Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 121 of 170 # **Shenzhen Anbotek Compliance Laboratory Limited** Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 122 of 170 Client Anbotek (Auden) Certificate No: Z19-97103 **CALIBRATION CERTIFICATE** D1750V2 - SN: 1021 Calibration Procedure(s) Object FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: July 3, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 101919 | 27-Jun-19 (CTTL, No.J19X04777) | Jun-20 | | Power sensor NRP-Z91 | 101547 | 27-Jun-19 (CTTL, No.J19X04777) | Jun-20 | | Reference Probe EX3DV4 | SN 7307 | 19-Feb-19(SPEAG,No.EX3-7307_Feb19) | Feb-20 | | DAE4 | SN 771 | 02-Feb-19(CTTL-SPEAG,No.Z19-97011) | Feb-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-19 (CTTL, No.J19X00893) | Jan-20 | | Network Analyzer E5071C | MY46110673 | 26-Jan-19 (CTTL, No.J19X00894) | Jan-20 | | | Name | Function | Signature | |----------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 考 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | Jos. | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | 1/2 18503 | Certificate No: Z19-97103 Page 1 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 123 of 170 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel=#86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid sensitivity in TSL / NORMx,y,z ConvF N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held - devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-97103 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 124 of 170 Measurement Conditions New Configuration, as far as not given on page 1 | DASY52 | 52.8.8.1258 | |--------------------------|-------------------------------------------------------------------------| | Advanced Extrapolation | | | Triple Flat Phantom 5.1C | | | 10 mm | with Spacer | | dx, dy, dz = 5 mm | | | 1750 MHz ± 1 MHz | | | | Advanced Extrapolation Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.5 ± 6 % | 1.36 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.17 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 36.9 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.94 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 19.8 mW /g ± 20.4 % (k=2) | ## **Body TSL parameters** following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.1 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.25 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 36.7 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 4.94 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 19.7 mW /g ± 20.4 % (k=2) | Certificate No: Z19-97103 Page 3 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 125 of 170 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: #86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### Appendix ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.6Ω- 1.40jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 33.9dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.0Ω+ 0.61jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.5dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.318 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** Certificate No: Z19-97103 Page 4 of 8 Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 126 of 170 Date: 07.01.2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel::+86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.en DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1021 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f=1750 MHz; $\sigma=1.362$ S/m; $\epsilon=40.49$; $\rho=1000$ kg/m3 Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5.Configuration: - Probe: EX3DV4 SN7307; ConvF(8.37, 8.37, 8.37); Calibrated: 2/19/2019; - · Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2/2/2019 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 47.11 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.4W/kg SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.94 W/kg Maximum value of SAR (measured) = 13.0 W/kg 0 dB = 13.0 W/kg = 11.14 dBW/kg Certificate No: Z19-97103 Page 5 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 127 of 170 # **Shenzhen Anbotek Compliance Laboratory Limited** Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 128 of 170 Date: 07.01.2019 DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1021 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.505$ S/m; $\varepsilon_r = 53.06$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(8.18, 8.18, 8.18); Calibrated: 2/19/2019; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2/2/2019 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.11 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.25 W/kg; SAR(10 g) = 4.94 W/kg Maximum value of SAR (measured) = 13.1 W/kg 0 dB = 13.1 W/kg = 11.17 dBW/kg Certificate No: Z19-97103 Page 129 of 170 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM # **Shenzhen Anbotek Compliance Laboratory Limited** Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 130 of 170 Client Anbotek (Auden) Certificate No: Z18-98076 # **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1118 Calibration Procedure(s) FD-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 08, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-17 (CTTL, No.J17X04256) | Jun-18 | | Power sensor NRP-Z91 | 101547 | 01-Jul-17 (CTTL, No.J17X04256) | Jun-18 | | Reference Probe EX3DV4 | SN 7307 | 19-Feb-18(SPEAG,No.EX3-7307_Feb18) | Feb-19 | | DAE4 | SN 771 | 02-Feb-18(CTTL-SPEAG,No.Z18-97011) | Feb-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-18 (CTTL, No.J18X00893) | Jan-19 | | Network Analyzer E5071C | MY46110673 | 26-Jan-18 (CTTL, No.J18X00894) | Jan-19 | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: June 10, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z18-97076 Page 1 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 131 of 170 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-97076 Page 2 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 132 of 170 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.10.0.1442 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.88 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.06 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 8.31 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.37 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 5.52 mW /g ± 18.7 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.7 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.21 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 8.76 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.48 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 5.88 mW /g ±18.7 % (k=2) | Certificate No: Z18-97076 Page 3 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 133 of 170 CALIBRATION LABORATORY an Road, Haidian District, Beijing, 100191, China 533-2079 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.3Ω- 4.83jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.9dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.5Ω- 6.11jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.9dB | | #### General Antenna Parameters and Design | 1.135 ns | Electrical Delay (one direction) | |----------|----------------------------------| | 1.135 ns | Electrical Delay (one direction) | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: Z18-97076 Page 4 of 8 Shenzhen Anbotek Compliance Laboratory Limited Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Fax: (86) 755-26014772 Email: service@anbotek.com www.anbotek.com Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 134 of 170 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn DASY5 Validation Report for Head TSL Date: 06.08.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1118 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.882 \text{ S/m}$; $\varepsilon_r = 42.14$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN7307; ConvF(10.05, 10.05, 10.05); Calibrated: 2/19/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn771; Calibrated: 2018-02-02 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.45 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.14 W/kg SAR(1 g) = 2.06 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.75 W/kg 0 dB = 2.75 W/kg = 4.39 dBW/kg Certificate No: Z18-97076 Page 5 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 135 of 170 In Collaboration with S D E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL Certificate No: Z18-97076 Page 6 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 136 of 170 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China Date: 06.08.2018 DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1118 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.972$ S/m; $\varepsilon_r = 55.73$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN7307; ConvF(9.8, 9.8, 9.8); Calibrated: 2/19/2018; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn771; Calibrated: 2018-02-02 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.05 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.37 W/kg SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.48 W/kg Maximum value of SAR (measured) = 2.95 W/kg 0 dB = 2.95 W/kg = 4.70 dBW/kg Certificate No: Z18-97076 Page 7 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 137 of 170 In Colleboration with S D E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Body TSL Certificate No: Z18-97076 Page 8 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 138 of 170 > Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Anbotek (Auden) Certificate No: D2600V2-1058_Jun18 # **CALIBRATION CERTIFICATE** D2600V2 - SN: 1058 Object QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: June 19, 2018 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | |-----------------------------|--------------------|-----------------------------------|------------------------|--| | Power meter EPM-442A | GB37480704 | 07-Oct-17 (No. 217-02020) | Oct-15 | | | Power sensor HP 8481A | US37292783 | 07-Oct-17 (No. 217-02020) | Oct-15 | | | Power sensor HP 8481A | MY41092317 | 07-Oct-17 (No. 217-02021) | Oct-15 | | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-17 (No. 217-02131) | Mar-16 | | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-17 (No. 217-02134) | Mar-16 | | | Reference Probe ES3DV3 | SN: 3205 | 30-Dec-17 (No. ES3-3205_Dec14) | Dec-15 | | | DAE4 | SN: 601 | 18-Aug-17 (No. DAE4-601_Aug14) | Aug-15 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 | | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 | | | | Name | Function | Signature | | | Calibrated by: | Leif Klysner | Laboratory Technician | P'1 411 | | Katja Pokovic Approved by: This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1058_Jun18 www.anbotek.com Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 139 of 170 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1058_Jun18 Page 2 of 8 FCC ID: 2AUKJ-SLIM Report No.: SZAWW190909004-03 Page 140 of 170 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | ## **Head TSL parameters** | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.6 ± 6 % | 2.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 57.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.9 W/kg ± 16.5 % (k=2) | # **Body TSL parameters** | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.4 ± 6 % | 2.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.5 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 56.