

EST REPORT

Product MAXLITEA

Trade mark

Model/Type reference **MAXLITEA**

N/A **Serial Number**

EED32N81223701 **Report Number** FCC ID **2AUKMMAXLITEA**

Date of Issue : Dec. 13, 2021

Test Standards 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

Matco Tools 4403 Allen Rd. Stow, OH 44224 USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Firazer. Lo

Reviewed by:

Acron Ma Aaron Ma

Frazer Li David Wang

Date:

Dec. 13, 2021

David Wang

Check No.:4645191121

2 Content

1 COVER PAGE		•••••	1
2 CONTENT		•••••	2
3 VERSION			3
4 TEST SUMMARY			
5 GENERAL INFORMATION			
5.1 CLIENT INFORMATION			5
5.2 GENERAL DESCRIPTION OF EUT			
5.3 TEST CONFIGURATION			7
5.4 TEST ENVIRONMENT			
5.5 DESCRIPTION OF SUPPORT UNITS			
5.6 TEST LOCATION			
5.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS,	•		
6 EQUIPMENT LIST			9
7 TEST RESULTS AND MEASUREMENT DATA		•••••	11
7.1 ANTENNA REQUIREMENT			11
7.2 AC Power Line Conducted Emissions			12
7.3 MAXIMUM CONDUCTED OUTPUT POWER			
7.4 DTS BANDWIDTH			
7.5 MAXIMUM POWER SPECTRAL DENSITY			
7.6 BAND EDGE MEASUREMENTS AND CONDUCTED SPURIOUS 7.7 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS			
8 APPENDIX A	•••••		35
9 PHOTOGRAPHS OF TEST SETUP			36
10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS			
IN FIRM TORRAPHS OF EUT CONSTRUCTIONAL DETAILS	J		38

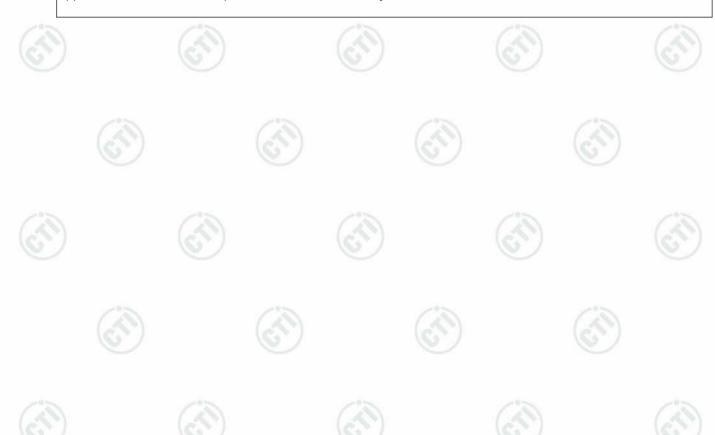
Page 3 of 58

3 Version

Version No.	Description)		
00 Dec. 13, 2021			Original	
	**	/°>	795	715
	(12)	(5)		

(4)

Report No. :EED32N81223701


Page 4 of 58

4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band edge measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

5 General Information

5.1 Client Information

Applicant:	Matco Tools		
Address of Applicant:	4403 Allen Rd. Stow, OH 44224 USA		
Manufacturer:	Matco Tools	(10)	
Address of Manufacturer:	4403 Allen Rd. Stow, OH 44224 USA	(62)	(6)

5.2 General Description of EUT

Product Name:	MAXLITEA				
Model No.:	MAXLITEA				
Trade mark:	MATCE (9 8			
Product Type:	☐ Mobile 🖂	Portable	Fix Location	l	
Operation Frequency:	IEEE 802.11b/g/i IEEE 802.11n(H ⁻				
Modulation Type:	IEEE for 802.11b IEEE for 802.11g IEEE for 802.11r	:OFDM(64	1QAM, 16QAM, 0	QPSK, BPS	SK) 6QAM,QPSK,BPSK)
Number of Channel:	IEEE 802.11b/g, IEEE 802.11n H	IEEE 802.	11n HT20: 11 Ch	•	
Channel Separation:	5MHz		(6)		0
Antenna Type:	Internal antenna				
Antenna Gain:	3.87dBi				
Function	⊠SISO □2x2 I	иімо 🔲 з	x3 MIMO 4x4N	ИІМО	(3)
Power Supply:	AC Adapter	INPL	DEL:FY0502500 JT:100-240V~50/ PUT:5.0V,2.5A	/60Hz,0.6 <i>F</i>	A Max
	Li-ion Battery		el:18650 3.7V,6000mAh,22	2.2Wh	
Test Voltage:	Li-ion Battery DC	3.7V	(67)		(6,2)
Sample Received Date:	Nov. 19, 2021				
Sample tested Date:	Nov. 19, 2021 to	Nov. 24, 2	021		

