

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 1 of 46

FCC Test Report

Applicant : Matco Tools

Address 4403 Allen Rd. Stow, OH 44224 USA, Stow, Ohio,

United States

Product Name : Automotive Diagnostic Scan Tool

Report Date : Nov. 20, 2023

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 2 of 46

Contents

1. General Information			Pr.
1. General Information	VUpaler b	obode yes	Ampor
1.1. Client Information		Kiporo Am	
1.2. Description of Device (EUT))
1.5. Auxiliary Equipment Osed During Test	oojek Vijeo,	- Otek	"poss; """"
1.5. Description of Test Modes	rek anbore	Vuga er	hotek 10
1.6. Measurement Uncertainty	V _{Up}	iek Vilpose	10
1.7. Test Summary			1 [.] 1
1.8. Description of Test Facility	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	por Arr	12
1.9. Disclaimer	W. rek		1
1.10. Test Equipment List	Y	wotek Anbo	wii
Conducted Emission at AC power line	oleh Viboler	WD SK	
2.1. EUT Operation		Aupore A	1
2.2. Test Setup	Wpo.c. Villa	94	
2.3. Test Data			16
3. Duty Cycle	Motok Wi	Pole Vur	18
3.1. EUT Operation	Vur.	hotek Anbo	18
3.2. Test Setup	k bupor	bi.	18
3.3. Test Data	otek Aupoter	PUD - Sk	46,
1.1. Client Information	, bokek	Pupore VI	19
4.1. EUT Operation	upore Air	sk "po ^{tek}	And 20
4.2. Test Setup	Total Aubo		20
4.3. Test Data	Polisk Vil	30 ⁴⁶ A ⁷¹	20
4.2. Test Setup. 4.3. Test Data. 5. Power spectral density	Aur Jek	Anbotek Anbo	21
5.1. EUT Operation	Aupo,	r. "Ojek Vupoj,	22
5.2. Test Setup	¹⁶ / ₂	Yu.	, at 23
6.1. EUT Operation	por bu	K Mhoter	24
6.1. EUT Operation	aboten And	Jorgk John Jorgk	25
6.2. Test Setup	Hotek pat	or All	26
6.3. Test Data	Aug Sept	"Upotek Vupo	26
7. Band edge emissions (Radiated)	Aupo.	". Hotek bulous	2
7.1. EUT Operation	iek Vupo _{se} .	Aun vok	otek Anbox
7.2. Test Setup	- SA SOLEK	Wipo, K.	30
7.3. Test Data	100, V. W.	s <u>anb</u> orer l	3°
6.3. Test Data	Anboten Anb		3
8.1. EUT Operation	, botek Anbi	D. Viek	Anboten
8.2. Test Setup	Viek V	opole Aun	38
8.3 Test Data			39
9. Undesirable emission limits (above 1GHz) 9.1. EUT Operation	ek Anbore	Vu	
9.1. EUT Operation	dek sabotek	Aug.	note ^k M43

Report No.: 182	200003022	4304	FCC ID: ZA	UKIVINITIMA	X5 rek	Page 3 of	46
9.2. Test Setup	Anbotek	Anbore	VII.	Anboten	Auprotek	Anbotek	44
9.3. Test Data	, otek	Anbo,	rek M	, aboles	VUD.	o ^{†©}	45
APPENDIX I TEST	SETUP PHO	OTOGRAPH.	Wupo.	k potek	Anbore.	VUD	
APPENDIX II EXTE				þ.	00 do 190	yen Aug	46
APPENDIX III INTE							46

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 4 of 46

TEST REPORT

Applicant : Matco Tools

Manufacturer : Matco Tools

Product Name : Automotive Diagnostic Scan Tool

Test Model No. : MAXIMUS5.0

Reference Model No. : N/A

Trade Mark : MATCU TOOLS ()®

Rating(s): Input: 12V 4A(with DC 7.6V, 9360mAh battery inside)

Test Standard(s) 47 CFR Part 15E

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Necelpt.	Oct. 25, 2025
Date of Test:	Oct. 25, 2023 to Nov. 13, 2023
Anbotek Anbotek Anbotek Anbotek	Tu Tu Hong
Prepared By:	Anto Anto Anto Anto Anto Anto Anto Anto
	(TuTu Hong)
Anbotek Anbotek Anbotek Anbotek Anbotek	Idward pan
Approved & Authorized Signer:	Aupor Ali alek Auporen Aup
And stek anbore Am	(Edward Pan)

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 5 of 46

Revision History

Report Version	Description	Issued Date
Anbore R00 potek An	Original Issue.	Nov. 20, 2023
W. Aupotek Aupotek	Anbotek Anbotek Anbotek	Anbotek Anbotek Anb
ore Ambotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anbotek

Report No.: 18220WC30224304 Page 6 of 46

1. General Information

1.1. Client Information

211-	V-	
Applicant	:	Matco Tools
Address	:	4403 Allen Rd. Stow, OH 44224 USA, Stow, Ohio, United States
Manufacturer	:	Matco Tools
Address	:	4403 Allen Rd. Stow, OH 44224 USA, Stow, Ohio, United States

1.2. Description of Device (EUT)

Product Name	1.	Automotive Diagnostic Scan Tool
	•	Aug Total May W. S. A. Doug Aug
Test Model No.	:	MAXIMUS5.0
Reference Model No.	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Trade Mark	:	MATCO (D)
Test Power Supply	:	AC 120V/60Hz for adapter; DC 7.6V battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	Model: XDJ481D-120400 Input: 100-240V~50/60Hz 1.8A Output: 12.0V 4.0A 48.0W
RF Specification		
Operation Frequency	·	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40)/ax(HE40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80)/ax(HE80): U-NII Band 1: 5210MHz; U-NII Band 3: 5210MHz; U-NII Band 3: 5775MHz Note: In Canada, 5600MHz to 5650MHz is not avaliable.
Number of Channel	:	802.11a/n(HT20)/ac(HT20)/ax(HE20): U-NII Band 1: 4; U-NII Band 2A: 4;