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 25.5 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1058_Jun18 Page 3 of 8 Hotline 400-003-0500 www.anbotek.com Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 141 of 170 # Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.5 Ω - 6.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.0 dB | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.7 Ω - 5.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.0 dB | #### General Antenna Parameters and Design | cal Delay (one direction) | 1.151 ns | |---------------------------|----------| |---------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 14, 2012 | Certificate No: D2600V2-1058_Jun18 Page 4 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 142 of 170 # **DASY5 Validation Report for Head TSL** Date: 19.06.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1058 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.05 \text{ S/m}$; $\varepsilon_r = 37.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.49, 4.49, 4.49); Calibrated: 30.12.2017; • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2017 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Head/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.6 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 14.7 W/kg; SAR(10 g) = 6.57 W/kg Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 19.6 W/kg = 12.92 dBW/kg Certificate No: D2600V2-1058_Jun18 Page 5 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 143 of 170 # Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1058_Jun18 Page 6 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 144 of 170 ## **DASY5 Validation Report for Body TSL** Date: 19.06.2018 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1058 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\varepsilon_r = 50.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.13, 4.13, 4.13); Calibrated: 30.12.2017; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 18.08.2017 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.96 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.45 W/kgMaximum value of SAR (measured) = 19.5 W/kg 0 dB = 19.5 W/kg = 12.90 dBW/kg Certificate No: D2600V2-1058_Jun18 Page 7 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 145 of 170 # Impedance Measurement Plot for Body TSL Certificate No: D2600V2-1058_Jun18 Page 8 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 146 of 170 Client Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn **Certificate No:** Z18-97091 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 910 Anbotek (Auden) Calibration Procedure(s) FD-Z11-2-003-01 Calibration Procedures for dipole validation kits Calibration date: Jun 15, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) °C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 101919 | 01-Jul-17 (CTTL, No.J17X04256) | Jun-18 | | Power sensor NRP-Z91 | 101547 | 01-Jul-17 (CTTL, No.J17X04256) | Jun-18 | | Reference Probe EX3DV4 | SN 7307 | 19-Feb-18(SPEAG,No.EX3-7307_Feb18) | Feb-19 | | DAE4 | SN 771 | 02-Feb-18(CTTL-SPEAG,No.Z18-97011) | Feb-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-18 (CTTL, No.J18X00893) | Jan-19 | | Network Analyzer E5071C | MY46110673 | 26-Jan-18 (CTTL, No.J18X00894) | Jan-19 | | | | | | | | Name | Function | Signature | |----------------|-------------|-----------------------------------|------------| | Calibrated by: | Zhao Jing | SAR Test Engineer | A STATE OF | | Reviewed by: | Qi Dianyuan | SAR Project Leader | wor | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | - In with | Issued: Jun 17, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-97091 Page 1 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 147 of 170 s p e a CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.com Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-97091 Page Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 148 of 170 In Collaboration with S P E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1258 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.77 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.06 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 mW /g ± 20.4 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.97 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.8 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.18 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.7 mW /g ± 20.4 % (k=2) | Certificate No: Z18-97091 Page 3 of 8 Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 149 of 170 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn #### **Appendix** # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.6Ω+ 2.77jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.8dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.7Ω+ 4.28jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.3dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.263 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z18-97091 Page 4 of 8 Address: 1/F., Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China. Tel:(86) 755–26066440 Fax: (86) 755–26014772 Email: service@anbotek.com Report No.: SZAWW190909004-03 FCC ID: 2AUKJ-SLIM Page 150 of 170 Date: 06.15.2018 In Collaboration with S P E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.767 S/m; ϵ r = 39.01; ρ = 1000 kg/m3 Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN7307; ConvF(7.36, 7.36, 7.36); Calibrated: 2/19/2018; Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn771; Calibrated: 2018-02-02 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.5 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.06 W/kgMaximum value of SAR (measured) = 19.7 W/kg 0 dB = 19.7 W/kg = 12.94 dBW/kg Certificate No: Z18-97091 Page 5 of 8