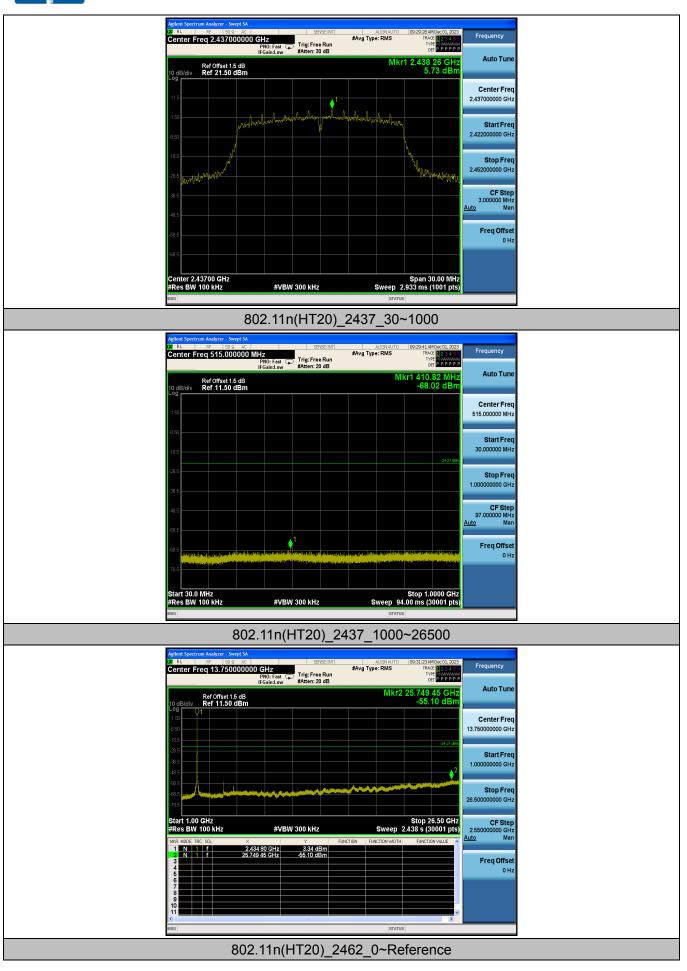
EN

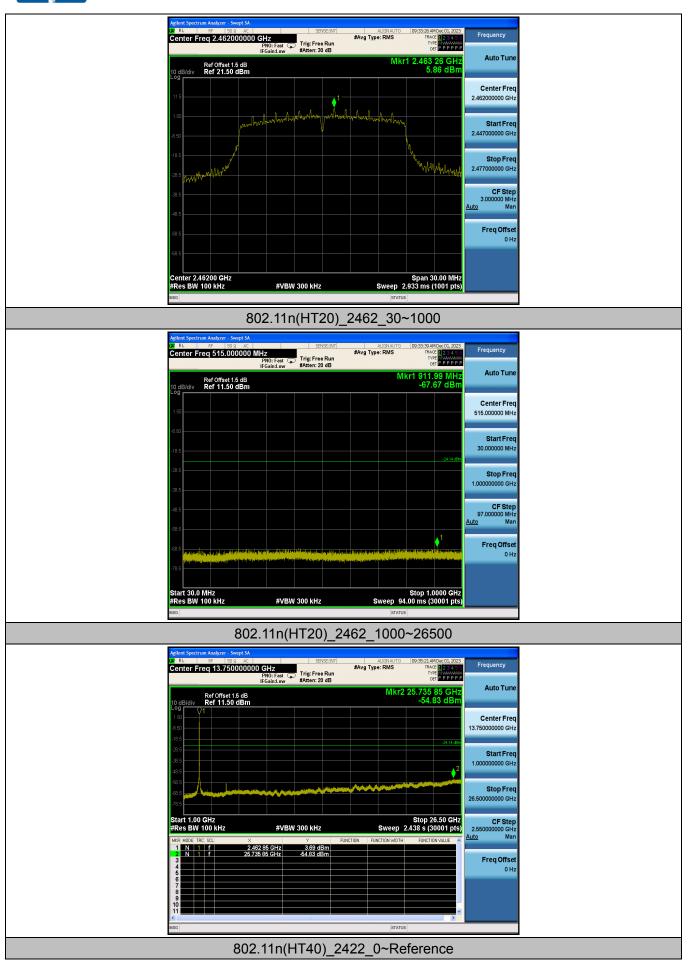

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

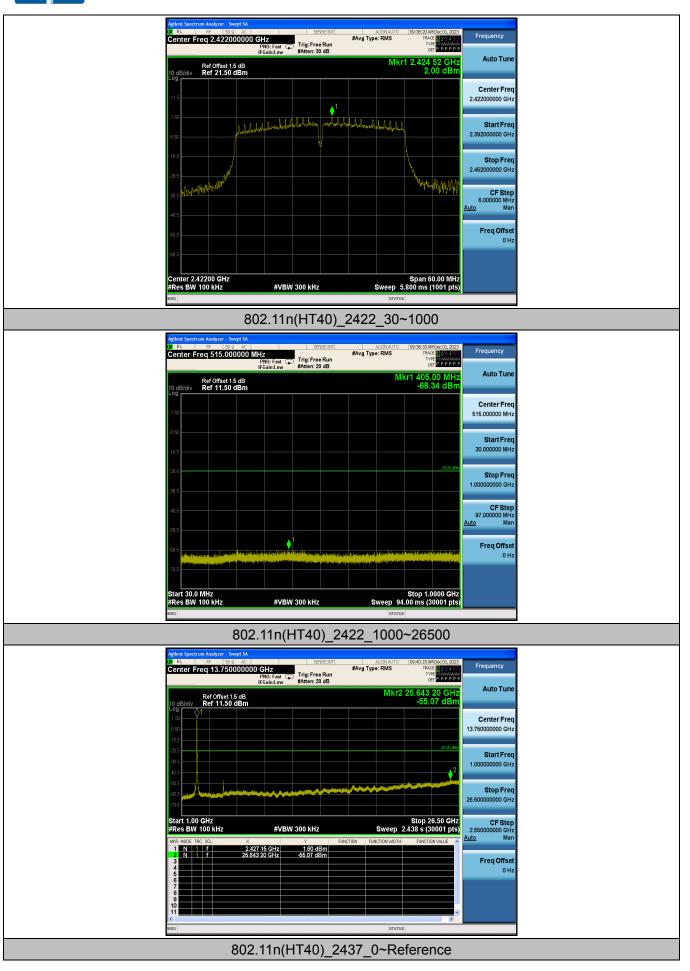


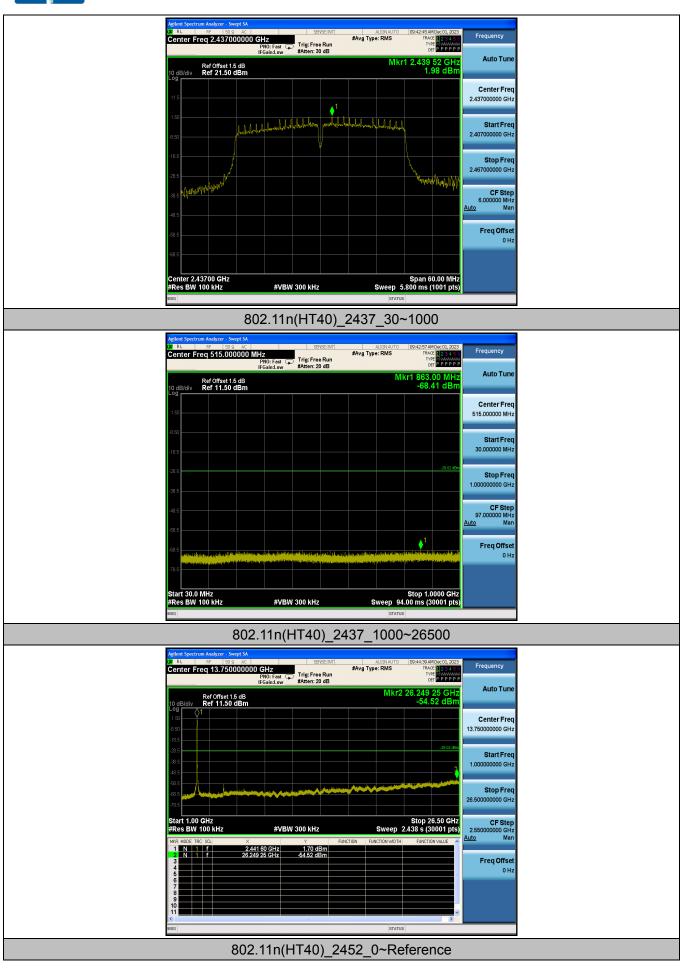


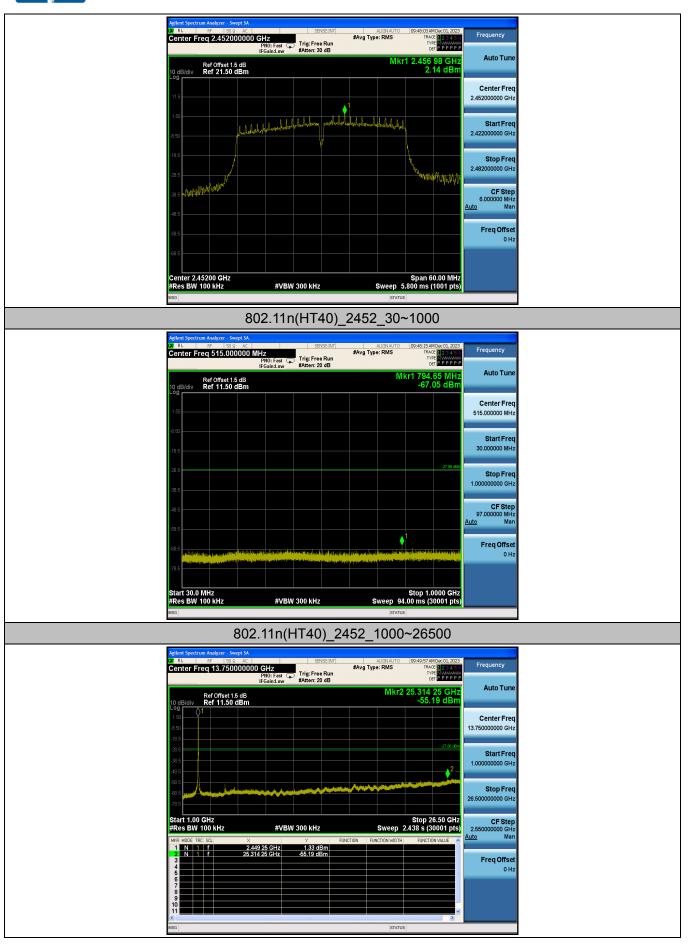












EN

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 中国国家认证认可监督管理委员会