Channel	Frequency	Channel	Frequency	Channel	Fred	luency	Channel	Frequency
1	2412MHz	4	2427MHz	7	244	2MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	244	7MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	245	2MHz		(6)
Operation	Frequency ea	ch of chann	el (802.11n HT	40)				
Channe	Frequ	ency	Channel	Frequenc	су	Chan	nel	Frequency
3	2422	MHz	6	2437MH	z	9	13	2452MHz
4	2427	MHz	7	2442MH	z			
5	2432	MHz	8	2447MH	7			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/g/n (HT20)

Channel	Frequency	
The lowest channel	2412MHz	
The middle channel	2437MHz	
The highest channel	2462MHz	

802.11n (HT40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The highest channel	2452MHz

Report No. :EED32N81223701 Page 7 of 58

5.3 Test Configuration

EUT Test Software Setting	gs:	
Software:	RF test	
EUT Power Grade:	Default	
Llas toot coffuence to cot the	leveled from the principal of the princi	

Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

Test Mode:

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(HT20)	6.5Mbps	
802.11n(HT40)	13.5Mbps	

According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(HT20) and 6.5Mbps for 802.11n(HT40).

5.4 Test Environment

Operating Environment	:				
Radiated Spurious Emis	ssions:				
Temperature:	22~25.0 °C			(6)	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar		2		27.0
Conducted Emissions:					
Temperature:	22~25.0 °C	(6,)	(6,		(0,)
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
RF Conducted:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				

Report No. :EED32N81223701 Page 8 of 58

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Phone	XIAOMI	MI 6X	FCC	СТІ

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
32)	RF power, conducted	0.55dB (1GHz-18GHz)
3		3.3dB (9kHz-30MHz)
	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 9 of 58

6 Equipment List

Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022			
Temperature/ Humidity Indicator	Defu	TH128	1	(0)	(6)			
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022			
Barometer	changchun	DYM3	1188					

BT/WIFI/SRD RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Signal Generator	Keysight	E8257D	MY53401106	12-28-2020	12-27-2021	
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022	
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611 879	12-28-2020	12-27-2021	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-23-2021	06-22-2022	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518	COT	6	

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Model No. Serial Number		Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Schwarzbeck Antenna		VULB9163	9163-618	05-16-2021	05-15-2022	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024	
Receiver	R&S	ESCI7	100938-003	10-14-2021	10-13-2022	
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A			
Cable line	Fulai(3M)	SF106	5216/6A			
Cable line	Fulai(3M)	SF106	5217/6A	/		
Cable line	Fulai(3M)	SF106	5216/6A	()	(*)	
Cable line	Fulai(3M)	SF106	5217/6A	\	o /	
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001				

Page 10 of 58

17.50	/- >	004.6.11		/	- 181
	1	3M full-anecho			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software JS Tonscend JS36-RSE		10166			
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS- LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021
Communication test set	R&S (102898	12-31-2020	12-30-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022
Fully Anechoic Chamber			(A)	01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	\	(E)
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	/15	/
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	(C)	(6
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M SFT205-NMSM-	381964-0001	- ((11)
Cable line	Cable line Times		394815-0001		<u> </u>
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

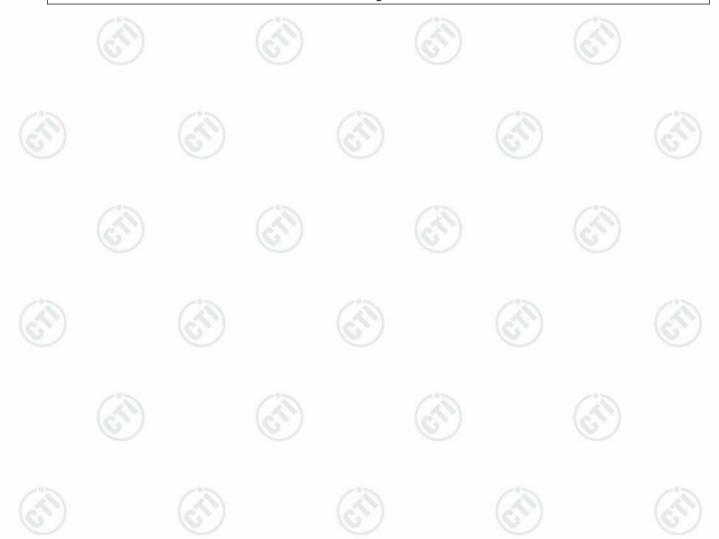
Page 11 of 58

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

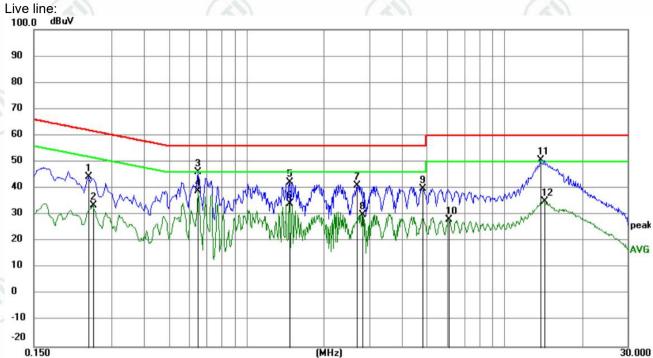
EUT Antenna: Please see Internal photos

The antenna is Internal antenna. The best case gain of the antenna is 3.87dBi.