Report No.: Page 7 of 46 18220WC30224304 FCC ID: 2AUKMMTMAX5

noter Anb		tek anbor Ari ak hoter Ann tek
		U-NII Band 3: 5;
		000 44-7/11740\///1740\///1740\/
		802.11n(HT40)/ac(HT40)/ax(HE40):
		U-NII Band 1: 2;
		U-NII Band 2A: 2;
		U-NII Band 3: 2;
		ok hotek Anbore All stek Anborek Anb
		802.11ac(HT80)/ax(HE80):
		U-NII Band 1: 1;
		U-NII Band 2A: 1;
		U-NII Band 3: 1
		802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM);
Madulatian Tura	١.	802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);
Modulation Type	•	802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
		802.11ax: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
Antenna Type	:	FPC Aantenna
		ANT 114 More Annual Ann
		Wi-Fi 5.2G: 3.38dBi
		Wi-Fi 5.3G: 3.62dBi
Antenna Gain(Peak)	۱.	Wi-Fi 5.8G: 1.64dBi
		ANT 2:
		Wi-Fi 5.2G: 3.37dBi Wi-Fi 5.3G: 3.08dBi
		Wi-Fi 5.8G: 2.42dBi
		110.10.00.2.12001

Remark:

- (1) All of the RF specification are provided by customer.(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) ANT 1 and ANT 2 can not support MIMO

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 8 of 46

1.3. Auxiliary Equipment Used During Test

Title Manufacturer		Model No.	Serial No.	
	Ar. Anboter	And sekl abotek	Aupo, T W. Potek	Aupole, Aug

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 9 of 46

1.4. Operation channel list

Operation Band: U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
nek 36 botek	5180	Anborek 38 Anbo	5190	42	5210
botek 40 Anbotek	5200	mb 46 An	5230	sk Wpolen	Anbo Lek
botek44 Anbo	5220	ank Brek	Anbore And	potek / Anboten	And rek
48	5240	ek Inbotek	Auport Au	abotek / Anbot	A Protok

Operation Band: U-NII Band 2A

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52 N	5260	54	5270	atek 58 Anbotel	5290
56	5280	62 botek	5310	anb anb	Pick Wipour
60	5300	port / Anna bore	K Mootes	Vupp 16k	nbotek / Anbor
64	5320	Auport al	otek / Anbotek	Androk	anbotek/ Ant

Operation Band: U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel Mark	Frequency (MHz)
149	5745	nbotel 151 And	5755	155	300°5775 Anbo
153 ^{nbo}	5765	159	5795 Andorrel	Puho.	Arotak Ar
Anborek 157 Anbor	5785	Aupore. A	hotek/ Anbe	tek Vupo	h. Morek
Anbot 161 Anb	5805	APOTO	Aug Poster	hotek / Anbo	ek Inbotek
165	5825	John Aupore	All	Anbotek / Anbo	otek / Anbotek

Hotline

400-003-0500

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 10 of 46

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek TM1 Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
otek Anbotek AnTM2 Anbotek Anbotek Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM3 Anbotek Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
nbotek Anbotek Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anborek TM5	Keep the EUT works in normal operating mode and connect to companion device

1.6. Measurement Uncertainty

Parameter	Uncertainty		
Conducted emissions (AMN 150kHz~30MHz)	3.4dB		
Conducted Output Power	0.76dB		
Occupied Bandwidth	925Hz		
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB		
Radiated emissions (Below 30MHz)	3.53dB And Lotek Anbotek Anbotek		
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB		
The measurement uncertainty and decision risk e	evaluated according to AB/WI-RF-F-032.		

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 11 of 46

1.7. Test Summary

Test Modes	Status
Mode1,2,3,4	P
Mode1,2,3,4	PARTE
Mode1,2,3,4	P
Mode1,2,3,4	nbott Pk
Mode1,2,3,4	Aupor P
Mode1,2,3,4	APP OF
Mode1,2,3,4	Panbo
Mode1,2,3,4	PAR
	Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4 Mode1,2,3,4

N: N/A, not applicable

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 12 of 46

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 13 of 46

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Anbore	k Vill.	Anbotek	Aupo
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2023-10-12	2024-10-11
2 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2023-07-05	2024-07-04
3	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	2023-10-12	2024-10-11
4 4	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A N/A	rek /Anbotek	Anbor

Duty Cycle

Maximum conducted output power

Power spectral density

Emission bandwidth and occupied bandwidth

Channel Move Time, Channel Closing Transmission Time

Non-Occupancy Period Test

DFS Detection Thresholds

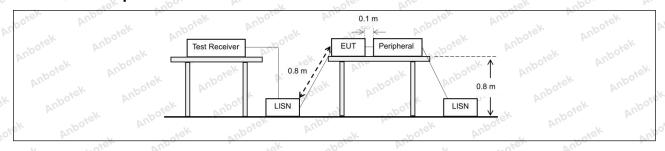
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
2	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
An3otel	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-02-23	2024-02-22
4,70	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
5 🕨	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2023-02-23	2024-10-22

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 14 of 46

Ote.	And	atek anbo.	-ak	-boye.	VUD.	ysio
	edge emissions (Ra sirable emission limi		Aupo, polek	Aupotek	Aupoter.	Anbotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2023-10-12	2024-10-11
3 3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbole 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Anhotek	Aupolek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
e ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Unde	sirable emission limi	ts (below 1GHz)				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
, 2	Pre-amplifier	SONOMA	310N	186860	2023-10-12	2024-10-11
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
Antorel	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	VUA OLEK	Andrek
5,00	Loop Antenna	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 15 of 46