3.5. DTS Bandwidth

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2)/ RSS-247 5.2 a:

Test Item	Limit	Frequency Range(MHz)
DTS Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5

Test Configuration

Test Procedure

- 5. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 6. DTS Spectrum Setting:
 - (1) Set RBW = 100 kHz.
 - (2) Set the video bandwidth (VBW) \geq 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.
 - OCB Spectrum Setting:
 - (1) Set RBW = $1\% \sim 5\%$ occupied bandwidth.
 - (2) Set the video bandwidth (VBW) \ge 3 RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

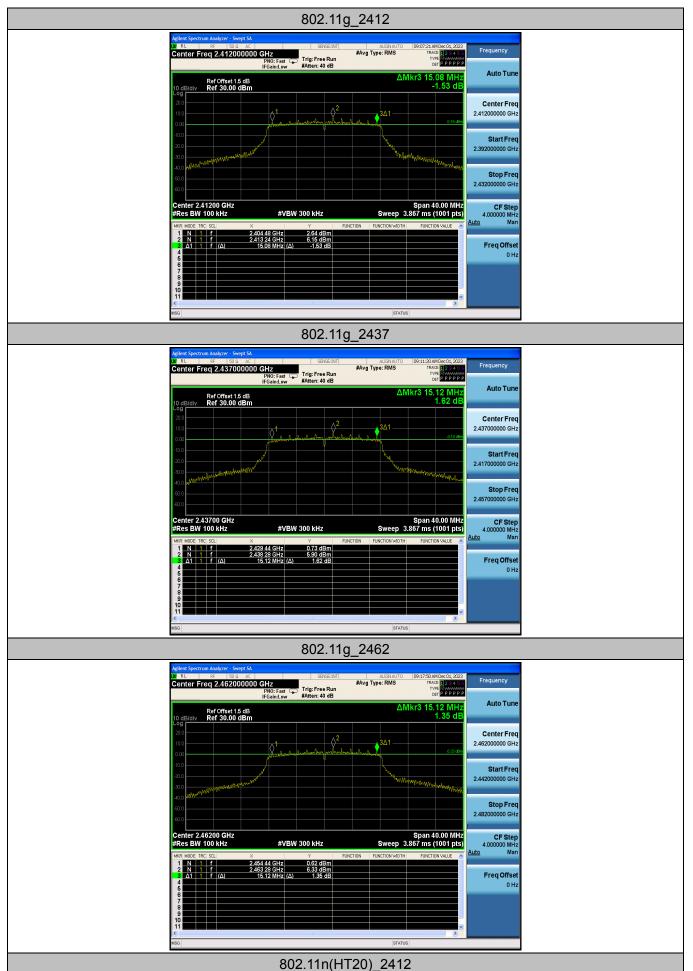
NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