Report No. :EED32N81223701 Page 12 of 58

7.2 AC Power Line Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 15.2	07	(6)						
	Test Method:	ANSI C63.10: 2013	01							
	Test Frequency Range:									
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto								
2	Limit:	2.0	Limit (d	lBuV)	150					
9		Frequency range (MHz)	Quasi-peak	Average	20					
2		0.15-0.5	66 to 56*	56 to 46*						
		0.5-5	56	46						
		5-30	60	50						
		* Decreases with the logarithm	of the frequency.	795						
	Test Setup:	Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver						
		room. 2) The EUT was connected Impedance Stabilization Neimpedance. The power of connected to a second LIS plane in the same way as multiple socket outlet strips single LISN provided the rad. 3) The tabletop EUT was placed on the horizontal ground reference plane. An placed on the horizontal ground reference plane. The LISN unit under test and bond mounted on top of the ground the closest points of the Libbaron and all of the interface cab ANSI C63.10: 2013 on conditions.	etwork) which provides cables of all other N 2, which was bonder in the LISN 1 for the was used to connect in ting of the LISN was reced upon a non-metal and for floor-standing a bund reference plane. In a vertical ground reference plane was bonded 1 was placed 0.8 m and reference plane. The lish 1 and the EUT. It was at least 0.8 m from memission, the relations the relations of the lish was been dead to a ground reference plane. The lish 1 and the EUT. It was at least 0.8 m from emission, the relations of the lish was been dead to a ground reference plane. The lish 1 and the EUT. It was at least 0.8 m from emission, the relations of the lish was been dead to a ground reference plane. The lish the lish was at least 0.8 m from the lish was at least 0	s a 50Ω/50μH + 5Ω units of the EUT of the the ground reference unit being measuremultiple power cables not exceeded. The above the table 0.8m above table 0.8m above the table 0	linear were rence ed. A s to a re the rear of . The round of the LISNs ween EUT					
	Test Mode:	All modes were tested, only the		vas recorded in the						
	Test Results:	report. Pass								
El maria	rest Nesuits.	1 033			0.00					



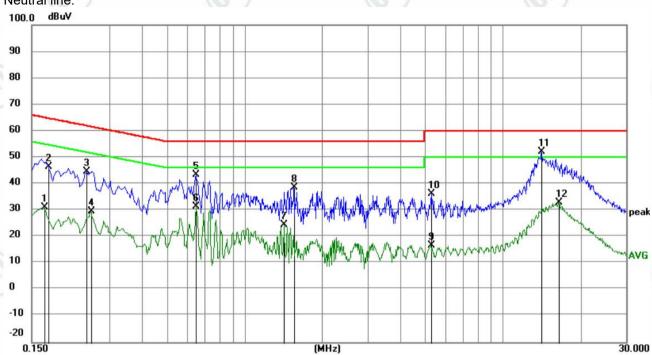
Page 13 of 58

Measurement Data

N	lo.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.2445	34.51	9.96	44.47	61.94	-17.47	peak	
	2		0.2535	23.43	9.98	33.41	51.64	-18.23	AVG	
	3		0.6495	36.08	9.98	46.06	56.00	-9.94	peak	
	4	*	0.6495	28.98	9.98	38.96	46.00	-7.04	AVG	
	5		1.4640	32.55	9.81	42.36	56.00	-13.64	peak	
£2.	6		1.4640	24.42	9.81	34.23	46.00	-11.77	AVG	
	7		2.6880	31.12	9.79	40.91	56.00	-15.09	peak	
	8		2.8095	20.20	9.79	29.99	46.00	-16.01	AVG	
-	9		4.8120	30.15	9.78	39.93	56.00	-16.07	peak	
1	0		6.0765	18.41	9.79	28.20	50.00	-21.80	AVG	
1	11		13.8300	40.65	9.89	50.54	60.00	-9.46	peak	
1	2		14.2665	25.16	9.91	35.07	50.00	-14.93	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



Neutral line:

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1680	21.22	9.87	31.09	55.06	-23.97	AVG	
2		0.1740	36.71	9.87	46.58	64.77	-18.19	peak	
3		0.2445	34.71	9.96	44.67	61.94	-17.27	peak	
4		0.2535	19.62	9.98	29.60	51.64	-22.04	AVG	
5		0.6495	33.46	9.98	43.44	56.00	-12.56	peak	
6		0.6495	21.62	9.98	31.60	46.00	-14.40	AVG	
7		1.4235	14.86	9.81	24.67	46.00	-21.33	AVG	
8		1.5540	28.75	9.81	38.56	56.00	-17.44	peak	
9		5.2619	6.92	9.78	16.70	50.00	-33.30	AVG	
10		5.3024	26.39	9.78	36.17	60.00	-23.83	peak	
11	*	14.1360	42.20	9.90	52.10	60.00	-7.90	peak	
12		16.4085	23.09	9.94	33.03	50.00	-16.97	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. :EED32N81223701 Page 15 of 58

7.3 Maximum Conducted Output Power

18.4.7.7	
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Power Supply Temperature Cabnet Table RF test System Instrument
Test Procedure:	1. Method AVGPM-G Average power measurement Method AVGPM-G is a measurement using a gated RF average power meter. Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Because the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
Limit:	30dBm
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A

Report No. :EED32N81223701 Page 16 of 58

7.4 DTS Bandwidth

1.0.0.0							
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)						
Test Method:	ANSI C63.10 2013						
Test Setup:	Control Computer Power Power Power Table RF test System System Instrument Table						
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.						
Limit:	≥ 500 kHz						
Test Mode:	Refer to clause 5.3						
Test Results:	Refer to Appendix A						



7.5 Maximum Power Spectral Density

Test Requirement:						
Test Method:	ANSI C63.10 2013					
Test Setup:	(cit)					
	Control Computer Power Power Power Power Power Power Power Power Table RF test System System Instrument					
	Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat. 					
Limit:	≤8.00dBm/3kHz					
Test Mode:	Refer to clause 5.3					
Test Results:	Refer to Appendix A					

7.6 Band Edge Measurements and Conducted Spurious Emission

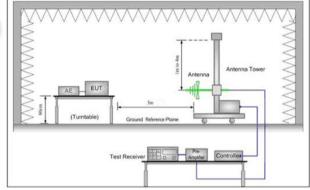
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	RF test Control Control Control Adenna Adenn
Test Procedure:	a) Set RBW = 100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A

(ii)

Report No. :EED32N81223701

7.7 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	(e.,	/
Test Method:	ANSI C63.10 2013		0.200 4,114 .0			
Test Site:	Measurement Distance	 e: 3m	n (Semi-Anech	noic Cham	ber)	
Receiver Setup:	Frequency	10	Detector	RBW	<u> </u>	Remark
	0.009MHz-0.090MH	lz	Peak	10kHz	-	Peak
	0.009MHz-0.090MH	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	lz	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average
	0.490MHz -30MHz	<u>.</u>	Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	·			z 300kHz	Quasi-peak
	AL 4015	27.	Peak	1MHz	3MHz	Peak
	Above 1GHz Peak 1MHz 10k				10kHz	Average
Limit:	Frequency	1	eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m
	0.009MHz-0.490MHz	2	400/F(kHz)	-		300
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	(4)	30
	1.705MHz-30MHz		30	-	160	30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak	3
	216MHz-960MHz	10	200	46.0	Quasi-peak	3
	960MHz-1GHz	1	500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level rad	20c equip	dB above the oment under t	maximum est. This p	permitted av	erage emissior



Page 20 of 58

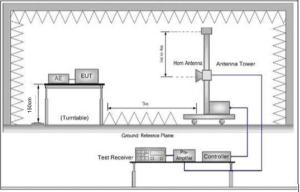


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

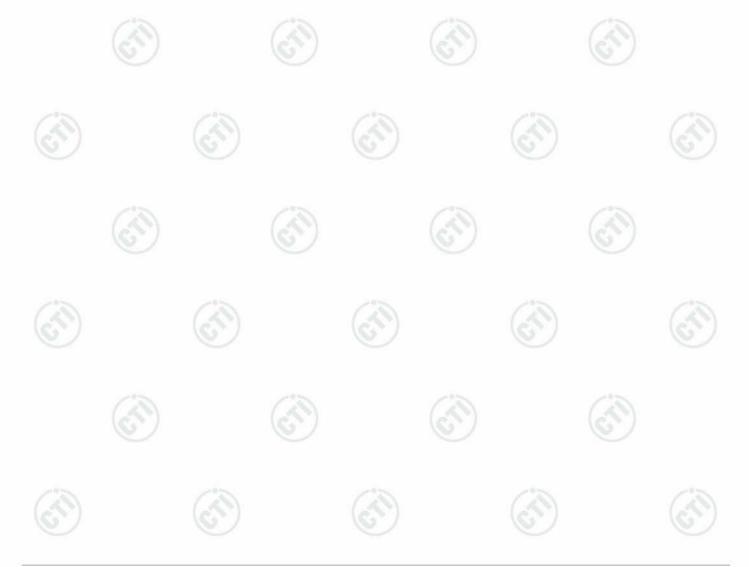
- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest

Note: For the radiated emission test above 1GHz:

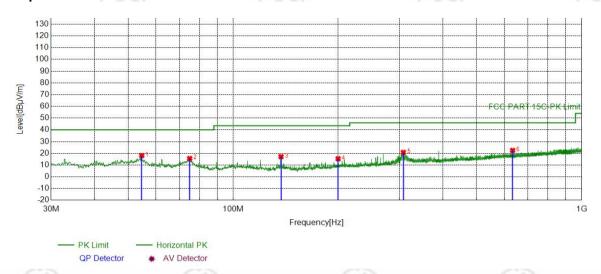
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

Hotline: 400-6788-333 www.cti-cert.com



the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 3 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specif Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than limit specified, then testing could be stopped and the peak values of EUT would be reported. Otherwise the emissions that did not have 10 margin would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle chan (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis position for Transmitting mode, and found the X axis positioning which it is worst case.	Test Results:	Pass
the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 3 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specif Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than limit specified, then testing could be stopped and the peak values of EUT would be reported. Otherwise the emissions that did not have 10 margin would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz), the middle chan (2440MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis position for Transmitting mode, and found the X axis positioning which it is worst case.	Test Mode:	Refer to clause 5.3
the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 3 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specif Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than limit specified, then testing could be stopped and the peak values of EUT would be reported. Otherwise the emissions that did not have 10 margin would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle chan (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis position for Transmitting mode, and found the X axis positioning which it is		i. Repeat above procedures until all frequencies measured was complete.
the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 3 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specif Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than limit specified, then testing could be stopped and the peak values of EUT would be reported. Otherwise the emissions that did not have 10 margin would be re-tested one by one using peak, quasi-peak average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2402MHz),the middle channel (2402MHz).		for Transmitting mode, and found the X axis positioning which it is the worst case.
the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 3 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specif Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than limit specified, then testing could be stopped and the peak values of EUT would be reported. Otherwise the emissions that did not have 10 margin would be re-tested one by one using peak, quasi-peak		(2440MHz),the Highest channel (2480MHz)
the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 3 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specification.		limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or
the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 3 degrees to find the maximum reading.		Bandwidth with Maximum Hold Mode.
		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360

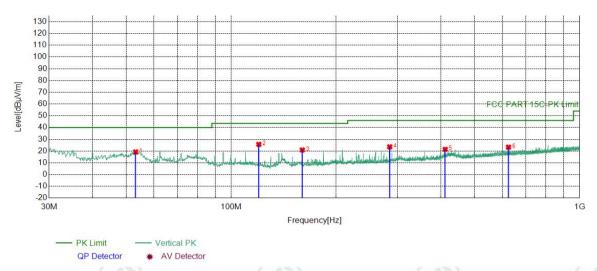


Page 22 of 58

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 1Mbps for 802.11b was recorded in the report.

Test Graph


Suspe	Suspected List													
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark					
1	54.6405	-17.79	35.83	18.04	40.00	21.96	PASS	Horizontal	PK					
2	75.0125	-21.68	37.31	15.63	40.00	24.37	PASS	Horizontal	PK					
3	137.1957	-21.90	39.08	17.18	43.50	26.32	PASS	Horizontal	PK					
4	200.0580	-17.84	33.20	15.36	43.50	28.14	PASS	Horizontal	PK					
5	307.8358	-15.20	36.03	20.83	46.00	25.17	PASS	Horizontal	PK					
6	633.7884	-8.39	30.86	22.47	46.00	23.53	PASS	Horizontal	PK					

Page 23 of 58

Test Graph

Susp	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	53.1853	-17.60	36.86	19.26	40.00	20.74	PASS	Vertical	PK
2	120.0250	-20.08	45.82	25.74	43.50	17.76	PASS	Vertical	PK
3	159.9930	-21.15	42.09	20.94	43.50	22.56	PASS	Vertical	PK
4	285.0385	-15.83	39.43	23.60	46.00	22.40	PASS	Vertical	PK
5	411.4421	-12.69	34.17	21.48	46.00	24.52	PASS	Vertical	PK
6	625.0575	-8.44	31.77	23.33	46.00	22.67	PASS	Vertical	PK

Report No. :EED32N81223701 Page 24 of 58

Radiated Spurious Emission above 1GHz:

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 b mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was in the report.

Mode	:		802.11 b Tran	smitting		Channe	el:	2412MH:	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1427.2427	1.41	42.52	43.93	74.00	30.07	PASS	Н	PK
2	1940.4940	4.24	41.84	46.08	74.00	27.92	PASS	Н	PK
3	4824.1216	-16.22	61.74	45.52	74.00	28.48	PASS	Н	PK
4	7237.2825	-11.78	65.76	53.98	74.00	20.02	PASS	Н	PK
5	9279.4186	-7.94	51.73	43.79	74.00	30.21	PASS	Н	PK
6	13808.7206	-1.66	49.54	47.88	74.00	26.12	PASS	Н	PK
7	1320.0320	1.13	43.13	44.26	74.00	29.74	PASS	V	PK
8	1982.6983	4.46	41.70	46.16	74.00	27.84	PASS	V	PK
9	4824.1216	-16.22	61.72	45.50	74.00	28.50	PASS	V	PK
10	7237.2825	-11.78	60.64	48.86	74.00	25.14	PASS	V	PK
11	9822.4548	-7.31	51.01	43.70	74.00	30.30	PASS	V	PK
12	14369.7580	0.72	48.88	49.60	74.00	24.40	PASS	V	PK

Mode	:		802.11 b Tran	smitting		Channe	el:	2437MH	Z
NO	Freq. [MHz]	Facto	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1305.4305	1.08	43.15	44.23	74.00	29.77	PASS	Н	PK
2	2027.9028	4.64	41.59	46.23	74.00	27.77	PASS	Н	PK
3	4874.1249	-16.21	67.83	51.62	74.00	22.38	PASS	Н	PK
4	7310.2874	-11.67	65.97	54.30	74.00	19.70	PASS	Н	PK
5	7310.2874	-11.67	61.94	50.27	54.00	3.73	PASS	Н	AV
6	9380.4254	-7.98	52.47	44.49	74.00	29.51	PASS	Н	PK
7	14296.7531	-0.46	49.15	48.69	74.00	25.31	PASS	Н	PK
8	1454.4454	1.43	42.38	43.81	74.00	30.19	PASS	V	PK
9	1841.4841	3.59	42.06	45.65	74.00	28.35	PASS	V	PK
10	4874.1249	-16.21	66.77	50.56	74.00	23.44	PASS	V	PK
11	7310.2874	-11.67	60.48	48.81	74.00	25.19	PASS	V	PK
12	9286.4191	-7.94	51.93	43.99	74.00	30.01	PASS	V	PK
13	14394.7597	1.13	48.18	49.31	74.00	24.69	PASS	V	PK

					/ /					
Mode): 		802.11 b Tran	smitting		Channe	el:	2462MH	Z	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1399.2399	1.39	42.92	44.31	74.00	29.69	PASS	Н	PK	
2	2010.9011	4.59	41.98	46.57	74.00	27.43	PASS	Н	PK	
3	4924.1283	-16.11	60.65	44.54	74.00	29.46	PASS	Н	PK	
4	7387.2925	-11.53	65.72	54.19	74.00	19.81	PASS	Н	PK	
5	7388.2926	-11.53	62.24	50.71	54.00	3.29	PASS	Н	AV	
6	10368.4912	-6.34	51.39	45.05	74.00	28.95	PASS	Н	PK	
7	14376.7585	0.83	48.93	49.76	74.00	24.24	PASS	Н	PK	
8	1275.6276	1.00	43.51	44.51	74.00	29.49	PASS	V	PK	
9	1866.8867	3.78	42.06	45.84	74.00	28.16	PASS	V	PK	
10	4924.1283	-16.11	58.95	42.84	74.00	31.16	PASS	V	PK	
11	7387.2925	-11.53	60.85	49.32	74.00	24.68	PASS	V	PK	
12	9262.4175	-7.92	51.95	44.03	74.00	29.97	PASS	V	PK	
13	13726.7151	-1.73	49.32	47.59	74.00	26.41	PASS	V	PK	

Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	2422MH	Z
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1298.0298	1.05	42.86	43.91	74.00	30.09	PASS	Н	PK
2	1815.2815	3.39	41.89	45.28	74.00	28.72	PASS	Н	PK
3	4841.1227	-16.22	54.54	38.32	74.00	35.68	PASS	Н	PK
4	7256.2838	-11.76	59.23	47.47	74.00	26.53	PASS	Н	PK
5	9350.4234	-7.97	51.46	43.49	74.00	30.51	PASS	Н	PK
6	12590.6394	-4.18	50.49	46.31	74.00	27.69	PASS	Н	PK
7	1309.0309	1.09	42.86	43.95	74.00	30.05	PASS	V	PK
8	1872.0872	3.82	42.24	46.06	74.00	27.94	PASS	V	PK
9	4886.1257	-16.20	54.36	38.16	74.00	35.84	PASS	٧	PK
10	7257.2838	-11.75	56.46	44.71	74.00	29.29	PASS	V	PK
11	12435.6290	-4.74	51.96	47.22	74.00	26.78	PASS	V	PK
12	15415.8277	0.48	48.85	49.33	74.00	24.67	PASS	V	PK

Page 26 of 58

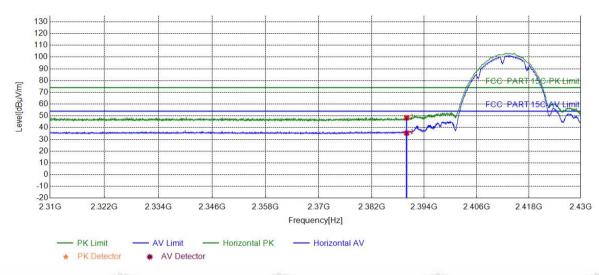
Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	2437MH	Z
NO	Freq. [MHz]	Factor	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1354.6355	1.24	42.96	44.20	74.00	29.80	PASS	Н	PK
2	2031.1031	4.65	41.32	45.97	74.00	28.03	PASS	Н	PK
3	5063.1375	-15.73	54.29	38.56	74.00	35.44	PASS	Н	PK
4	7272.2848	-11.73	58.44	46.71	74.00	27.29	PASS	Н	PK
5	9866.4578	-7.17	51.73	44.56	74.00	29.44	PASS	Н	PK
6	13731.7154	-1.73	50.30	48.57	74.00	25.43	PASS	Н	PK
7	1263.8264	0.97	43.08	44.05	74.00	29.95	PASS	V	PK
8	1953.8954	4.31	41.84	46.15	74.00	27.85	PASS	V	PK
9	5256.1504	-14.67	53.91	39.24	74.00	34.76	PASS	V	PK
10	6718.2479	-12.47	54.41	41.94	74.00	32.06	PASS	V	PK
11	9268.4179	-7.93	51.41	43.48	74.00	30.52	PASS	V	PK
12	13791.7194	-1.64	49.34	47.70	74.00	26.30	PASS	V	PK

Mode	:		802.11 n(HT4	0) Transmitti	ng	Channe	el:	2452MH:	Z
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1279.8280	1.01	43.09	44.10	74.00	29.90	PASS	Н	PK
2	1927.4927	4.17	41.93	46.10	74.00	27.90	PASS	Н	PK
3	4850.1233	-16.21	55.48	39.27	74.00	34.73	PASS	Н	PK
4	7364.2910	-11.57	57.81	46.24	74.00	27.76	PASS	Н	PK
5	10796.5198	-6.24	51.10	44.86	74.00	29.14	PASS	Н	PK
6	14341.7561	0.25	49.06	49.31	74.00	24.69	PASS	Н	PK
7	1306.6307	1.08	43.30	44.38	74.00	29.62	PASS	V	PK
8	1808.4808	3.34	42.23	45.57	74.00	28.43	PASS	V	PK
9	4676.1117	-16.61	54.52	37.91	74.00	36.09	PASS	V	PK
10	6307.2205	-12.92	54.32	41.40	74.00	32.60	PASS	V	PK
11	9831.4554	-7.28	51.89	44.61	74.00	29.39	PASS	V	PK
12	12412.6275	-4.71	51.12	46.41	74.00	27.59	PASS	V	PK

Remark

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Factor
 - Factor=Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Restricted bands:

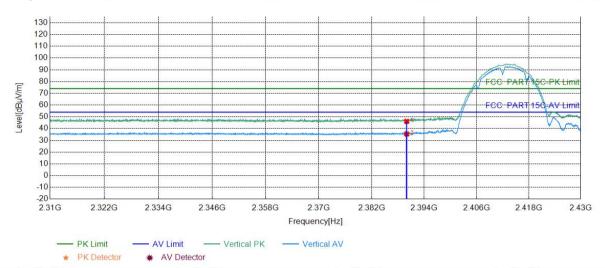


Test plot as follows:

Mode:	802.11 b Transmitting	Channel:	2412MHz
Remark:			

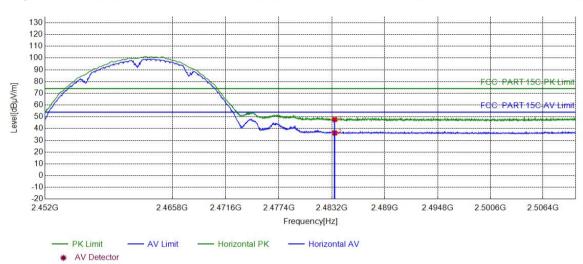
Test Graph

	Suspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2390.0000	5.77	42.60	48.37	74.00	25.63	PASS	Horizontal	PK
	2	2390.0000	5.77	29.59	35.36	54.00	18.64	PASS	Horizontal	AV



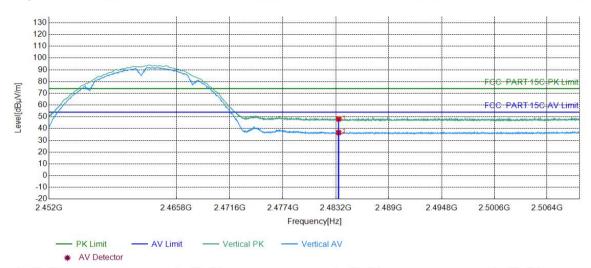
Mode:	802.11 b Transmitting	Channel:	2412MHz
Remark:			

	Suspec	cted List								
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ĭ	1	2390.0000	5.77	40.35	46.12	74.00	27.88	PASS	Vertical	PK
	2	2390.0000	5.77	29.62	35.39	54.00	18.61	PASS	Vertical	AV



Mode:	802.11 b Transmitting	Channel:	2462MHz
Remark:			

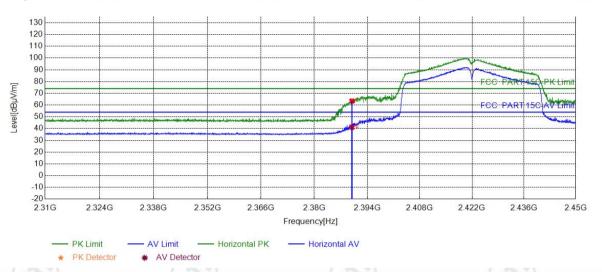
	Suspe	cted List								
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	41.18	47.75	74.00	26.25	PASS	Horizontal	PK
	2	2483.5000	6.57	29.73	36.30	54.00	17.70	PASS	Horizontal	AV