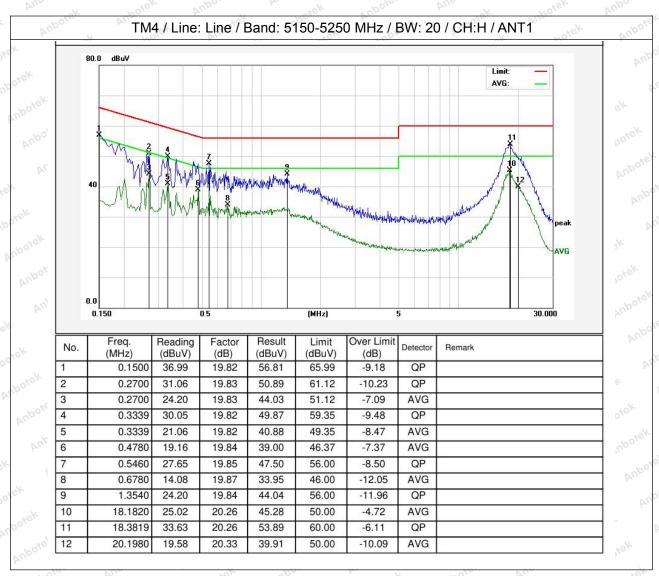

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	rek spotek Aupo	ye. Yur
An abover	Frequency of emission (MHz)	Conducted limit (dBµV)	upoter And
Aupo, W.	el anborer And	Quasi-peak	Average
K botek Anbo	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5	56°	46 100 tell
otek Aupora Ar	5-30 And And	60 Johek Anbo	50
otek unbotek	*Decreases with the logarithm of th	ne frequency.	Anbo
Test Method:	Refer to ANSI C63.10-2013 section line conducted emissions from unli		

2.1. EUT Operation

Operating Env	vironment; rek Anborek Anborek Anborek Anborek Anborek Anborek
upotek Aupote	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anbotek Anbotek	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
	4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

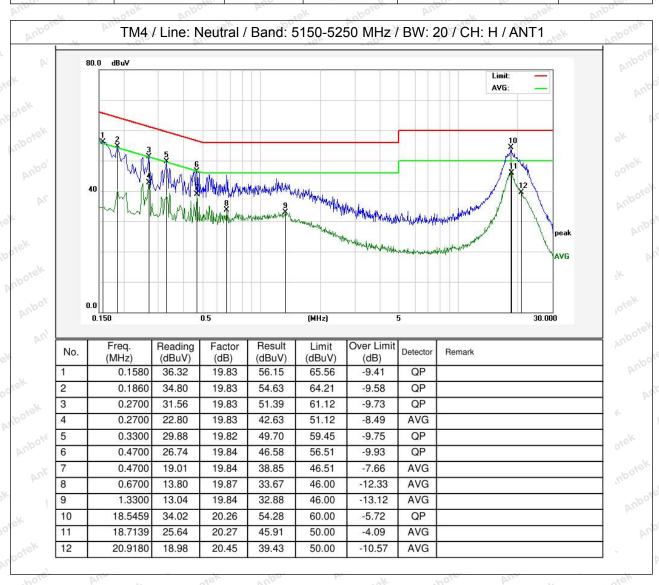
2.2. Test Setup



Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 16 of 46

2.3. Test Data

Temperature: 22.5 °C Humidity: 51.9 % Atmospheric Pressure: 102 kPa

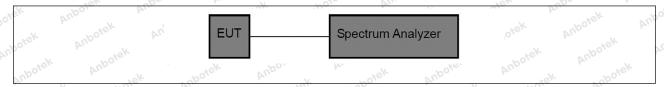


Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 17 of 46

Temperature: 22.5 °C Humidity: 51.9 % Atmospheric Pressure: 102 kPa

Note:Only record the worst data in the report.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 18 of 46


3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Anbotek Anbotek Anbotek Anbotek	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value.
Procedure:	iii) Set VBW >= RBW. iv) Set detector = peak.
Opotek Aupotek Aug	v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Operating Env	ironment:
tek Aupotek	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anbotek An	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Test mode:	3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek Ant	4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

3.3. Test Data

Temperature:	25.6 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 19 of 46

4. Maximum conducted output power

Application Main 201	lauctea output power
	47 CFR Part 15.407(a)(1)(iv)
Test Requirement:	47 CFR Part 15.407(a)(2)
Aupo, A.	47 CFR Part 15.407(a)(3)(i)
Anboter Anbo	For client devices in the 5.15-5.25 GHz band, the maximum conducted
rk hotek an	output power over the frequency band of operation shall not exceed 250 mW
	provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
Joseph Polick	maximum conducted output power shall be reduced by the amount in dB tha
	the directional gain of the antenna exceeds 6 dBi.
	Ann tek abotek Anbo
And ak both	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted
	output power over the frequency bands of operation shall not exceed the
	lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission
	bandwidth in megahertz.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that
	the directional gain of the antenna exceeds 6 dBi.
Test Limit:	And ok hotek Anbor An otek Anborer And
	For the band 5.725-5.850 GHz, the maximum conducted output power over
	the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that
	the directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may
	employ transmitting antennas with directional gain greater than 6 dBi without
	any corresponding reduction in transmitter conducted power. Fixed, point-to-
	point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting
	the same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
o. Di.	point-to-point operations.
Test Method:	ANSI C63.10-2013, section 12.3
	Method SA-2
	a) Measure the duty cycle D of the transmitter output signal.
	b) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
k hotek Anbo	c) Set RBW = 1 MHz.
	d) Set VBW >= 3 MHz.
	e) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin
Procedure:	spacing <= RBW / 2, so that narrowband signals are not lost between
upoter And	frequency bins.)
	f) Sweep time = auto.
	g) Detector = RMS (i.e., power averaging), if available. Otherwise, use
	sample detector mode.
	h) Do not use sweep triggering. Allow the sweep to "free run."
	i) Trace average at least 100 traces in power averaging (rms) mode;

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 20 of 46

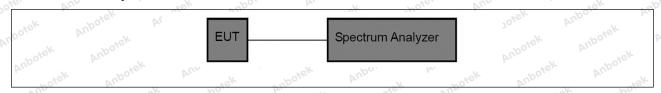
however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.

j) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

4.1. EUT Operation

Operating Environment:


1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

Temperature:	25.6 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa	
--------------	---------	-----------	------	-----------------------	---------	--

Please Refer to Appendix for Details.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 21 of 46

5. Power spectral density

	47 CFR Part 15.407(a)(1)(iv)
Test Requirement:	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Aupoter Aupo	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
potek Anbotek	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.
Anbotek Anbotek Anbotek Anbotek	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2013, section 12.5
otek Anborek A	a) Create an average power spectrum for the EUT operating mode being tested by following the
	instructions in 12.3.2 for measuring maximum conducted output power using a spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their
Procedure:	respective alternatives) and apply it up to, but not including, the step labeled "Compute
An Anotokek	power" (This procedure is required even if the maximum conducted output power
	measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum.
Anbore And Anbor	c) Make the following adjustments to the peak value of the spectrum, if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 22 of 46

the duty

cycle, to the peak of the spectrum.

- 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add
- 1 dB to the final result to compensate for the difference between linear averaging and

power averaging.

- d) The result is the PPSD.
- e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to

satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This

requirement also permits use of resolution bandwidths less than 1 MHz "provided that the

measured power is integrated to show the total power over the measurement bandwidth" (i.e.,

1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated

over 1 MHz bandwidth, the following adjustments to the procedures apply:

- 1) Set RBW >= 1 / T, where T is defined in 12.2 a).
- 2) Set VBW >= [3 × RBW].
- 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

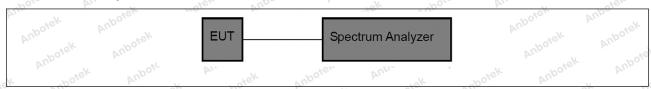
5.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:


- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 23 of 46

5.2. Test Setup

5.3. Test Data

10	Tanàn araturas	OF 6 °C	Llumaidite	40.000	Atmoonbaria Drassura	101 kDa
	Temperature:	25.6 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa

Please Refer to Appendix for Details.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 24 of 46

6. Emission bandwidth and occupied bandwidth

boiek Anbor	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	Anbore Anborek Anborek Anborek Anbore
Anbore And	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Anbotel Anbo	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	And Andrew Andrew Andrew Andrew
ootek Anbotek	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Anbors Air	Emission bandwidth:
Anborer Anb	a) Set RBW = approximately 1% of the emission bandwidth.
ik botek Anb	b) Set the VBW > RBW.
And	c) Detector = peak.
otek Yupo, K	d) Trace mode = max hold.
Anbotek Anbotek	e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.
Anbotek Anbote	Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement
Anbote, And	as needed until the RBW/EBW ratio is approximately 1%.
K Aupo, W.	Occupied bandwidth:
otek Aupotek A	a) The instrument center frequency is set to the nominal EUT channel center frequency. The
nbotek Anbotek	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
Procedure:	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,
Anbore Anbor	and VBW shall be approximately three times the RBW, unless otherwise specified by the
yer Ando	applicable requirement.
hotek Anbore	c) Set the reference level of the instrument as required, keeping the signal from exceeding the
Anbotek Anbotek	maximum input mixer level for linear operation. In general, the peak of the spectral envelope
Anbotek Anbot	shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given
ok botek An	in 4.1.5.2.
otek Vupotek	d) Step a) through step c) might require iteration to adjust within the specified range.
upotek Aupotek	 e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode
h. of poles	shall be used. Otherwise, peak detection and max hold mode (until the trace
Anbore, And	
Anbotek Anbote	stabilizes) shall be used.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 25 of 46

report the measured

bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are

recovered and directly summed in linear power terms. The recovered amplitude data points,

beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached:

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

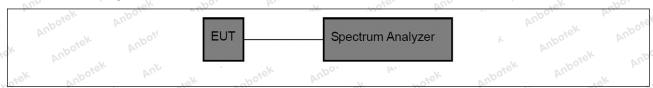
2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only

the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only


Shenzhen Anbotek Compliance Laboratory Limited

the data of worst case is recorded in the report.

6.2. Test Setup

6.3. Test Data

Temperature:	25.6 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
icinperature.	20.0	Trainidity.	TO 70	7 timosphene i ressure.	LIOTKI G

Please Refer to Appendix for Details.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 27 of 46

7. Band edge emissions (Radiated)

	47 CFR Part 15.407(b)(1) Anbo		
And k hotek	47 CFR Part 15.407(b	105		
est Requirement:	47 CFR Part 15.407(b	1.1 1 M		
abotek Anbor	47 CFR Part 15.407(b		abotek	
k upotek Ant	For transmitters opera			
tek abotek	of the 5.15-5.35 GHz t	and shall not exceed	an e.i.r.p. or –z	/ UBITI/IVITZ.
	For transmitters opera	ting in the 5 25 5 35	GHz hand: All er	niccione outcid
	of the 5.15-5.35 GHz b			
	k botek Anbo		Anbore. Ar	
	For transmitters opera	N /		
	All emissions shall be			
	above or below the ba			
ak hotek	above or below the ba			
	edge increasing linear below the band edge,			
	increasing linearly to a			
	MHz	MHz	MHz	GHz
And ak hotel	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
est Limit:	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
le. Aug.	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
aboiek Ambo	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	(2)
	13.36-13.41	Mr. Pak "Pop	Anbo	rek
	¹ Until February 1, 1999	9, this restricted band	I shall be 0.490-	0.510 MHz.
	² Above 38.6			
	The field strength of er not exceed the limits s			

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 28 of 46

ick Aupo	1000 MHz, compliance wi	ith the limits in § 15.209shall be o	lemonstrated
		imentation employing a CISPR q	
		z, compliance with the emission I	
		ated based on the average value	
		s in § 15.35apply to these measur	
	of the Andrews	ek Anboy Air	
	Except as provided elsew	here in this subpart, the emission	s from an
		ot exceed the field strength level	
		A Tis Lativation is not be a Nick Ambore	Ans Ans
o k k otek	Frequency (MHz)	Field strength	Measurement
	Anborek Anbore	(microvolts/meter)	distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30°rek
	1.705-30.0	30 hotel Ambor	30
k hotek A	30-88	100 **	3 1000
And	88-216	150 **	3 above
	216-960	200 **	3 200
	Above 960	500	3 Anbore
		he. / 1-0/2. Ditte	100
		paragraph (g), fundamental emiss	
		ating under this section shall not b	
		Hz, 76-88 MHz, 174-216 MHz or	
		these frequency bands is permit	ttea under otner
	sections of this part, e.g.,	16.	Arra Cak
	6/2	ve, the tighter limit applies at the	///
	1O'1 DN'	n in the above table are based or	
		-peak detector except for the free	
	V 11	l above 1000 MHz. Radiated emi	
		sed on measurements employing	an average
Ar. John	detector.	Yupo, W.	aboter And
est Method:	ANSI C63.10-2013, section	on 12.7.4, 12.7.5, 12.7.6	hotek An
	Above 1GHz:		
	a. For above 1GHz, the E	UT was placed on the top of a ro	tating table 1.5
	meters above the ground	at a 3 meter fully-anechoic cham	ber. The table wa
	rotated 360 degrees to de	termine the position of the higher	st radiation.
	b. The EUT was set 3 me	ters away from the interference-re	eceiving antenna,
	-V- 100'	e top of å variable-height antenna	y • • • • • • • • • • • • • • • • • • •
	VII	varied from one meter to four met	
		naximum value of the field streng	
aboten Ani		of the antenna are set to make th	
rocedure:	010	nission, the EUT was arranged to	
		s tuned to heights from 1 meter to	แอ พษาอเ บดอน
			4 meters (for the
		OMHz, the antenna was tuned to	4 meters (for the heights 1 meter)
	and the rotatable table wa		4 meters (for the heights 1 meter)
	and the rotatable table wa maximum reading.	OMHz, the antenna was tuned to as turned from 0 degrees to 360 c	4 meters (for the heights 1 meter) degrees to find the
	and the rotatable table wa maximum reading. e. The test-receiver system	OMHz, the antenna was tuned to as turned from 0 degrees to 360 o m was set to Peak Detect Function	4 meters (for the heights 1 meter) degrees to find the
	and the rotatable table wa maximum reading. e. The test-receiver system Bandwidth with Maximum	OMHz, the antenna was tuned to as turned from 0 degrees to 360 c m was set to Peak Detect Function Hold Mode.	o 4 meters (for the heights 1 meter) degrees to find the on and Specified
	and the rotatable table wa maximum reading. e. The test-receiver syster Bandwidth with Maximum f. If the emission level of t	OMHz, the antenna was tuned to as turned from 0 degrees to 360 o m was set to Peak Detect Function	o 4 meters (for the heights 1 meter) degrees to find the on and Specified lower than the

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 29 of 46

would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

7.1. EUT Operation

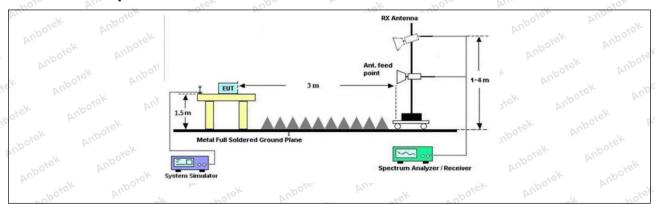
Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 30 of 46

7.2. Test Setup

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 31 of 46

7.3. Test Data

Note: Only record the worst data in the report. (ANT1)

Temperature: 25.6 °C Humidity: 49 % Atmospheric Pressure: 101 kPa

U-NII Band 1&U-NII Band 2A:

U-MII Band I	&U-IVII Band	ZA. '	k 200,	D1.	V 010	and	1
			TM ²	1 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.12	15.99	53.11	68.20	-15.09	nbo'H'	Peak
5150.00	39.22	15.99	55.21	68.20	-12.99	Votek	Peak
5150.00	27.02	15.99	43.01	54.00	-10.99	Hootek	AVG
5150.00	29.11	15.99	45.10	54.00	-8.90	V V	AVG NO
			TM′	1 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.53	16.43	53.96	68.20	-14.24	Hick	Peak
5350.00	40.57	16.43	57.00	68.20	-11.20	V Votek	Peak
5350.00	28.90	16.43	45.33	54.00	-8.67	H A	AVG
5350.00	29.75	16.43	46.18	54.00	-7.82 ₀₀	Sk Aupo	AVG

Remark: 1. Result=Reading + Factor

vapo,	by.	hote.	AUD	rek	Jupo.	br.	Pole.
			TM2	2 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.02	15.99	52.01	68.20	-16.19 · · · · · · · · · · · · · · · · · · ·	HAR	prek Peak
5150.00	37.45	15.99	53.44 And	68.20	14.76 AN	Oyer Aur	Peak
5150.00	26.74	15.99	42.73	54.00	-11.27	Anbore H	AVG
5150.00	27.71	15.99	43.70	54.00	-10.30	AUPOLE	AVG
			TM2	2 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.86	16.43	54.29	68.20	13.91	H Priv	Peak
5350.00	38.88	16.43	55.31	68.20	-12.89	inpoter V P	Peak
5350.00	27.91	16.43	44.34	54.00	-9.66	boH ^N	AVG
5350.00	29.40	16.43	45.83	54.00	-8.17	Notek Visit	AVG

Remark: 1. Result=Reading + Factor

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 32 of 46

			TM	3 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.10	15.99	53.09	68.20	-15.11	PHk	Peak
5150.00	38.88	15.99	54.87	68.20	-13.33	Nupo,	Peak
5150.00	26.65	15.99	42.64	54.00	-11.36 NO	otek H Anbo	AVG
5150.00	28.89	15.99	44.88	54.00	-9.12	nbotek V A	AVG
			TM3	3 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.97	16.43	54.40	68.20	-13.80	H ^{nb}	Peak
5350.00	38.20	16.43	54.63	68.20	-13.57	tek A Vupo	Peak
5350.00	27.90	16.43	44.33	54.00	-9.67	Lotek H An	AVG ANG
5350.00	28.52	16.43	44.95	54.00	-9.05	V	AVG

Remark: 1. Result=Reading + Factor

			TM4	4 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.03	15.99	52.02	68.20	-16.18	poten H Ant	Peak
5150.00	36.43	15.99	52.42	68.20	-15.78	Anborek	Peak
5150.00	26.28	15.99	42.27	54.00	-11.73	AnbAich	AVG
5150.00	26.95	15.99	42.94	54.00	-11.06	Notok	AVG
			TM4	4 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.16	16.43	54.59	68.20	-13.61	Anbore H	Peak
5350.00	37.27	16.43	53.70	68.20	-14.50	" park	Peak
5350.00	27.58	16.43	44.01	54.00	-9.99	Hotek	AVG
5350.00	27.67	16.43	44.10	54.00	-9.90	V otel	AVG

Remark: 1. Result=Reading + Factor

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 33 of 46

For U-NII Band 3:

na 3.		Vier Vi	Up	40	100,	71
		TM1	1 / L			
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
38.41	16.37	54.78	74.00	-19.22	k Hupote	Peak
ek 39.88 hote	16.37	56.25	74.00 100°	-17.75	otek V Anb	Peak
28.94	otek 16.37 Anb	45.31	54.00	-8.69 AM	H	AVG A
28.83	16.37	45.20	54.00	208.8-0dy	W. O. A.	AVG
		TM1	I / H			
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
39.40	17.21	56.61	68.20	-11.59	tek H No	Peak
39.81	otel 17.21 pho	57.02	68.20 M	-11.18	V V	potel Peak Ant
29.34	17.21	46.55	54.00	7.45	H H	AVG
29.31	17.21	46.52	54.00	-7.48	Anbord	AVG
	Reading (dBuV) 38.41 39.88 28.94 28.83 Reading (dBuV) 39.40 39.81 29.34	Reading (dBuV) (dB/m) 38.41 16.37 39.88 16.37 28.94 16.37 28.83 16.37 Reading (dBuV) (dB/m) 39.40 17.21 39.81 17.21 29.34 17.21	Reading (dBuV) (dB/m) (dBuV/m) 38.41 16.37 54.78 39.88 16.37 56.25 28.94 16.37 45.31 28.83 16.37 45.20 TM1 Reading (dBuV) (dB/m) (dBuV/m) 39.40 17.21 56.61 39.81 17.21 57.02 29.34 17.21 46.55	TM1 / L Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 38.41 16.37 54.78 74.00 39.88 16.37 56.25 74.00 28.94 16.37 45.31 54.00 28.83 16.37 45.20 54.00 TM1 / H Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 39.40 17.21 56.61 68.20 39.81 17.21 57.02 68.20 29.34 17.21 46.55 54.00	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) 38.41 16.37 54.78 74.00 -19.22 39.88 16.37 56.25 74.00 -17.75 28.94 16.37 45.31 54.00 -8.69 28.83 16.37 45.20 54.00 -8.80 TM1 / H Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) 39.40 17.21 56.61 68.20 -11.59 39.81 17.21 57.02 68.20 -11.18 29.34 17.21 46.55 54.00 -7.45	TM1 / L Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 38.41 16.37 54.78 74.00 -19.22 H 39.88 16.37 56.25 74.00 -17.75 V 28.94 16.37 45.31 54.00 -8.69 H 28.83 16.37 45.20 54.00 -8.80 V TM1 / H Reading (dBuV) Result (dBuV/m) (dBuV/m) Over limit (dBuV/m) Antenna Pol. 39.40 17.21 56.61 68.20 -11.59 H 39.81 17.21 57.02 68.20 -11.18 V 29.34 17.21 46.55 54.00 -7.45 H

Remark: 1. Result=Reading + Factor

		Sport					ek abo
			TM	2 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	38.41	16.37	54.78	74.00	-19.22	Aupo, H	Peak
5725.00	39.05	16.37	55.42	74.00	-18.58	Aupor ok	Peak
5725.00	27.29	16.37	43.66	54.00	-10.34	Hooke	AVG
5725.00	27.78	16.37	44.15	54.00	ek -9.85 nbot	ok Vanboy	AVG
			TM	2 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.64	17.21	54.85	68.20	-13.35	PUPH OF	Peak
5850.00	38.19	17.21	55.40	68.20	-12.80	No.	Peak
5850.00	27.97	17.21	45.18	54.00	-8.82	K Hupote	AVG
5850.00	28.72	17.21	45.93	54.00	-8.07	** A 70	AVG

Remark: 1. Result=Reading + Factor

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 34 of 46

O.L. WILL		TIEN TUP	, P	10-	POL VILL		NOW N
			TM	3 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	37.99	16.37	54.36	74.00	-19.64	AA	Peak
5725.00	38.93	16.37	55.30	74.00	-18.70	Nupo	Peak
5725.00	26.57	16.70	43.27 M	54.00	-10.73	otek H Hupo	AVG
5725.00	28.08	16.70	44.78	54.00	-9.22	abotekV Ar	AVG
			TM3	3 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.35	17.21	55.56	68.20	-12.64	Hupo,	Peak
5850.00	38.66	17.21	55.87	68.20	-12.33	tek V Anbot	Peak
5850.00	28.54	otel 17.21 And	45.75	54.00	-8.25	Nek H	AVG M
5850.00	29.57	17.21	46.78	54.00	7.22	Y.	AVG
	7/1-		. 75.57		A 4	W. J.	10.7

Remark: 1. Result=Reading + Factor

			TM	4 / L			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5725.00	36.51	16.37	52.88	74.00	-21.12	botek H Ant	Peak
5725.00	37.97	16.37	54.34	74.00	-19.66	anborek	Peak
5725.00	27.20	16.70	43.90	54.00	-9.12	noHek	AVG
5725.00	27.94	16.70	44.64	54.00	-8.40	Motek	AVG
		55.7	TM4	4 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.84	17.21	55.05	68.20	-13.15	Model A	Peak
5850.00	38.76	17.21	55.97	68.20	-12.23	10/0 No. 14	Peak
5850.00	27.86	17.21	45.07	54.00	-8.93	Hotek	AVG
5850.00	27.55	17.21	44.76	54.00	-9.24	PV	AVG

Remark: 1. Result=Reading + Factor

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 35 of 46

8. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	Ant abotek And	o. W.					
Anbotek Anbotek Anbotek	strength limits set forth in § Except as provided elsewh	w 1 GHz must comply with the ges 15.209. There in this subpart, the emission of exceed the field strength levels	s from an					
otek Anbotek	following table:							
Anbotek Anbotek	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
Test Limit:	88-216	150 **	3 Anbor					
	216-960	200 **	3 botek					
	Above 960	500	3					
otek Anbotek Anbotek Anbotek Anbotek Anbotek	The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	e, the tighter limit applies at the to in the above table are based on peak detector except for the frequebove 1000 MHz. Radiated emised on measurements employing	measurements uency bands 9– ssion limits in					
Test Method:	ANSI C63.10-2013, sectio	n 12.7.4, 12.7.5, 12.7.6	Anbotek An					
V. Vupo, V.	Below 1GHz:	otek Aupotek Aupo	abotek.					
	meters above the ground a was rotated 360 degrees t b. The EUT was set 3 or 1	JT was placed on the top of a rota at a 3 meter semi-anechoic cham o determine the position of the hi 0 meters away from the interfere ted on the top of a variable-heigh	ber. The table ghest radiation. nce-receiving					
	c. The antenna height is va	aried from one meter to four meter	ers above the					
Procedure:		of the antenna are set to make the						
Procedure:	AID V	ission, the EUT was arranged to						
	and then the antenna was test frequency of below 30	tuned to heights from 1 meter to MHz, the antenna was tuned to he turned from 0 degrees to 360 d	4 meters (for the neights 1 meter)					
			stek spo.					
	e. The test-receiver system Bandwidth with Maximum	n was set to Peak Detect Functio Hold Mode.	n and Specified					

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 36 of 46

would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 37 of 46

- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

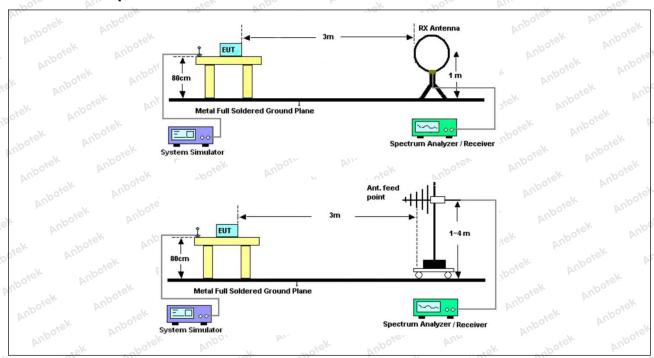
8.1. EUT Operation

Operating Environment:

- 1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
- 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

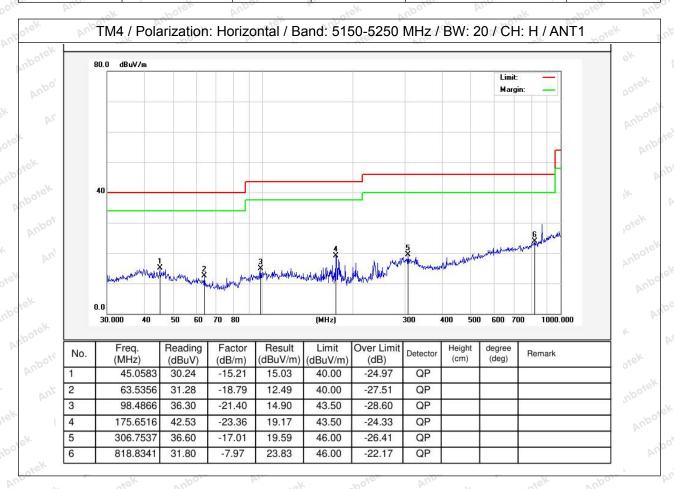
Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 38 of 46

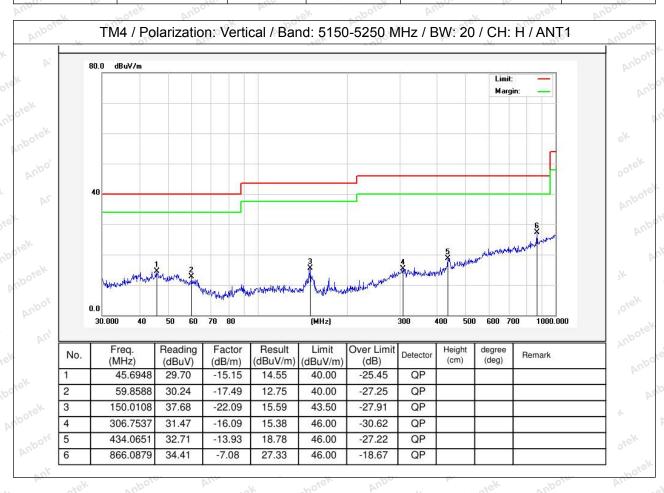
8.2. Test Setup



Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 39 of 46

8.3. Test Data

Remark: The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.


Temperature: 25.6 °C Humidity: 49 % Atmospheric Pressure: 101 kPa

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 40 of 46

Temperature: 25.6 °C Humidity: 49 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 41 of 46

9. Undesirable emission limits (above 1GHz)

	47 CFR Part 15.407(b)(1) And		
st Requirement:	47 CFR Part 15.407(b)(2)		
si Requirement.	47 CFR Part 15.407(b)(4)		
abotek Anbo	47 CFR Part 15.407(b)(10)		
Aupotek Au	For transmitters opera of the 5.15-5.35 GHz to			
	And sek abotek		otek anbote.	
potek Anbotek	For transmitters opera of the 5.15-5.35 GHz to			
	k_ aborek Anbo	h. Wek	Anbore. Ar	ek
	For transmitters opera			
	All emissions shall be above or below the ba above or below the ba edge increasing linear	nd edge increasing li nd edge, and from 25 ly to a level of 15.6 d	nearly to 10 dBn 5 MHz above or Bm/MHz at 5 MH	n/MHz at 25 M below the band Iz above or
	below the band edge, increasing linearly to a			
	MHz	MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
t Limit: Anborek	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
	6.31175-6.31225	123-138	2200-2300	14.47-14.5
And	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
anbotek Anbo	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
	12.57675-12.57725	322-335.4	3600-4400	(2) nbote
	13.36-13.41	Arra spot	ek Anbo	-otek
	¹ Until February 1, 1999 ² Above 38.6	9, this restricted band	shall be 0.490-	0.510 MHz.
Anbotek Anbo	The field strength of el	missions appearing w hown in § 15.209. At		

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 42 of 46

otek Anbore A			V.
ok hotek	1000 MHz, compliance with	th the limits in § 15.209shall be o	lemonstrated
Anbore And	using measurement instru	mentation employing a CISPR q	uasi-peak
hotek Anbore		z, compliance with the emission I	
And sk botek		ted based on the average value	
	emissions. The provisions	in § 15.35apply to these measure	rements.
k hotek Anbo	All sek abote	Anbo K hotek	
AMP	Except as provided elsewh	nere in this subpart, the emissior	ns from an
otek Anbore Ar	intentional radiator shall no	ot exceed the field strength level	s specified in the
ok hotek	following table:	upoten And	
upote, Aug	Frequency (MHz)	Field strength	Measurement
Lotek Anbore	All sek abotek	(microvolts/meter)	distance
Anb. K hotek	Auport Wir.	aboten And	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30 boten Ande	30 rek no
	30-88	100 ** November 100	3 And
	88-216	150 **	4 3 poole.
	216-960	200 **	3 ret
	Above 960	500	3 And
	** Except as provided in page 1	aragraph (g), fundamental emiss	ions from
	intentional radiators opera	ting under this section shall not be	be located in the
		Hz, 76-88 MHz, 174-216 MHz or	
		these frequency bands is permit	tted under other
	sections of this part, e.g.,	§§ 15.231 and 15.241.	
	In the emission table abov	e, the tighter limit applies at the	band edges.
hotek Anboy	The emission limits shown	in the above table are based or	n measurements
	employing a CISPR quasi-	-peak detector except for the free	quency bands 9–
	~ (1)*	above 1000 MHz. Radiated emi-	
		ed on measurements employing	an average
bure apole	detector.	Aupore Ali	abotek Anbe
Test Method:	ANSI C63.10-2013, sectio	n 12.7.4, 12.7.5, 12.7.6	
ek Aupois. Aur	Above 1GHz:	Anboret Anbore	Ann
	a. For above 1GHz, the El	JT was placed on the top of a ro	tating table 1.5
		at a 3 meter fully-anechoic cham	
		termine the position of the higher	
	12/1	ers away from the interference-re	
	-V- 100'	e top of a variable-height antenna	V
	611.	aried from one meter to four met	
		naximum value of the field streng	
K Anbiek Anbi		of the antenna are set to make the	
Procedure:	700.	ission, the EUT was arranged to	
	VO.	tuned to heights from 1 meter to	
		MHz, the antenna was tuned to	
		s turned from 0 degrees to 360 c	
	maximum reading.	Ant Ant	Joseph Line Line
	. 1 7/02	n was set to Peak Detect Function	on and Specified
	Bandwidth with Maximum		Abov
		ne EUT in peak mode was 10dB	lower than the
		could be stopped and the peak	
, , , , , , , , , , , , , , , , , , ,	mini opcomou, mon testing	goodia bo otoppou ana the peak	TAIGOS OF THE LOT

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 43 of 46

> would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel...
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

9.1. EUT Operation

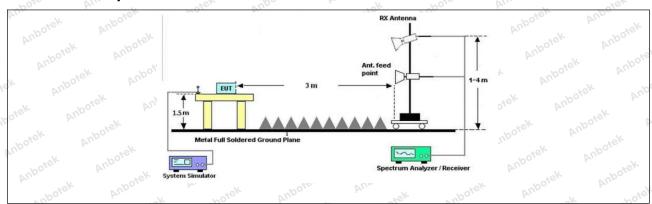
Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 44 of 46

9.2. Test Setup

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 45 of 46

9.3. Test Data

Temperature: 25.6 °C Humidity: 49 % Atmospheric Pressure: 101 kPa

			TM4 / CH	: L / ANT1			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10380.00	29.64	23.81 M	53.45	68.20	-14.75 Ani	V	Peak
15570.00	30.98	28.91	59.89	68.20	-8.31	Wpo. A	Peak
10380.00	30.83	23.81	54.64	68.20	-13.56	AupoH	Peak
15570.00	31.61	28.91	60.52	68.20	-7.68	"L'HO, GE	Peak
10380.00	20.39	23.81	44.20	54.00	-9.80	Vobotek	AVG
15570.00	20.89	28.91	49.80	54.00	-4.20	V	AVG.
10380.00	20.78	23.81	44.59	54.00	otek -9.41 Anb	H AM	AVG
15570.00	21.09	28.91	50.00	54.00	-4.00	upotek H Ar	AVG
			TM4 / CH	: H / ANT1			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10460.00	30.02	23.80	53.82	68.20	-14.38	Kupose	Peak
15690.00	31.19	30.03	61.22	68.20	-6.98	ek V nbot	Peak
10460.00	30.48	23.80	54.28	68.20	-13.92	Н	Peak M
15690.00	31.73	30.03	61.76 An	68.20	-6.44	Poor H	Peak
10460.00	20.67	23.80	44.47	54.00	-9.53	Aupore	AVG
15690.00	20.80	30.03	50.83	54.00	-3.17	Nug New	AVG
10460.00	20.52	23.80	44.32	54.00	-9.68	Hokek	AVG
15690.00	20.70	30.03	50.73	54.00	-3.27	H	AVG

Remark:

- 1. Result =Reading + Factor
- 2. During the test, pre-scan the all modulation, only the worst case is recorded in the report.

Report No.: 18220WC30224304 FCC ID: 2AUKMMTMAX5 Page 46 of 46

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