Please refer to the clause 2.4.

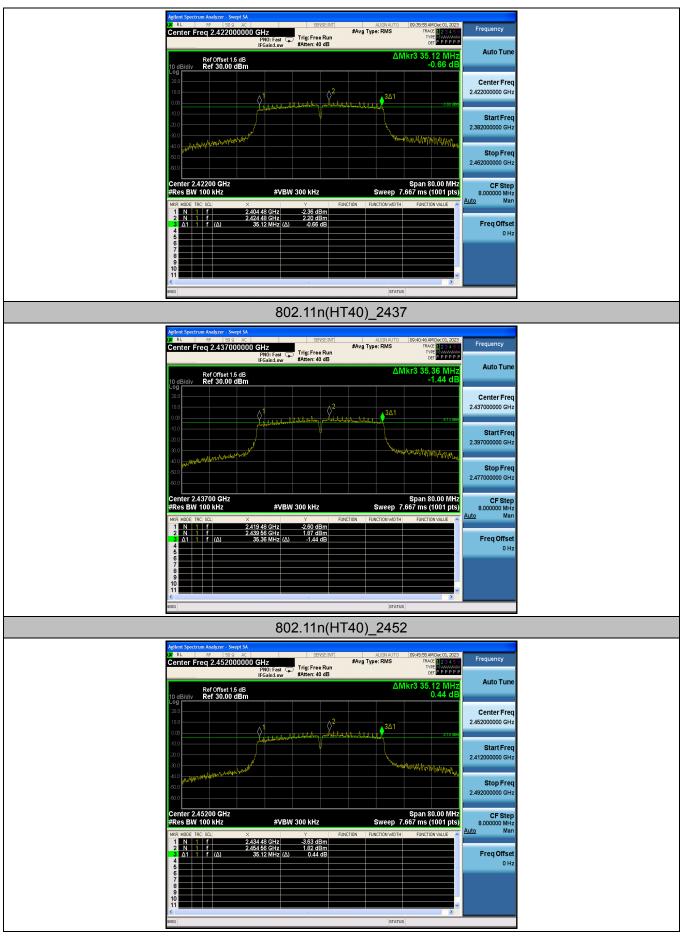
Test Results

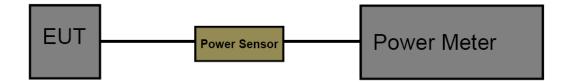
Test Mode	Channel	DTS BW [MHz]	Limit [MHz]	Verdict
802.11b	2412	8.080	>=0.5	PASS
	2437	8.080	>=0.5	PASS
	2462	7.600	>=0.5	PASS
802.11g	2412	15.080	>=0.5	PASS
	2437	15.120	>=0.5	PASS
	2462	15.120	>=0.5	PASS
802.11n(HT20)	2412	15.120	>=0.5	PASS
	2437	15.640	>=0.5	PASS
	2462	15.120	>=0.5	PASS
802.11n(HT40)	2422	35.120	>=0.5	PASS
	2437	35.360	>=0.5	PASS
	2452	35.120	>=0.5	PASS



1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会


EN


3.6. Maximum Conducted Output Power

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3)/ RSS-247 5.4:

Section	Test Item	Limit	Frequency Range(MHz)
CFR 47 FCC 15.247(b)(3)	Maximum conducted output power	1 Watt or 30dBm	2400~2483.5
ISED RSS-247 5.4 d	EIRP	4 Watt or 36dBm	2400~2483.5

Test Configuration

Test Procedure

- 1. The maximum conducted output power may be measured using a broadband RF power meter.
- 2. Power measurements were performed only when the EUT was transmitting at its AVG power control level using a broadband power meter with a pulse sensor.
- 3. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter.
- 4. Record the measurement data.