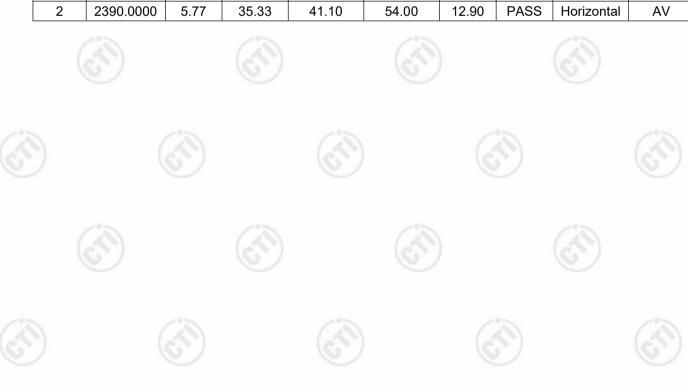


		NO /	
Mode:	802.11 b Transmitting	Channel:	2462MHz
Remark:			



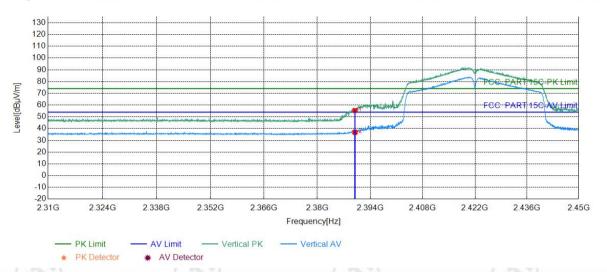
	Suspec	ted List								
0.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	41.59	48.16	74.00	25.84	PASS	Vertical	AV
	2	2483.5000	6.57	30.01	36.58	54.00	17.42	PASS	Vertical	PK

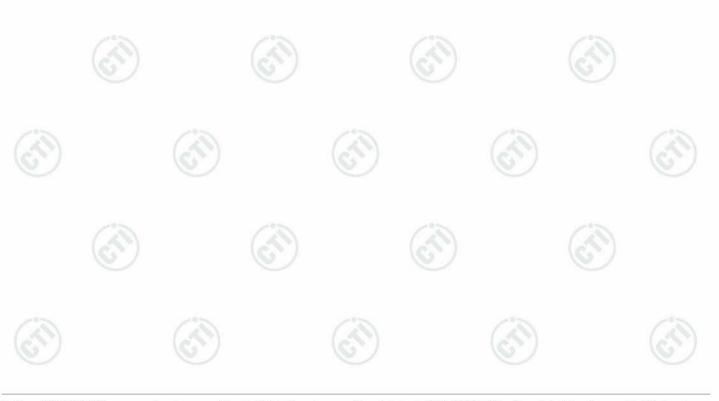




		0 /	
Mode:	802.11 n(HT40) Transmitting	Channel:	2422MHz
Remark:			

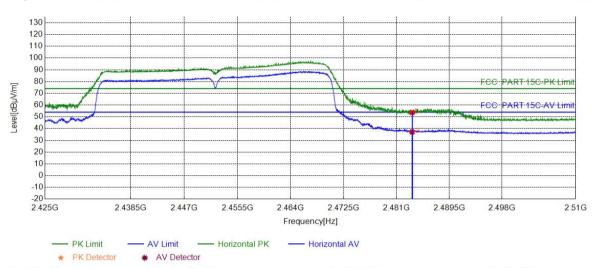
	Suspected List										
000	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	2390.0000	5.77	57.69	63.46	74.00	10.54	PASS	Horizontal	PK	
	2	2390.0000	5.77	35.33	41.10	54.00	12.90	PASS	Horizontal	AV	



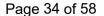


N2 /		O /	
Mode:	802.11 n(HT40) Transmitting	Channel:	2422MHz
Remark:			

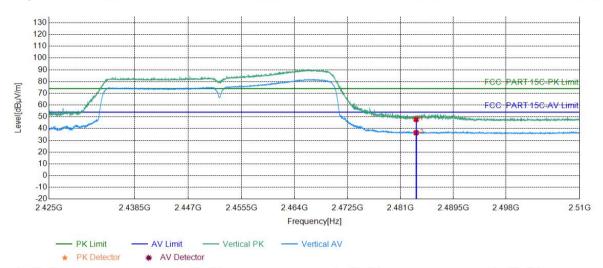
	Suspec	cted List								
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ĭ	1	2390.0000	5.77	49.67	55.44	74.00	18.56	PASS	Vertical	PK
	2	2390.0000	5.77	31.08	36.85	54.00	17.15	PASS	Vertical	AV



Mode:	802.11 n(HT40) Transmitting	Channel:	2452MHz
Remark:			



	Suspec	ted List								
0.7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	47.12	53.69	74.00	20.31	PASS	Horizontal	PK
	2	2483.5000	6.57	30.58	37.15	54.00	16.85	PASS	Horizontal	AV



Mode:	802.11 n(HT40) Transmitting	Channel:	2452MHz	
Remark:				

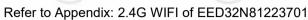
	Suspected List									
6.1	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ķ	1	2483.5000	6.57	41.22	47.79	74.00	26.21	PASS	Vertical	PK
	2	2483.5000	6.57	29.91	36.48	54.00	17.52	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor



Page 35 of 58

8 Appendix A