<u>Test Mode</u>

Please refer to the clause 2.4.

Test Result

EN

Test Mode	Channel	Result Avg [dBm]	Limit [dBm]	Verdict
802.11b	2412	15.41	<=30	PASS
	2437	15.22	<=30	PASS
	2462	15.22	<=30	PASS
802.11g	2412	14.12	<=30	PASS
	2437	14.33	<=30	PASS
	2462	14.13	<=30	PASS
802.11n(HT20)	2412	14.00	<=30	PASS
	2437	13.74	<=30	PASS
	2462	13.57	<=30	PASS
802.11n(HT40)	2422	13.19	<=30	PASS
	2437	13.13	<=30	PASS
	2452	12.83	<=30	PASS

Note: Test results increased RF cable loss by 1.5dB and Duty Cycle Factor.

3.7. Power Spectral Density

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e)/ RSS-247 5.2 b:

Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

Test Configuration

Test Procedure

1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

2. The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

3. Spectrum Setting:

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

Set the VBW to: 10 kHz

Detector: PK

Sweep time: Auto

Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

Test Mode

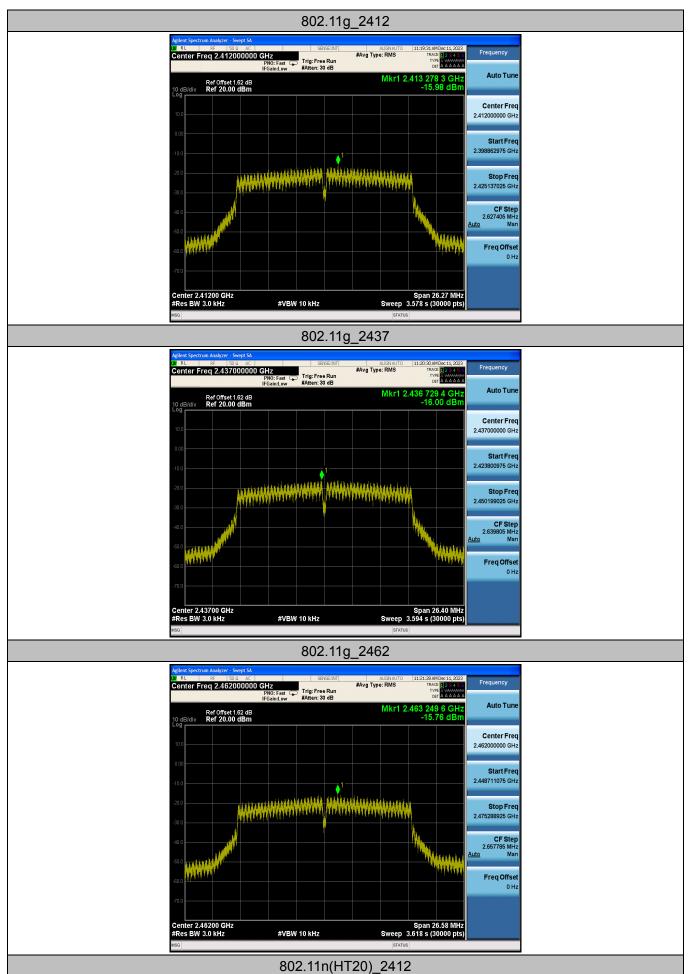
Please refer to the clause 2.4.



EN

Test Mode	Channel	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
802.11b	2412	-12.72	<=8	PASS
	2437	-12.82	<=8	PASS
	2462	-12.40	<=8	PASS
802.11g	2412	-15.98	<=8	PASS
	2437	-16.00	<=8	PASS
	2462	-15.76	<=8	PASS
802.11n(HT20)	2412	-16.37	<=8	PASS
	2437	-16.27	<=8	PASS
	2462	-16.15	<=8	PASS
802.11n(HT40)	2422	-19.23	<=8	PASS
	2437	-19.25	<=8	PASS
	2452	-18.75	<=8	PASS

Note: Test results increased Duty Cycle Factor.



1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn